Meni
Besplatno
Dom  /  Krtice/ Formula za pronalaženje korijena ako je diskriminanta 0. Rješavanje kvadratnih jednadžbi pomoću diskriminanta

Formula za pronalaženje korijena ako je diskriminanta 0. Rješavanje kvadratnih jednadžbi pomoću diskriminanta

Diskriminant je pojam sa više vrijednosti. U ovom članku ćemo govoriti o diskriminantu polinoma, koji vam omogućava da odredite da li dati polinom ima valjana rješenja. Formula za kvadratni polinom nalazi se u školskom kursu algebre i analize. Kako pronaći diskriminanta? Šta je potrebno za rješavanje jednačine?

Kvadratni polinom ili jednačina drugog stepena naziva se i * w ^ 2 + j * w + k je jednako 0, gdje su "i" i "j" prvi i drugi koeficijent, redom, "k" je konstanta, ponekad se naziva "odbacivajući termin" i "w" je varijabla. Njegovi korijeni bit će sve vrijednosti varijable na kojima se pretvara u identitet. Takva se jednakost može prepisati kao umnožak i, (w - w1) i (w - w2) jednak 0. U ovom slučaju, očigledno je da ako koeficijent “i” ne postane nula, onda funkcija na lijeva strana će postati nula samo ako x uzme vrijednost w1 ili w2. Ove vrijednosti su rezultat postavljanja polinoma jednakim nuli.

Da bi se pronašla vrijednost varijable pri kojoj kvadratni polinom nestaje, koristi se pomoćna konstrukcija, izgrađena na njenim koeficijentima i nazvana diskriminant. Ovaj dizajn se izračunava prema formuli D je jednako j * j - 4 * i * k. Zašto se koristi?

  1. To govori da li postoje validni rezultati.
  2. Ona pomaže da ih izračunamo.

Kako ova vrijednost pokazuje prisustvo pravih korijena:

  • Ako je pozitivan, tada se u području realnih brojeva mogu naći dva korijena.
  • Ako je diskriminant jednaka nuli, tada se oba rješenja poklapaju. Možemo reći da postoji samo jedno rješenje, i to iz oblasti realnih brojeva.
  • Ako je diskriminant manji od nule, tada polinom nema realnih korijena.

Mogućnosti proračuna za osiguranje materijala

Za zbir (7 * w^2; 3 * w; 1) jednak 0 Izračunavamo D pomoću formule 3 * 3 - 4 * 7 * 1 = 9 - 28, dobijamo -19. Diskriminantna vrijednost ispod nule ukazuje da nema rezultata na stvarnoj liniji.

Ako smatramo da je 2 * w^2 - 3 * w + 1 ekvivalentno 0, tada se D izračunava kao (-3) na kvadrat minus proizvod brojeva (4; 2; 1) i jednako je 9 - 8, odnosno 1. Pozitivna vrijednost kaže da postoje dva rezultata na stvarnoj liniji.

Ako uzmemo zbir (w ^ 2; 2 * w; 1) i izjednačimo ga sa 0, D se izračunava kao dva na kvadrat minus proizvod brojeva (4; 1; 1). Ovaj izraz će se pojednostaviti na 4 - 4 i otići na nulu. Ispostavilo se da su rezultati isti. Ako pažljivo pogledate ovu formulu, bit će vam jasno da je ovo "potpuni kvadrat". To znači da se jednakost može prepisati u obliku (w + 1) ^ 2 = 0. Postalo je očigledno da je rezultat u ovom zadatku “-1”. U situaciji u kojoj je D jednako 0, lijeva strana jednakosti se uvijek može skupiti pomoću formule „kvadrata zbira“.

Korištenje diskriminanta u izračunavanju korijena

Ova pomoćna konstrukcija ne samo da pokazuje broj stvarnih rješenja, već i pomaže u njihovom pronalaženju. Opšta formula za izračunavanje za jednačinu drugog stepena je:

w = (-j +/- d) / (2 * i), gdje je d diskriminanta na stepen 1/2.

Recimo da je diskriminant ispod nule, tada je d imaginaran i rezultati su imaginarni.

