Meni
Besplatno
Dom  /  Pedikuloza/ Koje su vrste podređenih veza u frazama. Vrste hemijskih veza: jonske, kovalentne, metalne. Koncept hemijske veze

Koje su vrste podređenih veza u frazama? Vrste hemijskih veza: jonske, kovalentne, metalne. Koncept hemijske veze

170133 0

Svaki atom ima određeni broj elektrona.

Prilikom ulaska u kemijske reakcije, atomi doniraju, dobivaju ili dijele elektrone, postižući najstabilniju elektronsku konfiguraciju. Konfiguracija s najnižom energijom (kao kod atoma plemenitog plina) ispada najstabilnijom. Ovaj obrazac se naziva „pravilo okteta“ (slika 1).

Rice. 1.

Ovo pravilo važi za sve vrste veza. Elektronske veze između atoma omogućavaju im da formiraju stabilne strukture, od najjednostavnijih kristala do složenih biomolekula koji na kraju formiraju žive sisteme. Od kristala se razlikuju po kontinuiranom metabolizmu. Istovremeno, mnoge hemijske reakcije se odvijaju prema mehanizmima elektronski transfer, koji igraju ključnu ulogu u energetskim procesima u tijelu.

Hemijska veza je sila koja drži zajedno dva ili više atoma, jona, molekula ili bilo koju kombinaciju ovih.

Priroda kemijske veze je univerzalna: to je elektrostatička sila privlačenja između negativno nabijenih elektrona i pozitivno nabijenih jezgri, određena konfiguracijom elektrona vanjske ljuske atoma. Sposobnost atoma da formira hemijske veze naziva se valence, ili oksidacijskom stanju. Koncept od valentnih elektrona- elektroni koji formiraju hemijske veze, odnosno nalaze se u orbitalama najviše energije. Prema tome, vanjski omotač atoma koji sadrži ove orbitale naziva se valentna ljuska. Trenutno nije dovoljno ukazati na prisustvo hemijske veze, već je potrebno razjasniti njen tip: jonska, kovalentna, dipol-dipolna, metalna.

Prva vrsta veze jejonski veza

Prema Luisovoj i Kosselovoj elektronskoj valentnoj teoriji, atomi mogu postići stabilnu elektronsku konfiguraciju na dva načina: prvo, gubitkom elektrona, postajući katjoni, drugo, njihovo sticanje, pretvaranje u anjoni. Kao rezultat prijenosa elektrona, zbog elektrostatičke sile privlačenja između jona sa nabojima suprotnih predznaka, formira se hemijska veza, nazvana Kosselom “ elektrovalentan"(sada se zove jonski).

U ovom slučaju, anioni i kationi formiraju stabilnu elektronsku konfiguraciju s ispunjenom vanjskom elektronskom ljuskom. Tipične ionske veze formiraju se od katjona T i II grupa periodnog sistema i anjona nemetalnih elemenata grupa VI i VII (16 i 17 podgrupa, respektivno, halkogeni I halogeni). Veze jonskih spojeva su nezasićene i neusmjerene, pa zadržavaju mogućnost elektrostatičke interakcije s drugim ionima. Na sl. Na slikama 2 i 3 prikazani su primjeri ionskih veza koje odgovaraju Kosselovom modelu prijenosa elektrona.

Rice. 2.

Rice. 3. Jonska veza u molekulu kuhinjske soli (NaCl)

Ovdje je prikladno podsjetiti se na neka svojstva koja objašnjavaju ponašanje tvari u prirodi, posebno razmotriti ideju kiseline I razlozi.

Vodene otopine svih ovih tvari su elektroliti. Različito mijenjaju boju indikatori. Mehanizam djelovanja indikatora otkrio je F.V. Ostwald. Pokazao je da su indikatori slabe kiseline ili baze, čija se boja razlikuje u nedisocijacijskom i disociranom stanju.

Baze mogu neutralizirati kiseline. Nisu sve baze rastvorljive u vodi (na primer, neka organska jedinjenja koja ne sadrže OH grupe su nerastvorljiva, posebno, trietilamin N(C 2 H 5) 3); rastvorljive baze se nazivaju alkalije.

Vodene otopine kiselina prolaze kroz karakteristične reakcije:

a) sa oksidima metala - sa stvaranjem soli i vode;

b) sa metalima - sa stvaranjem soli i vodonika;

c) sa karbonatima - sa stvaranjem soli, CO 2 i N 2 O.

Svojstva kiselina i baza opisuje nekoliko teorija. U skladu sa teorijom S.A. Arrhenius, kiselina je supstanca koja se disocira i formira jone N+ , dok baza formira jone HE- . Ova teorija ne uzima u obzir postojanje organskih baza koje nemaju hidroksilne grupe.

U skladu sa proton Prema teoriji Brønsteda i Lowryja, kiselina je supstanca koja sadrži molekule ili ione koji doniraju protone ( donatori protoni), a baza je supstanca koja se sastoji od molekula ili jona koji prihvataju protone ( akceptori protoni). Imajte na umu da u vodenim otopinama ioni vodika postoje u hidratiziranom obliku, odnosno u obliku hidronijevih iona H3O+ . Ova teorija opisuje reakcije ne samo s vodom i hidroksidnim ionima, već i one koje se izvode u odsustvu rastvarača ili s nevodenim otapalom.

