Meni
Besplatno
Dom  /  Prokletnice/ Kako pronaći najveću i najmanju vrijednost funkcije. Ekstremi funkcije

Kako pronaći najveću i najmanju vrijednost funkcije. Ekstremi funkcije

Sa ovom uslugom možete pronaći najveće i najmanju vrijednost funkcije jedna varijabla f(x) sa rješenjem formatiranim u Wordu. Ako je data funkcija f(x,y), potrebno je pronaći ekstremum funkcije dvije varijable. Također možete pronaći intervale rastućih i opadajućih funkcija.

Pronađite najveću i najmanju vrijednost funkcije

y =

na segmentu [ ;]

Uključite teoriju

Pravila za unos funkcija:

Neophodan uslov za ekstremum funkcije jedne varijable

Jednačina f" 0 (x *) = 0 je neophodno stanje ekstremu funkcije jedne varijable, tj. u tački x * prvi izvod funkcije mora nestati. Identificira stacionarne točke x c ​​u kojima se funkcija ne povećava ili smanjuje.

Dovoljan uslov za ekstremum funkcije jedne varijable

Neka je f 0 (x) dvaput diferencibilan u odnosu na x koji pripada skupu D. Ako je u tački x * ispunjen uslov:

F" 0 (x *) = 0
f"" 0 (x *) > 0

Tada je tačka x * lokalna (globalna) minimalna tačka funkcije.

Ako je u tački x * ispunjen uslov:

F" 0 (x *) = 0
f"" 0 (x *)< 0

Tada je tačka x * lokalni (globalni) maksimum.

Primjer br. 1. Pronađite najveću i najmanju vrijednost funkcije: na segmentu.
Rješenje.

Kritična tačka je jedan x 1 = 2 (f’(x)=0). Ova tačka pripada segmentu. (Tačka x=0 nije kritična, jer je 0∉).
Izračunavamo vrijednosti funkcije na krajevima segmenta i na kritičnoj tački.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Odgovor: f min = 5 / 2 pri x=2; f max =9 pri x=1

Primjer br. 2. Koristeći derivacije višeg reda, pronađite ekstremum funkcije y=x-2sin(x) .
Rješenje.
Pronađite izvod funkcije: y’=1-2cos(x) . Nađimo kritične tačke: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Nalazimo y’’=2sin(x), izračunaj , što znači da su x= π / 3 +2πk, k∈Z minimalne tačke funkcije; , što znači da su x=- π / 3 +2πk, k∈Z maksimalne tačke funkcije.

Primjer br. 3. Istražiti funkciju ekstrema u blizini tačke x=0.
Rješenje. Ovdje je potrebno pronaći ekstreme funkcije. Ako je ekstrem x=0, onda saznajte njegov tip (minimum ili maksimum). Ako među pronađenim tačkama nema x = 0, onda izračunajte vrijednost funkcije f(x=0).
Treba napomenuti da kada derivacija na svakoj strani date tačke ne promijeni svoj predznak, moguće situacije nisu iscrpljene čak ni za diferencijabilne funkcije: može se dogoditi da za proizvoljno malo susjedstvo na jednoj strani tačke x 0 ili na obje strane derivacija mijenja predznak. U ovim tačkama potrebno je koristiti druge metode za proučavanje funkcija na ekstremu.

Kako pronaći najveću i najmanju vrijednost funkcije na segmentu?

Za ovo pratimo dobro poznati algoritam:

1 . Mi nalazimo ODZ funkcije.

2 . Pronalaženje derivacije funkcije

3 . Izjednačavanje derivacije sa nulom

4 . Pronalazimo intervale u kojima derivacija zadržava predznak i iz njih određujemo intervale povećanja i smanjenja funkcije:

Ako je na intervalu I derivacija funkcije 0" title="f^(prime)(x)>0">, то функция !} povećava u ovom intervalu.

Ako je na intervalu I derivacija funkcije , tada funkcija opada u ovom intervalu.

5 . Mi nalazimo maksimalne i minimalne tačke funkcije.

IN na maksimalnoj tački funkcije, derivacija mijenja predznak iz “+” u “-”.

IN minimalna tačka funkcijederivat mijenja znak iz "-" u "+".