D je nula, tada je d jednako D na stepen 1/2 također nula. Rješenje: -j / (2 * i). Ponovo uzimajući u obzir 1 * w ^ 2 + 2 * w + 1 = 0, nalazimo rezultate ekvivalentne -2 / (2 * 1) = -1.

Pretpostavimo da je D > 0, tada je d realan broj, a odgovor se ovdje rastavlja na dva dijela: w1 = (-j + d) / (2 * i) i w2 = (-j - d) / (2 * i ) . Oba rezultata će biti važeća. Pogledajmo 2 * w ^ 2 - 3 * w + 1 = 0. Ovdje su diskriminanta i d jedinice. Ispada da je w1 jednako (3 + 1) podijeljeno sa (2 * 2) ili 1, a w2 jednako (3 - 1) podijeljeno sa 2 * 2 ili 1/2.

Rezultat jednačine kvadratni izraz na nulu se izračunava prema algoritmu:

  1. Određivanje broja valjanih rješenja.
  2. Izračun d = D^(1/2).
  3. Pronalaženje rezultata prema formuli (-j +/- d) / (2 * i).
  4. Zamjena dobijenog rezultata u izvornu jednakost radi provjere.

Neki posebni slučajevi

U zavisnosti od koeficijenata, rješenje može biti donekle pojednostavljeno. Očigledno, ako je koeficijent varijable na drugi stepen nula, onda se dobija linearna jednakost. Kada je koeficijent varijable na prvi stepen nula, tada su moguće dvije opcije:

  1. polinom se proširuje u razliku kvadrata kada je slobodni član negativan;
  2. za pozitivnu konstantu ne mogu se naći prava rješenja.

Ako je slobodni član nula, tada će korijeni biti (0; -j)

Ali postoje i drugi posebni slučajevi koji pojednostavljuju pronalaženje rješenja.

Redukovana jednačina drugog stepena

Dato se zove takav kvadratni trinom, pri čemu je koeficijent ispred vodećeg člana jedan. Za ovu situaciju je primjenjiv Vietin teorem, koji kaže da je zbir korijena jednak koeficijentu varijable na prvi stepen, pomnožen sa -1, a proizvod odgovara konstanti "k".

Dakle, w1 + w2 jednako -j i w1 * w2 jednako k ako je prvi koeficijent jedan. Da biste provjerili ispravnost ove reprezentacije, možete izraziti w2 = -j - w1 iz prve formule i zamijeniti je u drugu jednakost w1 * (-j - w1) = k. Rezultat je originalna jednakost w1 ^ 2 + j * w1 + k = 0.

Važno je napomenuti, da se i * w ^ 2 + j * w + k = 0 može postići dijeljenjem sa “i”. Rezultat će biti: w^2 + j1 * w + k1 = 0, gdje je j1 jednako j/i, a k1 jednako k/i.

Pogledajmo već riješeno 2 * w^2 - 3 * w + 1 = 0 sa rezultatima w1 = 1 i w2 = 1/2. Moramo ga podijeliti na pola, kao rezultat w ^ 2 - 3/2 * w + 1/2 = 0. Provjerimo da li su uslovi teoreme tačni za pronađene rezultate: 1 + 1/2 = 3/ 2 i 1*1/2 = 1 /2.

Čak i drugi faktor

Ako je faktor varijable na prvi stepen (j) djeljiv sa 2, tada će biti moguće pojednostaviti formulu i tražiti rješenje kroz četvrtinu diskriminante D/4 = (j / 2) ^ 2 - i * k. ispada w = (-j +/- d/2) / i, gdje je d/2 = D/4 na stepen 1/2.

Ako je i = 1, a koeficijent j je paran, tada će rješenje biti proizvod -1 i polovine koeficijenta varijable w, plus/minus korijen kvadrata ove polovine minus konstanta “k”. Formula: w = -j/2 +/- (j^2/4 - k)^1/2.

Viši diskriminirajući poredak

Diskriminanta trinoma drugog stepena o kojoj smo gore raspravljali je najčešće korišten specijalni slučaj. U opštem slučaju, diskriminant polinoma je pomnožene kvadrate razlika korijena ovog polinoma. Dakle, diskriminant jednak nuli ukazuje na prisustvo najmanje dva višestruka rješenja.

Uzmimo i * w^3 + j * w^2 + k * w + m = 0.