Na primjer, u reakciji između amonijaka N.H. 3 (slaba baza) i hlorovodonika u gasnoj fazi nastaje čvrst amonijum hlorid, a u ravnotežnoj smeši dve supstance uvek se nalaze 4 čestice od kojih su dve kiseline, a druge dve baze:

Ova ravnotežna smjesa se sastoji od dva konjugirana para kiselina i baza:

1)N.H. 4+ i N.H. 3

2) HCl I Cl

Ovdje se u svakom konjugiranom paru kiselina i baza razlikuju za jedan proton. Svaka kiselina ima konjugovanu bazu. Jaka kiselina ima slabu konjugiranu bazu, a slaba kiselina ima jaku konjugiranu bazu.

Teorija Brønsted-Lowryja objašnjava jedinstvenu ulogu vode za život biosfere. Voda, ovisno o tvari koja s njom stupa u interakciju, može pokazati svojstva kiseline ili baze. Na primjer, u reakcijama s vodenim otopinama octene kiseline, voda je baza, a u reakcijama s vodenim otopinama amonijaka kiselina.

1) CH 3 COOH + H2OH3O + + CH 3 COO- . Ovdje molekul sirćetne kiseline donira proton molekulu vode;

2) NH 3 + H2ONH 4 + + HE- . Ovdje molekul amonijaka prihvata proton od molekula vode.

Dakle, voda može formirati dva konjugirana para:

1) H2O(kiselina) i HE- (konjugirana osnova)

2) H 3 O+ (kiselina) i H2O(konjugirana baza).

U prvom slučaju voda donira proton, au drugom ga prihvata.

Ovo svojstvo se zove amfiprotonizam. Supstance koje mogu reagovati i kao kiseline i baze nazivaju se amfoterično. Takve tvari se često nalaze u živoj prirodi. Na primjer, aminokiseline mogu formirati soli i sa kiselinama i sa bazama. Stoga, peptidi lako formiraju koordinaciona jedinjenja sa prisutnim metalnim jonima.

Dakle, karakteristično svojstvo jonske veze je potpuno kretanje veznih elektrona do jednog od jezgara. To znači da između jona postoji oblast u kojoj je gustina elektrona skoro nula.

Druga vrsta veze jekovalentna veza

Atomi mogu formirati stabilne elektronske konfiguracije dijeljenjem elektrona.

Takva veza nastaje kada se par elektrona dijeli jedan po jedan od svih atom. U ovom slučaju, elektroni zajedničke veze ravnomjerno su raspoređeni između atoma. Primjeri kovalentnih veza uključuju homonuklearni dijatomski molekuli H 2 , N 2 , F 2. Isti tip veze nalazi se u alotropima O 2 i ozon O 3 i za poliatomsku molekulu S 8 i takođe heteronuklearne molekule hlorovodonik HCl, ugljen-dioksid CO 2, metan CH 4, etanol WITH 2 N 5 HE, sumpor heksafluorid SF 6, acetilen WITH 2 N 2. Svi ovi molekuli dijele iste elektrone, a njihove veze su zasićene i usmjerene na isti način (slika 4).

Za biologe je važno da dvostruke i trostruke veze imaju smanjene kovalentne atomske radijuse u odnosu na jednostruku vezu.

Rice. 4. Kovalentna veza u Cl 2 molekulu.

Jonske i kovalentne vrste veza su dva ekstremna slučaja mnogih postojećih tipova hemijskih veza, a u praksi je većina veza srednja.

Jedinjenja dva elementa koja se nalaze na suprotnim krajevima istog ili različitih perioda periodnog sistema pretežno formiraju jonske veze. Kako se elementi približavaju u određenom periodu, ionska priroda njihovih spojeva se smanjuje, a kovalentni karakter se povećava. Na primjer, halogenidi i oksidi elemenata na lijevoj strani periodnog sistema formiraju pretežno ionske veze ( NaCl, AgBr, BaSO 4, CaCO 3, KNO 3, CaO, NaOH), a ista jedinjenja elemenata na desnoj strani tabele su kovalentna ( H 2 O, CO 2, NH 3, NO 2, CH 4, fenol C6H5OH, glukoza C 6 H 12 O 6, etanol C 2 H 5 OH).

Kovalentna veza, zauzvrat, ima još jednu modifikaciju.

U poliatomskim ionima i u složenim biološkim molekulima oba elektrona mogu doći samo iz jedan atom. To se zove donator elektronski par. Atom koji dijeli ovaj par elektrona sa donorom naziva se akceptor elektronski par. Ova vrsta kovalentne veze naziva se koordinacija (donator-akceptor, ilidativ) komunikacija(Sl. 5). Ova vrsta veze je najvažnija za biologiju i medicinu, budući da je kemija d-elemenata najvažnijih za metabolizam u velikoj mjeri opisana koordinacijskim vezama.

Fig. 5.

U pravilu, u kompleksnom spoju atom metala djeluje kao akceptor elektronskog para; naprotiv, u jonskim i kovalentnim vezama atom metala je donor elektrona.

Suština kovalentne veze i njena raznolikost - koordinaciona veza - može se razjasniti uz pomoć druge teorije kiselina i baza koju je predložio GN. Lewis. On je donekle proširio semantički koncept pojmova "kiselina" i "baza" prema teoriji Brønsted-Lowryja. Lewisova teorija objašnjava prirodu stvaranja kompleksnih jona i učešće supstanci u reakcijama nukleofilne supstitucije, odnosno u stvaranju CS.

Prema Lewisu, kiselina je supstanca sposobna da formira kovalentnu vezu prihvatanjem elektronskog para iz baze. Lewisova baza je supstanca koja ima usamljeni elektronski par, koji doniranjem elektrona formira kovalentnu vezu sa Lewisovom kiselinom.