6 . Pronalazimo vrijednost funkcije na krajevima segmenta,

  • zatim uspoređujemo vrijednost funkcije na krajevima segmenta i na maksimalnim tačkama, i odaberite najveći od njih ako trebate pronaći najveću vrijednost funkcije
  • ili usporedite vrijednost funkcije na krajevima segmenta i na minimalnim tačkama, i odaberite najmanji od njih ako trebate pronaći najmanju vrijednost funkcije

Međutim, ovisno o tome kako se funkcija ponaša na segmentu, ovaj algoritam se može značajno smanjiti.

Razmotrite funkciju . Grafikon ove funkcije izgleda ovako:

Pogledajmo nekoliko primjera rješavanja problema iz Otvorene banke zadataka za

1 . Zadatak B15 (br. 26695)

Na segmentu.

1. Funkcija je definirana za sve realne vrijednosti x

Očigledno, ova jednadžba nema rješenja, a izvod je pozitivan za sve vrijednosti x. Posljedično, funkcija raste i poprima najveću vrijednost na desnom kraju intervala, odnosno na x=0.

Odgovor: 5.

2 . Zadatak B15 (br. 26702)

Pronađite najveću vrijednost funkcije na segmentu.

1. ODZ funkcije title="x(pi)/2+(pi)k, k(in)(bbZ)">!}

Izvod je jednak nuli na , međutim, u ovim točkama ne mijenja predznak:

Stoga, title="3/(cos^2(x))>=3">, значит, title="3/(cos^2(x))-3>=0">, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция !} raste i uzima najveću vrijednost na desnom kraju intervala, na .

Da bi bilo jasno zašto derivacija ne mijenja predznak, transformiramo izraz za izvod na sljedeći način:

Title="y^(prime)=3/(cos^2(x))-3=(3-3cos^2(x))/(cos^2(x))=(3sin^2 (x))/(cos^2(x))=3tg^2(x)>=0">!}

Odgovor: 5.

3. Zadatak B15 (br. 26708)

Pronađite najmanju vrijednost funkcije na segmentu.

1. ODZ funkcije: title="x(pi)/2+(pi)k, k(in)(bbZ)">!}

Postavimo korijene ove jednadžbe na trigonometrijski krug.

Interval sadrži dva broja: i

Postavimo znakove. Da bismo to učinili, određujemo predznak derivacije u tački x=0: . Prilikom prolaska kroz tačke i, derivacija mijenja predznak.

Opišimo promjenu predznaka derivacije funkcije na koordinatnoj liniji:

Očigledno, tačka je minimalna tačka (u kojoj derivacija mijenja predznak iz “-” u “+”), a da biste pronašli najmanju vrijednost funkcije na segmentu, trebate uporediti vrijednosti funkcije na minimalnoj tački i na lijevom kraju segmenta, .


S praktične tačke gledišta, najveći interes je korištenje derivata za pronalaženje najveće i najmanje vrijednosti funkcije. Sa čime je ovo povezano? Maksimiziranje profita, minimiziranje troškova, određivanje optimalnog opterećenja opreme... Drugim riječima, u mnogim područjima života moramo rješavati probleme optimizacije nekih parametara. A to su zadaci pronalaženja najveće i najmanje vrijednosti funkcije.

Treba napomenuti da se najveća i najmanja vrijednost funkcije obično traže na određenom intervalu X, koji je ili cijela domena funkcije ili dio domene definicije. Sam interval X može biti segment, otvoreni interval , beskonačan interval.

U ovom članku ćemo govoriti o eksplicitnom pronalaženju najvećih i najmanjih vrijednosti datu funkciju jedna varijabla y=f(x) .

Navigacija po stranici.

Najveća i najmanja vrijednost funkcije - definicije, ilustracije.

Pogledajmo ukratko glavne definicije.

Najveća vrijednost funkcije to za bilo koga nejednakost je tačna.

Najmanja vrijednost funkcije y=f(x) na intervalu X naziva se takva vrijednost to za bilo koga nejednakost je tačna.

Ove definicije su intuitivne: najveća (najmanja) vrijednost funkcije je najveća (najmanja) prihvaćena vrijednost na intervalu koji se razmatra na apscisi.

Stacionarne tačke– to su vrijednosti argumenta pri kojima derivacija funkcije postaje nula.

Zašto su nam potrebne stacionarne tačke pri pronalaženju najvećih i najmanjih vrijednosti? Odgovor na ovo pitanje daje Fermatova teorema. Iz ove teoreme slijedi da ako diferencijabilna funkcija ima ekstrem (lokalni minimum ili lokalni maksimum) u nekoj tački, onda je ta tačka stacionarna. Dakle, funkcija često uzima svoju najveću (najmanju) vrijednost na intervalu X u jednoj od stacionarnih tačaka iz ovog intervala.