D = j^2 * k^2 - 4 * i * k^3 - 4 * i^3 * k - 27 * i^2 * m^2 + 18 * i * j * k * m.

Pretpostavimo da diskriminanta prelazi nulu. To znači da postoje tri korijena u području realnih brojeva. Na nuli postoji više rješenja. Ako je D< 0, то два корня комплексно-сопряженные, которые дают отрицательное значение при возведении в квадрат, а также один корень — вещественный.

Video

Naš video će vam detaljno reći o izračunavanju diskriminanta.

Niste dobili odgovor na svoje pitanje? Predložite temu autorima.

Diskriminanta, kao i kvadratne jednadžbe, počinje se izučavati u predmetu algebre u 8. razredu. Kvadratnu jednačinu možete riješiti pomoću diskriminanta i korištenjem Vietine teoreme. Metodologija studija kvadratne jednačine, kao i diskriminantne formule, prilično se neuspješno usađuju školarcima, kao i mnoge stvari u stvarnom obrazovanju. Stoga prolaze školske godine, obrazovanje u 9-11 razredima zamjenjuje " više obrazovanje"i svi ponovo gledaju - "Kako riješiti kvadratnu jednačinu?", "Kako pronaći korijene jednačine?", "Kako pronaći diskriminanta?" i...

Diskriminantna formula

Diskriminanta D kvadratne jednačine a*x^2+bx+c=0 je jednaka D=b^2–4*a*c.
Korijeni (rješenja) kvadratne jednadžbe zavise od predznaka diskriminanta (D):
D>0 – jednačina ima 2 različita realna korijena;
D=0 - jednadžba ima 1 korijen (2 podudarna korijena):
D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.
Formula za izračunavanje diskriminanta je prilično jednostavna, tako da mnoge web stranice nude online diskriminantni kalkulator. Ovakvu vrstu skripti još nismo smislili, pa ako neko zna kako to implementirati neka nam piše na e-mail Ova adresa el. pošte je zaštićena od spambotova. Morate imati omogućen JavaScript da biste ga vidjeli. .

Opća formula za pronalaženje korijena kvadratne jednadžbe:

Korijene jednadžbe pronalazimo pomoću formule
Ako je koeficijent kvadratne varijable uparen, onda je preporučljivo izračunati ne diskriminanta, već njegov četvrti dio
U takvim slučajevima, korijeni jednadžbe se nalaze pomoću formule

Drugi način pronalaženja korijena je Vietina teorema.

Teorema je formulirana ne samo za kvadratne jednadžbe, već i za polinome. Ovo možete pročitati na Wikipediji ili drugim elektronskim izvorima. Međutim, da pojednostavimo, razmotrimo dio koji se odnosi na gornje kvadratne jednadžbe, odnosno jednadžbe oblika (a=1)
Suština Vietinih formula je da je zbir korijena jednadžbe jednak koeficijentu varijable, uzete sa suprotnim predznakom. Proizvod korijena jednadžbe jednak je slobodnom članu. Vietin teorem se može napisati u formulama.
Izvođenje Vietine formule je prilično jednostavno. Napišimo kvadratnu jednačinu kroz jednostavne faktore
Kao što vidite, sve genijalno je u isto vrijeme jednostavno. Efikasno je koristiti Vietinu formulu kada je razlika u modulu korijena ili razlika u modulima korijena 1, 2. Na primjer, sljedeće jednadžbe, prema Vietinoj teoremi, imaju korijene




Do jednačine 4, analiza bi trebala izgledati ovako. Umnožak korijena jednadžbe je 6, stoga korijeni mogu biti vrijednosti (1, 6) i (2, 3) ili parovi suprotnih predznaka. Zbir korijena je 7 (koeficijent varijable sa suprotnim predznakom). Odavde zaključujemo da su rješenja kvadratne jednadžbe x=2; x=3.
Lakše je odabrati korijene jednadžbe među djeliteljima slobodnog člana, prilagođavajući njihov predznak kako bi se ispunile Vietine formule. U početku se čini da je to teško izvodljivo, ali uz praksu na brojnim kvadratnim jednačinama, ova tehnika će se pokazati efikasnijom od izračunavanja diskriminanta i pronalaženja korijena kvadratne jednadžbe na klasičan način.
Kao što vidite, školska teorija proučavanja diskriminanta i metoda pronalaženja rješenja jednačine je lišena praktičnog značenja - "Zašto je školarcima potrebna kvadratna jednačina?", "Koje je fizičko značenje diskriminanta?"