Odnosno, Lewisova teorija proširuje raspon kiselinsko-baznih reakcija i na reakcije u kojima protoni uopće ne učestvuju. Štaviše, sam proton je, prema ovoj teoriji, također kiselina, jer je sposoban prihvatiti elektronski par.

Dakle, prema ovoj teoriji, kationi su Lewisove kiseline, a anjoni su Lewisove baze. Primjer bi bile sljedeće reakcije:

Gore je napomenuto da je podjela tvari na ionske i kovalentne relativna, jer se potpuni prijenos elektrona s atoma metala na atome akceptora ne događa u kovalentnim molekulima. U spojevima s ionskim vezama svaki ion je u električnom polju jona suprotnog predznaka, pa su međusobno polarizirani, a njihove ljuske su deformirane.

Polarizabilnost određena elektronskom strukturom, nabojem i veličinom jona; za anjone je veći nego za katione. Najveća polarizabilnost među kationima je za katione većeg naboja i manje veličine, npr. Hg 2+, Cd 2+, Pb 2+, Al 3+, Tl 3+. Ima snažan polarizirajući efekat N+ . Budući da je utjecaj polarizacije jona dvosmjeran, značajno mijenja svojstva spojeva koje oni formiraju.

Treća vrsta veze jedipol-dipol veza

Pored navedenih vrsta komunikacije, postoje i dipol-dipol intermolekularni interakcije, tzv van der Waals .

Snaga ovih interakcija ovisi o prirodi molekula.

Postoje tri vrste interakcija: permanentni dipol - permanentni dipol ( dipol-dipol atrakcija); permanentni dipol - inducirani dipol ( indukcija atrakcija); trenutni dipol - inducirani dipol ( disperzivno privlačnost, ili londonske sile; pirinač. 6).

Rice. 6.

Samo molekuli s polarnim kovalentnim vezama imaju dipol-dipolni moment ( HCl, NH 3, SO 2, H 2 O, C 6 H 5 Cl), a snaga veze je 1-2 Debaya(1D = 3,338 × 10‑30 kulona - C × m).

U biohemiji postoji još jedna vrsta veze - vodonik vezu koja je ograničavajući slučaj dipol-dipol atrakcija. Ova veza nastaje privlačenjem između atoma vodika i malog elektronegativnog atoma, najčešće kisika, fluora i dušika. Kod velikih atoma koji imaju sličnu elektronegativnost (kao što su hlor i sumpor), vodikova veza je mnogo slabija. Atom vodika se razlikuje po jednoj značajnoj osobini: kada se vezani elektroni povuku, njegovo jezgro - proton - je izloženo i više nije zaštićeno elektronima.

Stoga se atom pretvara u veliki dipol.

Vodikova veza, za razliku od van der Waalsove, nastaje ne samo tokom međumolekularnih interakcija, već i unutar jedne molekule - intramolekularno vodoničnu vezu. Vodikove veze igraju važnu ulogu u biohemiji, na primjer, za stabilizaciju strukture proteina u obliku a-heliksa, ili za formiranje dvostruke spirale DNK (slika 7).

Fig.7.

Vodikove i van der Waalsove veze su mnogo slabije od jonskih, kovalentnih i koordinacionih veza. Energija međumolekulskih veza je prikazana u tabeli. 1.

Tabela 1. Energija međumolekularnih sila

Bilješka: Stepen međumolekularnih interakcija odražava se entalpijom topljenja i isparavanja (ključanja). Jonska jedinjenja zahtijevaju znatno više energije za razdvajanje jona nego za razdvajanje molekula. Entalpija topljenja jonskih jedinjenja je mnogo veća od one molekularnih jedinjenja.

Četvrta vrsta veze jemetalni spoj

Konačno, postoji još jedna vrsta međumolekulskih veza - metal: veza pozitivnih jona metalne rešetke sa slobodnim elektronima. Ova vrsta veze se ne javlja u biološkim objektima.

Iz kratkog pregleda tipova veza postaje jasan jedan detalj: važan parametar atoma ili jona metala - donora elektrona, kao i atoma - akceptora elektrona, je njegov veličina.

Ne ulazeći u detalje, napominjemo da se kovalentni radijusi atoma, ionski radijusi metala i van der Waalsovi radijusi molekula u interakciji povećavaju kako se njihov atomski broj povećava u grupama periodnog sistema. U ovom slučaju, vrijednosti radijusa jona su najmanje, a van der Waalsovi polumjeri najveći. Po pravilu, pri kretanju niz grupu, radijusi svih elemenata se povećavaju, kako kovalentnih tako i van der Waalsovih.

Od najvećeg značaja za biologe i lekare su koordinacija(donor-akceptor) veze koje razmatra koordinaciona hemija.

Medicinska bioanorganika. G.K. Barashkov

Po prvi put fraze i način povezivanja fraza počinju se proučavati u 4. razredu, ali se detaljnije razmatraju tek u 5. razredu. Djeca su najčešće zbunjena tipovima podređenih veza. Da bismo razumjeli vrste fraza, potrebno je svaku od njih detaljno razmotriti i analizirati primjere.

Fraza je kombinacija 2 ili više riječi. Ove riječi su povezane jedna s drugom u značenju, ali i gramatički. Posebnost svih fraza je da sadrže glavnu i zavisnu riječ. Načini povezivanja fraza je najteža tema za školarce u 5. razredu. Međutim, veoma je važno učiti jer će učenicima biti potrebni tokom njihovog daljeg školovanja.