Također, funkcija često može poprimiti svoje najveće i najmanje vrijednosti u tačkama u kojima prvi izvod ove funkcije ne postoji, a sama funkcija je definirana.

Odgovorimo odmah na jedno od najčešćih pitanja na ovu temu: „Da li je uvijek moguće odrediti najveću (najmanju) vrijednost funkcije“? Ne ne uvek. Ponekad se granice intervala X poklapaju sa granicama domene definicije funkcije, ili je interval X beskonačan. A neke funkcije u beskonačnosti i na granicama domene definicije mogu poprimiti i beskonačno velike i beskonačno male vrijednosti. U ovim slučajevima se ništa ne može reći o najvećoj i najmanjoj vrijednosti funkcije.

Radi jasnoće daćemo grafičku ilustraciju. Pogledajte slike i mnogo toga će vam biti jasnije.

Na segmentu


Na prvoj slici, funkcija uzima najveću (max y) i najmanju (min y) vrijednost u stacionarnim tačkama koje se nalaze unutar segmenta [-6;6].

Razmotrite slučaj prikazan na drugoj slici. Promijenimo segment u . U ovom primjeru, najmanja vrijednost funkcije postiže se u stacionarnoj tački, a najveća u tački sa apscisom koja odgovara desnoj granici intervala.

Na slici 3, granične tačke segmenta [-3;2] su apscise tačaka koje odgovaraju najvećoj i najmanjoj vrednosti funkcije.

Na otvorenom intervalu


Na četvrtoj slici, funkcija uzima najveću (max y) i najmanju (min y) vrijednost u stacionarnim točkama koje se nalaze unutar otvorenog intervala (-6;6).

Na intervalu se ne mogu izvući zaključci o najvećoj vrijednosti.

U beskonačnosti


U primjeru prikazanom na sedmoj slici, funkcija uzima najveću vrijednost (max y) u stacionarnoj tački sa apscisom x=1, a najmanja vrijednost (min y) postiže se na desnoj granici intervala. Na minus beskonačnosti, vrijednosti funkcije asimptotski se približavaju y=3.

Tokom intervala, funkcija ne dostiže ni najmanju ni najveću vrijednost. Kako se x=2 približava s desne strane, vrijednosti funkcije teže minus beskonačnosti (prava x=2 je vertikalna asimptota), a kako apscisa teži plus beskonačnosti, vrijednosti funkcije asimptotski se približavaju y=3. Grafička ilustracija ovog primjera prikazana je na slici 8.

Algoritam za pronalaženje najveće i najmanje vrijednosti kontinuirane funkcije na segmentu.

Napišimo algoritam koji nam omogućava da pronađemo najveću i najmanju vrijednost funkcije na segmentu.

  1. Pronalazimo domenu definicije funkcije i provjeravamo da li ona sadrži cijeli segment.
  2. Pronalazimo sve tačke u kojima prvi izvod ne postoji i koje su sadržane u segmentu (obično se takve tačke nalaze u funkcijama sa argumentom pod znakom modula i u funkcije snage sa razlomkom-racionalnim eksponentom). Ako takvih tačaka nema, prijeđite na sljedeću tačku.
  3. Određujemo sve stacionarne tačke koje spadaju u segment. Da bismo to učinili, izjednačavamo ga s nulom, rješavamo rezultirajuću jednadžbu i odabiremo odgovarajuće korijene. Ako nema stacionarnih tačaka ili nijedna od njih ne pada u segment, pređite na sledeću tačku.
  4. Izračunavamo vrijednosti funkcije u odabranim stacionarnim tačkama (ako ih ima), u tačkama u kojima prvi izvod ne postoji (ako postoji), kao i na x=a i x=b.
  5. Od dobivenih vrijednosti funkcije biramo najveću i najmanju - to će biti tražena najveća i najmanja vrijednost funkcije.

Analizirajmo algoritam za rješavanje primjera kako bismo pronašli najveću i najmanju vrijednost funkcije na segmentu.

Primjer.

Pronađite najveću i najmanju vrijednost funkcije

  • na segmentu;
  • na segmentu [-4;-1] .

Rješenje.

Područje definicije funkcije je cijeli skup realnih brojeva, sa izuzetkom nule, tj. Oba segmenta spadaju u domen definicije.

Pronađite izvod funkcije u odnosu na:

Očigledno, derivacija funkcije postoji u svim tačkama segmenata i [-4;-1].