Pokušajmo to shvatiti Šta diskriminant opisuje?

Na predmetu algebra izučavaju funkcije, šeme za proučavanje funkcija i konstruisanje grafa funkcija. Od svih funkcija važno mjesto zauzima parabola, čija se jednadžba može napisati u obliku
Dakle, fizičko značenje kvadratne jednadžbe su nule parabole, odnosno tačke presjeka grafa funkcije sa apscisnom osom Ox
Molim vas da zapamtite svojstva parabola koja su opisana u nastavku. Doći će vrijeme za polaganje ispita, testova ili prijemnih ispita i bit ćete zahvalni na referentnom materijalu. Predznak kvadratne varijable odgovara da li će grane parabole na grafu ići gore (a>0),

ili parabola sa granama nadole (a<0) .

Vrh parabole leži na sredini između korijena

Fizičko značenje diskriminanta:

Ako je diskriminanta veća od nule (D>0) parabola ima dvije točke sjecišta sa Ox osom.
Ako je diskriminanta nula (D=0) tada parabola na vrhu dodiruje x-osu.
I posljednji slučaj, kada je diskriminant manji od nule (D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Nepotpune kvadratne jednadžbe

Kvadratne jednačine se izučavaju u 8. razredu, tako da ovdje nema ništa komplikovano. Sposobnost njihovog rješavanja je apsolutno neophodna.

Kvadratna jednačina je jednačina oblika ax 2 + bx + c = 0, gdje su koeficijenti a, b i c proizvoljni brojevi, a a ≠ 0.

Prije proučavanja specifičnih metoda rješenja, imajte na umu da se sve kvadratne jednadžbe mogu podijeliti u tri klase:

  1. Nemaju korijene;
  2. Imati tačno jedan korijen;
  3. Imaju dva različita korijena.

Ovo je bitna razlika između kvadratnih jednačina i linearnih, gdje korijen uvijek postoji i jedinstven je. Kako odrediti koliko korijena ima jednačina? Postoji divna stvar za ovo - diskriminatorno.

Diskriminantno

Neka je data kvadratna jednačina ax 2 + bx + c = 0. Tada je diskriminanta jednostavno broj D = b 2 − 4ac.

Ovu formulu morate znati napamet. Odakle dolazi sada nije važno. Još jedna stvar je važna: po znaku diskriminanta možete odrediti koliko korijena ima kvadratna jednadžba. naime:

  1. Ako je D< 0, корней нет;
  2. Ako je D = 0, postoji tačno jedan korijen;
  3. Ako je D > 0, postojaće dva korena.

Imajte na umu: diskriminant označava broj korijena, a ne njihove znakove, kako iz nekog razloga mnogi vjeruju. Pogledajte primjere i sve ćete sami razumjeti:

Zadatak. Koliko korijena imaju kvadratne jednadžbe:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Napišimo koeficijente za prvu jednačinu i pronađemo diskriminanta:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Dakle, diskriminant je pozitivan, tako da jednačina ima dva različita korijena. Analiziramo drugu jednačinu na sličan način:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Diskriminant je negativan, nema korijena. Zadnja preostala jednačina je:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminanta je nula - korijen će biti jedan.

Imajte na umu da su koeficijenti zapisani za svaku jednačinu. Da, dugo je, da, zamorno je, ali nećete miješati šanse i praviti glupe greške. Odaberite za sebe: brzinu ili kvalitet.

Usput, ako se snađete, nakon nekog vremena nećete morati zapisivati ​​sve koeficijente. Takve operacije ćete izvoditi u svojoj glavi. Većina ljudi to počne raditi negdje nakon 50-70 riješenih jednačina - općenito, ne toliko.