Ukupno, lingvisti i filolozi identificiraju 3 načina povezivanja glavnih i zavisnih riječi u frazama: koordinacija, susjedstvo i kontrola. Metode podređene veze u frazi lako se i vrlo često zbunjuju. Da bismo mogli utvrditi kojoj vrsti podređene veze pripada fraza, potrebno ih je razumjeti i detaljno razmotriti sve primjere.

Odobrenje tipa komunikacije

Metoda komunikacije, slaganje u frazi, javlja se prilično često. Dogovor je onaj u kojem se zavisna riječ slaže s glavnom u padežu, broju i rodu. To znači da su obje riječi promjenjive, ali se mijenjaju na isti način. Fraza s tipom dogovora može se sastojati od imenice, koja obično igra ulogu glavne riječi, slažući se s pridjevom ili rednim brojem, participom ili zamjenicom.

Primjeri fraza sa ugovorom o vezi

Kada se razmatraju načini povezivanja fraza, potrebno je navesti i detaljno analizirati sve primjere kako bi se materijal u potpunosti razumio. Svi primjeri moraju biti prepisani u bilježnicu, pažljivo analizirani i obrađeni olovkom. Samo u ovom slučaju materijal će biti dobro naučen i čvrsto zapamćen. Prije svega, da bismo u praksi razumjeli šta je koordinacija, potrebno je raščlaniti fraze s vezom. primjeri:

  • imenica + pridjev:

Lijepa kuća (kakva kuća? prelijepa). “Dom” je glavna riječ, jer postavlja pitanje “koji?” “Lepa” je zavisna riječ u frazi.

Zelena žaba (kakva žaba? zelena). “Žaba” je glavna riječ, jer postavlja pitanje zavisniku.

  • Imenica + redni broj:

Peti sprat (koji sprat? peti). Obje riječi se slažu u broju, rodu i padežu. Zavisna riječ je redni broj „peti“, pošto se o njoj postavlja pitanje iz glavne.

Sa stotim kupcem (kojim kupcem? Stotim). Glavna riječ je “kupac”, od koje se postavlja pitanje na redni broj “stoti”.

  • imenica + particip:

Razbacane stvari (koje stvari? razbacane). Zavisna riječ ovdje će biti particip "razbacan", jer se o tome postavlja pitanje iz glavne.

Otpalo lišće (kakvo lišće? opalo). Glavna riječ je "lišće" jer postavlja pitanje.

  • imenica + zamjenica:

Sa tvojom majkom (čijom majkom? tvojom). I zavisne i glavne riječi slažu se jedna s drugom u rodu, broju i padežu. Glavna riječ će biti imenica, jer se od nje postavlja pitanje do zamjenice.

Takav čovjek (kakav čovjek? takav). Glavna riječ će biti “čovjek”, jer se od njega postavlja pitanje zavisniku.

  • Zamjenica + imenica (particip ili supstantivizirani pridjev):

Sa nekim veselim (sa nekim šta? veselim). Glavna riječ će biti zamjenica, jer se od nje postavlja pitanje zavisnom.

U nečemu lijepom (u nečemu čemu? lijepom). Glavna riječ je zamjenica, jer se od nje postavlja pitanje zavisnom pridevu.

  • Imenica (supstantivizirani pridjev) + pridjev:

Bijelo kupatilo (kakvo kupatilo? bijelo). Glavna riječ će biti zato što se pitanje postavlja iz njega. Pridjev "bijel" znači zavisan.

Preplanuli turist (kakav odmor? preplanuo). „Odmaranje“ će biti glavna riječ, jer pitanje dolazi od njega, a „preplanuo“ će biti zavisna riječ.

Kontrola vrste komunikacije

Metode povezivanja fraza, kao što je poznato, su tri vrste. Menadžment je još jedan način komunikacije. Najčešće zbog toga kod školaraca nastaju zabuna i problemi. Kako biste ih izbjegli, potrebno je detaljnije razmotriti ovu vrstu veze.

Način komunikacije u upravljanju frazama je onaj u kojem se zavisna riječ koristi u padežu koji zahtijeva glavna riječ (samo indirektni padeži, odnosno sve osim nominativa). Veća je vjerovatnoća da će djeca imati problema s upravljanjem jer može biti teško razlikovati menadžment od drugih tipova. Na ovu vrstu veze vredi obratiti posebnu pažnju i na njoj marljivije raditi. Morate imati na umu da sve vrste povezivanja fraza zahtijevaju puno vježbe i pamćenja teorije.

Primjeri fraza sa upravljanjem vezom

Pogledajmo primjere fraza zasnovanih na upravljanju vezom:

  • U vezi sa sintagmama "menadžment", najčešće je glavna riječ glagol, a zavisna riječ je imenica:

Gledajte film (gledajte šta? film). Glavna riječ je glagol "pogledati". Postavlja pitanje "šta?" na imenicu "filmska traka". Ne možete reći "pogledajte film" jer bi to bila greška u govoru. U ovoj frazi zavisna riječ se koristi u slučaju koji od nje zahtijeva glavnu stvar.

Trčim u farmerkama (trčim u čemu? farmerkama). Glagol "trčati" je glavna riječ, a "u farmerkama" je zavisni glagol.

  • Fraze s upravljanjem vezama mogu se sastojati i od pridjeva i od zamjenice:

Slažem se s njim (slažem se s kim? s njim). Od kratkog prideva „slažem se“ postavlja se pitanje o zamjenici, što znači da je ona glavna.

Siguran u nju (u koga? u nju). Kratak pridjev je glavna riječ, a zamjenica kojoj se postavlja pitanje je zavisna.

  • Metode povezivanja fraza mogu se izvesti na način da glavna riječ bude pridjev, a zavisna imenica.