Stacionarne tačke određujemo iz jednačine. Jedini pravi korijen je x=2. Ova stacionarna tačka spada u prvi segment.

Za prvi slučaj izračunavamo vrijednosti funkcije na krajevima segmenta i u stacionarnoj tački, odnosno za x=1, x=2 i x=4:

Dakle, najveća vrijednost funkcije se postiže pri x=1, a najmanja vrijednost – na x=2.

Za drugi slučaj izračunavamo vrijednosti funkcije samo na krajevima segmenta [-4;-1] (pošto ne sadrži ni jednu stacionarnu tačku):

Proces traženja najmanjih i najvećih vrijednosti funkcije na segmentu podsjeća na fascinantan let oko objekta (graf funkcije) u helikopteru, pucanje u određene točke iz topa velikog dometa i odabir vrlo posebnih tačaka sa ovih tačaka za kontrolne udarce. Bodovi se biraju na određeni način i prema određenim pravilima. Po kojim pravilima? O tome ćemo dalje.

Ako je funkcija y = f(x) je kontinuiran na intervalu [ a, b] , zatim dopire do ovog segmenta najmanje I najviše vrijednosti . Ovo se može dogoditi bilo u ekstremne tačke, ili na krajevima segmenta. Stoga, pronaći najmanje I najveće vrijednosti funkcije , kontinuirano na intervalu [ a, b] , potrebno je izračunati njegove vrijednosti u svemu kritične tačke i na krajevima segmenta, a zatim odaberite najmanji i najveći od njih.

Neka, na primjer, želite odrediti najveću vrijednost funkcije f(x) na segmentu [ a, b] . Da biste to učinili, morate pronaći sve njegove kritične točke koje leže na [ a, b] .

Kritična tačka nazvana tačka u kojoj definirana funkcija, i ona derivat ili jednako nuli ili ne postoji. Zatim treba izračunati vrijednosti funkcije na kritičnim tačkama. I na kraju, treba uporediti vrijednosti funkcije u kritičnim točkama i na krajevima segmenta ( f(a) I f(b)). Najveći od ovih brojeva će biti najveća vrijednost funkcije na segmentu [a, b] .

Problemi nalaženja najmanje vrijednosti funkcije .

Zajedno tražimo najmanju i najveću vrijednost funkcije

Primjer 1. Pronađite najmanju i najveću vrijednost funkcije na segmentu [-1, 2] .

Rješenje. Pronađite izvod ove funkcije. Izjednačimo derivaciju sa nulom () i dobijemo dvije kritične točke: i . Da biste pronašli najmanju i najveću vrijednost funkcije na datom segmentu, dovoljno je izračunati njene vrijednosti na krajevima segmenta i u tački, jer tačka ne pripada segmentu [-1, 2]. Ove vrijednosti funkcije su: , , . Iz toga slijedi najmanja vrijednost funkcije(označeno crvenom bojom na donjem grafikonu), jednako -7, postiže se na desnom kraju segmenta - u tački , i najveći(takođe crveno na grafikonu), jednako 9, - u kritičnoj tački.

Ako je funkcija kontinuirana u određenom intervalu i ovaj interval nije segment (ali je, na primjer, interval; razlika između intervala i segmenta: granične točke intervala nisu uključene u interval, već granične točke segmenta su uključene u segment), tada među vrijednostima funkcije možda neće biti najmanja i najveća. Tako, na primjer, funkcija prikazana na donjoj slici je kontinuirana na ]-∞, +∞[ i nema najveću vrijednost.

Međutim, za bilo koji interval (zatvoren, otvoren ili beskonačan) vrijedi sljedeće svojstvo kontinuiranih funkcija.

Primjer 4. Pronađite najmanju i najveću vrijednost funkcije na segmentu [-1, 3] .

Rješenje. Izvod ove funkcije nalazimo kao derivaciju kvocijenta:

.

Izjednačavamo derivaciju sa nulom, što nam daje jednu kritičnu tačku: . Pripada segmentu [-1, 3] . Da bismo pronašli najmanju i najveću vrijednost funkcije na datom segmentu, nalazimo njene vrijednosti na krajevima segmenta i na pronađenoj kritičnoj tački:

Hajde da uporedimo ove vrednosti. Zaključak: jednako -5/13, u tački i najveća vrijednost jednako 1 u tački .