Korijeni kvadratne jednadžbe

Sada pređimo na samo rješenje. Ako je diskriminanta D > 0, korijeni se mogu pronaći pomoću formula:

Osnovna formula za korijene kvadratne jednadžbe

Kada je D = 0, možete koristiti bilo koju od ovih formula - dobit ćete isti broj, što će biti odgovor. Konačno, ako D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Prva jednadžba:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ jednadžba ima dva korijena. Hajde da ih pronađemo:

Druga jednadžba:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ jednadžba opet ima dva korijena. Hajde da ih nađemo

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(poravnati)\]

Konačno, treća jednačina:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ jednačina ima jedan korijen. Može se koristiti bilo koja formula. Na primjer, prvi:

Kao što možete vidjeti iz primjera, sve je vrlo jednostavno. Ako znate formule i znate računati, neće biti problema. Najčešće se greške javljaju prilikom zamjene negativnih koeficijenata u formulu. Ovdje će opet pomoći gore opisana tehnika: pogledajte formulu doslovno, zapišite svaki korak - i vrlo brzo ćete se riješiti grešaka.

Nepotpune kvadratne jednadžbe

Dešava se da se kvadratna jednačina malo razlikuje od onoga što je dato u definiciji. Na primjer:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Lako je primijetiti da ovim jednačinama nedostaje jedan od pojmova. Takve kvadratne jednadžbe još je lakše riješiti od standardnih: ne zahtijevaju čak ni izračunavanje diskriminanta. Dakle, hajde da predstavimo novi koncept:

Jednačina ax 2 + bx + c = 0 naziva se nepotpuna kvadratna jednačina ako je b = 0 ili c = 0, tj. koeficijent varijable x ili slobodnog elementa jednak je nuli.

Naravno, moguć je vrlo težak slučaj kada su oba ova koeficijenta jednaka nuli: b = c = 0. U ovom slučaju, jednačina ima oblik ax 2 = 0. Očigledno, takva jednačina ima jedan korijen: x = 0.

Razmotrimo preostale slučajeve. Neka je b = 0, onda ćemo dobiti nepotpunu kvadratnu jednačinu oblika ax 2 + c = 0. Transformirajmo je malo:

Od aritmetike Kvadratni korijen postoji samo od negativan broj, zadnja jednakost ima smisla samo za (−c /a) ≥ 0. Zaključak:

  1. Ako je u nepotpunoj kvadratnoj jednadžbi oblika ax 2 + c = 0 nejednakost (−c /a) ≥ 0 zadovoljena, postojaće dva korena. Formula je data gore;
  2. Ako (−c /a)< 0, корней нет.

Kao što vidite, diskriminant nije bio potreban – u nepotpunim kvadratnim jednačinama uopšte nema složenih proračuna. U stvari, nije potrebno čak ni zapamtiti nejednakost (−c /a) ≥ 0. Dovoljno je izraziti vrijednost x 2 i vidjeti šta se nalazi na drugoj strani znaka jednakosti. Ako postoji pozitivan broj, bit će dva korijena. Ako je negativan, korijena uopće neće biti.

Pogledajmo sada jednačine oblika ax 2 + bx = 0, u kojima je slobodni element jednak nuli. Ovdje je sve jednostavno: uvijek će postojati dva korijena. Dovoljno je faktorisati polinom:

Izuzimanje zajedničkog faktora iz zagrada

Proizvod je nula kada je barem jedan od faktora nula. Odatle potiču korijeni. U zaključku, pogledajmo nekoliko od ovih jednačina:

Zadatak. Riješite kvadratne jednadžbe:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nema korijena, jer kvadrat ne može biti jednak negativnom broju.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Kvadratna jednadžba - lako riješiti! *U daljem tekstu “KU”. Prijatelji, čini se da u matematici ne može biti ništa jednostavnije od rješavanja takve jednačine. Ali nešto mi je govorilo da mnogi ljudi imaju problema s njim. Odlučio sam da vidim koliko utisaka na zahtjev Yandex daje mjesečno. Evo šta se desilo, pogledajte:


Šta to znači? To znači da oko 70.000 ljudi mjesečno traži ove informacije, kakve veze ovo ljeto ima i šta će se među njima dogoditi školske godine— biće duplo više zahteva. To nije iznenađujuće, jer oni momci i djevojke koji su davno završili školu i spremaju se za Jedinstveni državni ispit traže ove informacije, a i školarci se trude da osvježe svoje pamćenje.