Crveno od mraza (crveno od čega? od mraza). Pridjev “crveni” je glavni u ovoj frazi, a imenica “mraz” je zavisna.

Ljut na svoju kćer (ljut na koga? na moju kćer). Riječ "ćerka" je zavisna jer joj se postavlja pitanje od zavisnog.

  • Dvije imenice također mogu biti dio fraze:

Neprijatelj naroda (čiji neprijatelj? naroda). Imenica “neprijatelj” je glavna, jer postavlja pitanje zavisnim “narodima”.

Kašika od srebra (kašika od čega? srebra). Imenica "kašika" je glavna imenica, a riječ "srebro" je zavisna.

  • Broj može biti glavni u frazi, a imenica može biti zavisna.

Tri kapi (tri šta? kapi). “Tri” je glavna riječ, a “kapi” je zavisna riječ.

Dvanaest mjeseci (dvanaest koliko? mjeseci). Broj je glavna riječ, a imenica zavisna riječ.

  • Prilog je glavna riječ u frazi s upravljanjem veze, a imenica je zavisna riječ:

Lijevo od kuće (lijevo od čega? od kuće).

Niz ulicu (niz šta? niz ulicu).

  • Postoje fraze u kojima je glavna riječ gerund, a zavisna riječ imenica:

Prateći ih (prateći koga? oni). Particip je glavna riječ, jer pitanje zavisniku dolazi od njega.

Pozivajući se na članak (pozivajući se na šta? na članak). Imenica u dativu u ovoj frazi je zavisna riječ, jer joj se pitanje postavlja iz gerundija „obraćanje“.

Vrsta priključka susjedna

Metoda povezivanja u susjedstvu fraze je završna faza u proučavanju vrsta povezanosti fraze. U frazi sa veznom susjednošću, obje riječi, i zavisne i što je najvažnije, povezane su jedna s drugom samo u značenju. Glavna riječ je nepromjenjiva.

Primjeri fraza sa susjednošću veze

Da bi se razumjelo kako se vrši veza susjedstva, potrebno je detaljno analizirati različite primjere:

  • + glagolski infinitiv:

Prilika da ostane (prilika da se radi šta? ostane). Poznato je da se veza susjedstva ostvaruje samo značenjem. Imenica "prilika" je glavna riječ, dok je "ostati" zavisna riječ jer je pitanje.

Drugi primjeri: odluka da se upoznamo, želja za odlaskom, nauka o razmišljanju, želja za učenjem. U svim frazama glavna riječ će biti imenica, a zavisna riječ će biti infinitiv.

Dozvolio mi da se ljubim (dozvolio šta? da poljubim). Oba člana fraze su glagoli. Glavna riječ će biti glagol “dozvoljeno”, a zavisna riječ će biti infinitiv “poljubac”.

Drugi primjeri: voli šetati, došao da se nasmije, želi doći, odlučio je čitati. U svim ovim primjerima zavisna riječ će biti infinitiv, a glavna riječ će biti glagol.

Mora otići (što treba učiniti? otići). Glavna riječ je kratki pridjev “trebalo”, a zavisna riječ kojoj se postavlja pitanje je infinitiv.

Drugi primjeri: skrenite desno, drago mi je što vidim, spremni odgovoriti. U svim navedenim primjerima glavna riječ će biti kratak pridjev, a zavisna riječ će biti infinitiv.

  • imenica + prilog:

Skrenite desno (gdje skrenite? desno). Glavna riječ je imenica “skretanje”, a zavisni prilog “desno”.

Vrste fraza zasnovanih na glavnoj riječi

Nakon što su prošli kroz metode podređenih veza u frazama, prelaze na proučavanje teme o vrstama fraza na temelju glavne riječi. Ukupno postoje 3 grupe fraza zasnovanih na glavnoj riječi.

Imeničke fraze

Imeničke fraze su one fraze u kojima je glavna riječ imenica, zamjenica, pridjev ili broj. Primjeri imenskih fraza: ružičasti slon (glavna riječ - imenica), pet kapi (glavna riječ - broj), drago mi je probati (glavna riječ - kratki pridjev), ona se osjeća dobro (glavna riječ - zamjenica).

Glagolske fraze

Glagolske fraze su one fraze u kojima je glavna riječ, po pravilu, otići daleko, lagati, doći vidjeti, ići radosno (glavne riječi u ovim frazama su glagoli).

Adverbijalne fraze

Adverbijalne fraze su one fraze u kojima je glavna riječ prilog. Primjeri priloških fraza: uvijek dobro, strogo povjerljivo, daleko od Rusije (glavne riječi u ovim frazama su prilozi).

Vrste veza fraza lako se pamte ako često vježbate i naučite potrebnu teoriju.

Ne postoji jedinstvena teorija hemijskih veza; hemijske veze se konvencionalno dele na kovalentne (univerzalni tip veze), ionske (poseban slučaj kovalentne veze), metalne i vodonične.

Kovalentna veza

Formiranje kovalentne veze moguće je pomoću tri mehanizma: razmjenski, donor-akceptor i dativ (Lewis).

Prema metabolički mehanizam Do stvaranja kovalentne veze dolazi zbog dijeljenja zajedničkih elektronskih parova. U ovom slučaju, svaki atom teži da dobije ljusku od inertnog gasa, tj. dobiti završeni nivo eksterne energije. Formiranje hemijske veze po tipu razmene prikazano je korišćenjem Lewisovih formula, u kojima je svaki valentni elektron atoma predstavljen tačkama (slika 1).