Nastavljamo zajedno tražiti najmanju i najveću vrijednost funkcije

Ima nastavnika koji na temu pronalaženja najmanjih i najvećih vrijednosti funkcije ne daju učenicima za rješavanje primjere koji su složeniji od onih o kojima se upravo raspravljalo, odnosno onih u kojima je funkcija polinom ili razlomak, čiji su brojilac i nazivnik polinomi. Ali nećemo se ograničiti na takve primjere, jer među nastavnicima ima onih koji vole prisiljavati učenike da razmišljaju u potpunosti (tabela izvedenica). Stoga će se koristiti logaritamska i trigonometrijska funkcija.

Primjer 6. Pronađite najmanju i najveću vrijednost funkcije na segmentu .

Rješenje. Izvod ove funkcije nalazimo kao derivat proizvoda :

Derivat izjednačavamo sa nulom, što daje jednu kritičnu tačku: . Pripada segmentu. Da bismo pronašli najmanju i najveću vrijednost funkcije na datom segmentu, nalazimo njene vrijednosti na krajevima segmenta i na pronađenoj kritičnoj tački:

Rezultat svih radnji: funkcija dostigne svoju minimalnu vrijednost, jednako 0, u tački i u tački i najveća vrijednost, jednako e², u tački.

Primjer 7. Pronađite najmanju i najveću vrijednost funkcije na segmentu .

Rješenje. Pronađite izvod ove funkcije:

Izjednačavamo derivaciju sa nulom:

Jedina kritična tačka pripada segmentu. Da bismo pronašli najmanju i najveću vrijednost funkcije na datom segmentu, nalazimo njene vrijednosti na krajevima segmenta i na pronađenoj kritičnoj tački:

zaključak: funkcija dostigne svoju minimalnu vrijednost, jednako , u točki i najveća vrijednost, jednako , u tački .

U primijenjenim ekstremnim problemima, pronalaženje najmanjih (maksimalnih) vrijednosti funkcije, u pravilu se svodi na pronalaženje minimuma (maksimuma). Ali od većeg praktičnog interesa nisu sami minimumi ili maksimumi, već one vrijednosti argumenta na kojima se oni postižu. Prilikom rješavanja primijenjenih problema javlja se dodatna poteškoća - sastavljanje funkcija koje opisuju pojavu ili proces koji se razmatra.

Primjer 8. Rezervoar kapaciteta 4, koji ima oblik paralelepipeda sa kvadratnom bazom i otvoren na vrhu, mora biti kalajisan. Koje veličine rezervoara treba da bude tako da se za pokrivanje koristi najmanja količina materijala?

Rješenje. Neka x- osnovna strana, h- visina rezervoara, S- njegovu površinu bez pokrova, V- njen volumen. Površina rezervoara se izražava formulom, tj. je funkcija dvije varijable. Da izrazim S kao funkciju jedne varijable, koristimo činjenicu da , odakle . Zamjena pronađenog izraza h u formulu za S:

Hajde da ispitamo ovu funkciju do njenog ekstrema. Definiran je i diferencijabilan svuda u ]0, +∞[ i

.

Izjednačavamo derivaciju sa nulom () i nalazimo kritičnu tačku. Osim toga, kada izvod ne postoji, ali ova vrijednost nije uključena u domenu definicije i stoga ne može biti tačka ekstrema. Dakle, ovo je jedina kritična tačka. Provjerimo prisustvo ekstremuma pomoću drugog dovoljna indikacija. Nađimo drugi izvod. Kada je drugi izvod veći od nule (). To znači da kada funkcija dostigne minimum . Od ovoga minimum je jedini ekstrem ove funkcije, to je njena najmanja vrijednost. Dakle, strana dna rezervoara treba da bude 2 m, a visina treba da bude .

Primjer 9. Od tačke A nalazi se na željezničkoj pruzi, do tač WITH, koji se nalazi na udaljenosti od njega l, teret mora biti transportovan. Cijena transporta jedinice težine po jedinici udaljenosti željeznicom je jednaka , a autoputem je jednaka . Do koje tačke M linije željeznica treba izgraditi autoput za prevoz tereta A V WITH bio najekonomičniji (odjeljak AB pretpostavlja se da je željeznica ravna)?

Neka funkcija y =f(X) je kontinuiran na intervalu [ a, b]. Kao što je poznato, takva funkcija dostiže svoje maksimalne i minimalne vrijednosti na ovom segmentu. Funkcija može uzeti ove vrijednosti ili na unutrašnjoj tački segmenta [ a, b], ili na granici segmenta.