Rice. 1 Formiranje kovalentne veze u molekulu HCl mehanizmom izmjene

Sa razvojem teorije atomske strukture i kvantne mehanike, formiranje kovalentne veze je predstavljeno kao preklapanje elektronskih orbitala (slika 2).

Rice. 2. Formiranje kovalentne veze zbog preklapanja elektronskih oblaka

Što je veće preklapanje atomskih orbitala, to je veza jača, dužina veze je kraća i energija veze je veća. Kovalentna veza se može formirati preklapanjem različitih orbitala. Kao rezultat preklapanja s-s, s-p orbitala, kao i d-d, p-p, d-p orbitala sa bočnim režnjevima, dolazi do stvaranja veza. Veza se formira okomito na liniju koja povezuje jezgra 2 atoma. Jedna i jedna veza su sposobne da formiraju višestruku (dvostruku) kovalentnu vezu, karakterističnu za organske supstance klase alkena, alkadiena itd. Jedna i dve veze čine višestruku (trostruku) kovalentnu vezu, karakterističnu za organske supstance klase alkina (acetilena).

Formiranje kovalentne veze putem mehanizam donor-akceptor Pogledajmo primjer amonijum kationa:

NH 3 + H + = NH 4 +

7 N 1s 2 2s 2 2p 3

Atom dušika ima slobodan usamljeni par elektrona (elektroni koji nisu uključeni u formiranje hemijskih veza unutar molekula), a kation vodika ima slobodnu orbitalu, tako da su oni donor i akceptor elektrona.

Razmotrimo dativni mehanizam stvaranja kovalentne veze na primjeru molekula hlora.

17 Cl 1s 2 2s 2 2p 6 3s 2 3p 5

Atom hlora ima i slobodni usamljeni par elektrona i prazne orbitale, stoga može pokazati svojstva i donora i akceptora. Stoga, kada se formira molekul hlora, jedan atom hlora djeluje kao donor, a drugi kao akceptor.

Main karakteristike kovalentne veze su: zasićenje (zasićene veze nastaju kada atom veže onoliko elektrona za sebe koliko mu valentne sposobnosti dozvoljavaju; nezasićene veze nastaju kada je broj vezanih elektrona manji od valentnih sposobnosti atoma); usmjerenost (ova vrijednost je povezana s geometrijom molekula i konceptom "veznog ugla" - ugla između veza).

Jonska veza

Ne postoje spojevi s čistom ionskom vezom, iako se to podrazumijeva kao kemijski vezano stanje atoma u kojem se stvara stabilno elektronsko okruženje atoma kada se ukupna gustoća elektrona u potpunosti prenese na atom elektronegativnijeg elementa. Jonska veza je moguća samo između atoma elektronegativnih i elektropozitivnih elemenata koji su u stanju suprotno nabijenih jona – katjona i anjona.

DEFINICIJA

Ion su električno nabijene čestice nastale uklanjanjem ili dodavanjem elektrona atomu.

Kada prenose elektron, atomi metala i nemetala teže formiranju stabilne konfiguracije elektronske ljuske oko svog jezgra. Atom nemetala stvara omotač od naknadnog inertnog gasa oko svog jezgra, a atom metala stvara omotač prethodnog inertnog gasa (slika 3).

Rice. 3. Formiranje ionske veze na primjeru molekule natrijum hlorida

Molekule u kojima postoje jonske veze u svom čistom obliku nalaze se u stanju pare supstance. Jonska veza je vrlo jaka, te stoga tvari sa ovom vezom imaju visoku tačku topljenja. Za razliku od kovalentnih veza, ionske veze ne karakteriziraju usmjerenost i zasićenost, budući da električno polje koje stvaraju joni djeluje jednako na sve ione zbog sferne simetrije.

Metalni priključak

Metalna veza se ostvaruje samo u metalima - to je interakcija koja drži atome metala u jednoj rešetki. U formiranju veze učestvuju samo valentni elektroni atoma metala koji pripadaju čitavom njegovom volumenu. U metalima se elektroni neprestano odvajaju od atoma i kreću se po cijeloj masi metala. Atomi metala, lišeni elektrona, pretvaraju se u pozitivno nabijene ione, koji teže da prihvate pokretne elektrone. Ovaj kontinuirani proces formira takozvani „elektronski gas“ unutar metala, koji čvrsto povezuje sve atome metala zajedno (slika 4).

Metalna veza je jaka, pa se metali odlikuju visokom tačkom topljenja, a prisustvo "elektronskog gasa" daje metalima savitljivost i duktilnost.

Vodikova veza

Vodikova veza je specifična intermolekularna interakcija, jer njegova pojava i jačina zavise od hemijske prirode supstance. Nastaje između molekula u kojima je atom vodika vezan za atom visoke elektronegativnosti (O, N, S). Pojava vodikove veze zavisi od dva razloga: prvo, atom vodika povezan sa elektronegativnim atomom nema elektrone i lako se može ugraditi u elektronske oblake drugih atoma, i drugo, ima valencijsku s-orbitalu, atom vodonika je u stanju prihvatiti usamljeni par elektrona elektronegativnog atoma i formirati vezu s njim kroz mehanizam donor-akceptor.

Karakteristike hemijskih veza

Doktrina o hemijskom vezivanju čini osnovu sve teorijske hemije. Hemijska veza se podrazumijeva kao interakcija atoma koja ih veže u molekule, ione, radikale i kristale. Postoje četiri vrste hemijskih veza: jonski, kovalentni, metalni i vodonik. U istim supstancama mogu se naći različite vrste veza.

1. U bazama: između atoma kiseonika i vodonika u hidrokso grupama veza je polarna kovalentna, a između metala i hidrokso grupe je jonska.

2. U solima kiselina koje sadrže kiseonik: između atoma nemetala i kiseonika kiselog ostatka - kovalentno polarni, a između metala i kiselog ostatka - jonski.

3. U solima amonijuma, metilamonijuma itd., između atoma azota i vodonika nalazi se polarni kovalentni, a između amonijum ili metilamonijum jona i kiselinskog ostatka - jonski.

4. Kod metalnih peroksida (npr. Na 2 O 2) veza između atoma kiseonika je kovalentna, nepolarna, a između metala i kiseonika je jonska itd.

Razlog jedinstva svih vrsta i tipova hemijskih veza je njihova identična hemijska priroda - elektron-nuklearna interakcija. Formiranje hemijske veze u svakom slučaju je rezultat elektronsko-nuklearne interakcije atoma, praćene oslobađanjem energije.


Metode za formiranje kovalentne veze

Kovalentna hemijska veza je veza koja nastaje između atoma zbog formiranja zajedničkih elektronskih parova.

Kovalentna jedinjenja su obično gasovi, tečnosti ili relativno nisko topljive čvrste materije. Jedan od rijetkih izuzetaka je dijamant, koji se topi iznad 3.500 °C. Ovo se objašnjava strukturom dijamanta, koji je kontinuirana rešetka kovalentno vezanih atoma ugljika, a ne skup pojedinačnih molekula. U stvari, svaki kristal dijamanta, bez obzira na njegovu veličinu, jedan je ogroman molekul.

Kovalentna veza nastaje kada se spoje elektroni dva atoma nemetala. Rezultirajuća struktura naziva se molekula.

Mehanizam nastanka takve veze može biti razmjenski ili donor-akceptor.

U većini slučajeva, dva kovalentno vezana atoma imaju različitu elektronegativnost i zajednički elektroni ne pripadaju ta dva atoma podjednako. Većinu vremena su bliže jednom atomu nego drugom. U molekuli klorida vodonika, na primjer, elektroni koji formiraju kovalentnu vezu nalaze se bliže atomu hlora jer je njegova elektronegativnost veća od elektronegativnosti vodonika. Međutim, razlika u sposobnosti privlačenja elektrona nije dovoljno velika da bi se dogodio potpuni prijenos elektrona s atoma vodika na atom klora. Stoga se veza između atoma vodika i hlora može smatrati križanjem jonske veze (potpuni prijenos elektrona) i nepolarne kovalentne veze (simetričan raspored para elektrona između dva atoma). Djelomični naboj atoma označen je grčkim slovom δ. Takva veza se naziva polarna kovalentna veza, a za molekulu klorovodika se kaže da je polarna, odnosno da ima pozitivno nabijen kraj (atom vodika) i negativno nabijen kraj (atom klora).

1. Mehanizam razmene funkcioniše kada atomi formiraju zajedničke elektronske parove kombinovanjem nesparenih elektrona.

1) H 2 - vodonik.

Veza nastaje zbog formiranja zajedničkog elektronskog para od strane s-elektrona atoma vodika (preklapajuće s-orbitale).

2) HCl - hlorovodonik.

Veza nastaje zbog formiranja zajedničkog elektronskog para s- i p-elektrona (preklapajuće s-p orbitale).

3) Cl 2: U molekulu hlora, kovalentna veza se formira zbog nesparenih p-elektrona (preklapajućih p-p orbitala).

4) N ​​2: U molekuli dušika između atoma se formiraju tri zajednička elektronska para.

Donorsko-akceptorski mehanizam stvaranja kovalentne veze

Donator ima elektronski par akceptor- slobodna orbitala koju ovaj par može zauzeti. U amonijum jonu, sve četiri veze sa atomima vodonika su kovalentne: tri su nastale stvaranjem zajedničkih elektronskih parova atomom azota i atoma vodonika prema mehanizmu razmene, jedna - putem mehanizma donor-akceptor. Kovalentne veze se klasifikuju prema načinu preklapanja orbitala elektrona, kao i po njihovom pomeranju prema jednom od vezanih atoma. Hemijske veze nastale kao rezultat preklapanja elektronskih orbitala duž linije veze nazivaju se σ - veze(sigma obveznice). Sigma veza je veoma jaka.

p orbitale se mogu preklapati u dva regiona, formirajući kovalentnu vezu kroz bočno preklapanje.

Hemijske veze nastale kao rezultat "bočnog" preklapanja elektronskih orbitala izvan linije veze, odnosno u dva područja, nazivaju se pi veze.

Prema stepenu pomaka uobičajenih elektronskih parova na jedan od atoma koje povezuju, kovalentna veza može biti polarna ili nepolarna. Kovalentna hemijska veza nastala između atoma sa istom elektronegativnošću naziva se nepolarna. Elektronski parovi nisu pomjereni ni prema jednom od atoma, budući da atomi imaju istu elektronegativnost – svojstvo privlačenja valentnih elektrona iz drugih atoma. Na primjer,

odnosno molekule jednostavnih nemetalnih supstanci nastaju kroz kovalentnu nepolarnu vezu. Kovalentna hemijska veza između atoma elemenata čija se elektronegativnost razlikuje naziva se polarna.

Na primjer, NH 3 je amonijak. Dušik je elektronegativniji element od vodonika, tako da su zajednički parovi elektrona pomaknuti prema njegovom atomu.