Da biste pronašli najveću i najmanju vrijednost funkcije na segmentu [ a, b] potrebno:

1) pronaći kritične tačke funkcije u intervalu ( a, b);

2) izračunati vrednosti funkcije u pronađenim kritičnim tačkama;

3) izračunati vrijednosti funkcije na krajevima segmenta, odnosno kada x=A i x = b;

4) od svih izračunatih vrijednosti funkcije odaberite najveću i najmanju.

Primjer. Pronađite najveću i najmanju vrijednost funkcije

na segmentu.

Pronalaženje kritičnih tačaka:

Ove tačke leže unutar segmenta; y(1) = ‒ 3; y(2) = ‒ 4; y(0) = ‒ 8; y(3) = 1;

u tački x= 3 i u tački x= 0.

Proučavanje funkcije za konveksnost i pregibnu tačku.

Funkcija y = f (x) pozvao konveksup između (a, b) , ako njegov graf leži ispod tangente povučene u bilo kojoj tački ovog intervala, i zove se konveksno prema dolje (konkavno), ako njegov graf leži iznad tangente.

Tačka kroz koju se konveksnost zamjenjuje konkavnošću ili obrnuto naziva se tačka pregiba.

Algoritam za ispitivanje konveksnosti i tačke savijanja:

1. Naći kritične tačke druge vrste, odnosno tačke u kojima je drugi izvod jednak nuli ili ne postoji.

2. Nacrtajte kritične tačke na brojevnoj pravoj, dijeleći je na intervale. Pronađite predznak drugog izvoda na svakom intervalu; ako , onda je funkcija konveksna prema gore, ako, onda je funkcija konveksna prema dolje.

3. Ako se pri prolasku kroz kritičnu tačku druge vrste promijeni predznak i u ovoj tački je druga derivacija jednaka nuli, tada je ova tačka apscisa tačke prevoja. Pronađite njegovu ordinatu.

Asimptote grafa funkcije. Proučavanje funkcije za asimptote.

Definicija. Poziva se asimptota grafa funkcije ravno, koji ima svojstvo da udaljenost od bilo koje tačke na grafu do ove prave teži nuli kako se tačka na grafu neograničeno pomera od početka.

Postoje tri vrste asimptota: vertikalni, horizontalni i nagnuti.

Definicija. Prava linija se zove vertikalna asimptota funkcionalna grafika y = f(x), ako je barem jedna od jednostranih granica funkcije u ovoj tački jednaka beskonačnosti, tj.

gdje je tačka diskontinuiteta funkcije, odnosno ne pripada domenu definicije.

Primjer.

D ( y) = (‒ ∞; 2) (2; + ∞)

x= 2 – tačka prekida.

Definicija. Pravo y =A pozvao horizontalna asimptota funkcionalna grafika y = f(x) u , ako

Primjer.

x

y

Definicija. Pravo y =kx +b (k≠ 0) se poziva kosa asimptota funkcionalna grafika y = f(x) u , gdje

Opća shema za proučavanje funkcija i konstruiranje grafova.

Algoritam za istraživanje funkcijay = f(x) :

1. Pronađite domenu funkcije D (y).

2. Pronađite (ako je moguće) tačke preseka grafika sa koordinatnim osa (ako x= 0 i at y = 0).

3. Ispitati parnost i neparnost funkcije ( y (x) = y (x) paritet; y(x) = y (x) neparan).

4. Naći asimptote grafa funkcije.

5. Naći intervale monotonosti funkcije.

6. Pronađite ekstreme funkcije.

7. Naći intervale konveksnosti (konkavnosti) i pregibne tačke grafa funkcije.

8. Na osnovu sprovedenog istraživanja konstruisati graf funkcije.

Primjer. Istražite funkciju i konstruirajte njen graf.

1) D (y) =

x= 4 – tačka prekida.

2) Kada x = 0,

(0; ‒ 5) – tačka preseka sa oh.

At y = 0,

3) y(x)= funkcija opšti pogled(ni par ni neparan).

4) Ispitujemo asimptote.

a) vertikalno

b) horizontalno

c) pronaći kose asimptote gdje

‒jednačina kosih asimptota

5) U ovoj jednačini nije potrebno pronaći intervale monotonosti funkcije.

6)

Ove kritične tačke dijele cijeli domen definicije funkcije na interval (˗∞; ˗2), (˗2; 4), (4; 10) i (10; +∞). Dobijene rezultate prikladno je prikazati u obliku sljedeće tabele.