Karakteristike kovalentne veze: dužina veze i energija

Karakteristična svojstva kovalentne veze su njena dužina i energija. Dužina veze je udaljenost između atomskih jezgara. Što je kraća dužina hemijske veze, to je ona jača. Međutim, mjera snage veze je energija veze, koja je određena količinom energije koja je potrebna za prekid veze. Obično se mjeri u kJ/mol. Tako, prema eksperimentalnim podacima, dužine veze molekula H 2, Cl 2 i N 2 su 0,074, 0,198 i 0,109 nm, a energije veze 436, 242 i 946 kJ/mol.

Joni. Jonska veza

Postoje dvije glavne mogućnosti da se atom povinuje pravilu okteta. Prva od njih je stvaranje jonskih veza. (Drugo je formiranje kovalentne veze, o čemu će biti reči u nastavku). Kada se formira jonska veza, atom metala gubi elektrone, a nemetalni atom dobija elektrone.

Zamislimo da se dva atoma „sreću“: atom metala grupe I i atom nemetala VII grupe. Atom metala ima jedan elektron na svom vanjskom energetskom nivou, dok atomu nemetala nedostaje samo jedan elektron da bi njegov vanjski nivo bio potpun. Prvi atom će drugom lako dati svoj elektron, koji je udaljen od jezgra i slabo vezan za njega, a drugi će mu dati slobodno mjesto na njegovom vanjskom elektronskom nivou. Tada će atom, lišen jednog od svojih negativnih naboja, postati pozitivno nabijena čestica, a druga će se zbog nastalog elektrona pretvoriti u negativno nabijenu česticu. Takve čestice nazivaju se joni.

Ovo je hemijska veza koja se javlja između jona. Brojevi koji pokazuju broj atoma ili molekula nazivaju se koeficijenti, a brojevi koji pokazuju broj atoma ili jona u molekulu nazivaju se indeksi.

Metalni priključak

Metali imaju specifična svojstva koja se razlikuju od svojstava drugih supstanci. Takva svojstva su relativno visoke temperature topljenja, sposobnost reflektiranja svjetlosti i visoka toplinska i električna provodljivost. Ove karakteristike su posljedica postojanja posebne vrste veze u metalima - metalne veze.

Metalna veza je veza između pozitivnih jona u metalnim kristalima, koja se ostvaruje zbog privlačenja elektrona koji se slobodno kreću kroz kristal. Atomi većine metala na vanjskom nivou sadrže mali broj elektrona - 1, 2, 3. Ovi elektroni lako skinuti, a atomi se pretvaraju u pozitivne ione. Odvojeni elektroni se kreću od jednog jona do drugog, vezujući ih u jednu cjelinu. Povezujući se sa jonima, ovi elektroni privremeno formiraju atome, zatim se ponovo odvajaju i spajaju sa drugim jonom, itd. Proces se odvija beskonačno, što se može shematski prikazati na sledeći način:

Posljedično, u volumenu metala atomi se kontinuirano pretvaraju u ione i obrnuto. Veza u metalima između jona preko zajedničkih elektrona naziva se metalna. Metalna veza ima neke sličnosti sa kovalentnom vezom, jer se zasniva na dijeljenju vanjskih elektrona. Međutim, kod kovalentne veze dijele se vanjski nespareni elektroni samo dva susjedna atoma, dok kod metalne veze svi atomi učestvuju u dijeljenju ovih elektrona. Zato su kristali s kovalentnom vezom krhki, ali s metalnom vezom su u pravilu duktilni, električno provodljivi i imaju metalni sjaj.

Metalno vezivanje je karakteristično kako za čiste metale tako i za mješavine različitih metala - legura u čvrstom i tekućem stanju. Međutim, u stanju pare, atomi metala su međusobno povezani kovalentnom vezom (na primjer, natrijeva para ispunjava žute svjetiljke kako bi osvijetlile ulice velikih gradova). Metalni parovi se sastoje od pojedinačnih molekula (monatomskih i dvoatomnih).

Metalna veza se također razlikuje od kovalentne veze po snazi: njena energija je 3-4 puta manja od energije kovalentne veze.

Energija veze je energija potrebna za prekid hemijske veze u svim molekulima koji čine jedan mol supstance. Energije kovalentnih i jonskih veza su obično visoke i iznose vrijednosti reda 100-800 kJ/mol.

Vodikova veza

Hemijska veza između pozitivno polarizirani atomi vodika jedne molekule(ili njihovi dijelovi) i negativno polarizirani atomi visoko elektronegativnih elemenata koji imaju zajedničke elektronske parove (F, O, N i rjeđe S i Cl), drugi molekul (ili njegovi dijelovi) se naziva vodonik. Mehanizam stvaranja vodonične veze je dijelom elektrostatički, dijelom d počasti-prihvatljivog karaktera.

Primjeri međumolekularne vodikove veze:

U prisustvu takve veze, čak i niskomolekularne supstance mogu, u normalnim uslovima, biti tečnosti (alkohol, voda) ili lako tečni gasovi (amonijak, fluorovodonik). U biopolimerima - proteinima (sekundarna struktura) - postoji intramolekularna vodikova veza između karbonilnog kiseonika i vodika amino grupe:

Molekuli polinukleotida - DNK (deoksiribonukleinska kiselina) - su dvostruke spirale u kojima su dva lanca nukleotida međusobno povezana vodoničnim vezama. U ovom slučaju djeluje princip komplementarnosti, tj. te veze nastaju između određenih parova koji se sastoje od purinskih i pirimidinskih baza: timin (T) se nalazi nasuprot adenin nukleotida (A), a citozin (C) se nalazi nasuprot gvanin (G).

Supstance sa vodoničnim vezama imaju molekularne kristalne rešetke.