Uprkos činjenici da postoji mnogo sajtova koji vam govore kako da rešite ovu jednačinu, odlučio sam da dam svoj doprinos i objavim materijal. Prvo, želim da posjetitelji dolaze na moju stranicu na osnovu ovog zahtjeva; drugo, u drugim člancima, kada se pojavi tema “KU”, dat ću link do ovog članka; treće, reći ću vam nešto više o njegovom rješenju nego što se obično navodi na drugim stranicama. Hajde da počnemo! Sadržaj članka:

Kvadratna jednačina je jednačina oblika:

gdje su koeficijenti a,bi c su proizvoljni brojevi, sa a≠0.

U školskom kursu gradivo se daje u sledećem obliku - jednačine su podeljene u tri razreda:

1. Imaju dva korijena.

2. *Imajte samo jedan korijen.

3. Nemaju korijene. Ovdje je posebno vrijedno napomenuti da oni nemaju prave korijene

Kako se izračunavaju korijeni? Samo!

Izračunavamo diskriminanta. Ispod ove "strašne" riječi krije se vrlo jednostavna formula:

Formule korijena su sljedeće:

*Ove formule morate znati napamet.

Možete odmah zapisati i riješiti:

primjer:


1. Ako je D > 0, onda jednačina ima dva korijena.

2. Ako je D = 0, onda jednačina ima jedan korijen.

3. Ako D< 0, то уравнение не имеет действительных корней.

Pogledajmo jednačinu:


S tim u vezi, kada je diskriminanta jednaka nuli, školski kurs kaže da se dobija jedan korijen, ovdje je jednak devet. Sve je tačno, tako je, ali...

Ova ideja je donekle netačna. U stvari, postoje dva korijena. Da, da, nemojte se iznenaditi, ispada dva jednakih korena, a da budemo matematički precizni, odgovor bi trebao sadržavati dva korijena:

x 1 = 3 x 2 = 3

Ali ovo je tako - mala digresija. U školi možete to zapisati i reći da postoji jedan korijen.

Sada sljedeći primjer:


Kao što znamo, korijen negativnog broja se ne može uzeti, tako da u ovom slučaju nema rješenja.

To je cijeli proces odlučivanja.

Kvadratna funkcija.

Ovo pokazuje kako rješenje izgleda geometrijski. Ovo je izuzetno važno razumjeti (u budućnosti ćemo u jednom od članaka detaljno analizirati rješenje kvadratne nejednakosti).

Ovo je funkcija oblika:

gdje su x i y varijable

a, b, c – dati brojevi, sa a ≠ 0

Grafikon je parabola:

Odnosno, ispada da rješavanjem kvadratne jednadžbe sa “y” jednakom nuli, nalazimo točke presjeka parabole sa x osom. Mogu postojati dvije od ovih tačaka (diskriminanta je pozitivna), jedna (diskriminanta je nula) i nijedna (diskriminanta je negativna). Detalji o kvadratna funkcija Možete pogledatičlanak Inna Feldman.

Pogledajmo primjere:

Primjer 1: Riješi 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Odgovor: x 1 = 8 x 2 = –12

*Moguće je odmah podijeliti lijevu i desnu stranu jednačine sa 2, odnosno pojednostaviti je. Proračun će biti lakši.

Primjer 2: Odlučite se x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Otkrili smo da je x 1 = 11 i x 2 = 11

U odgovoru je dozvoljeno napisati x = 11.

Odgovor: x = 11

Primjer 3: Odlučite se x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant je negativan, nema rješenja u realnim brojevima.

Odgovor: nema rješenja

Diskriminant je negativan. Postoji rješenje!

Ovdje ćemo govoriti o rješavanju jednadžbe u slučaju kada se dobije negativan diskriminant. Znate li išta o kompleksnim brojevima? Ovdje neću ulaziti u detalje zašto i gdje su nastali i koja je njihova specifična uloga i neophodnost u matematici; ovo je tema za veliki poseban članak.

Koncept kompleksnog broja.

Malo teorije.

Kompleksni broj z je broj oblika

z = a + bi

gdje su a i b realni brojevi, i je takozvana imaginarna jedinica.

a+bi – ovo je JEDAN BROJ, a ne dodatak.

Imaginarna jedinica jednaka je korijenu minus jedan:

Sada razmotrite jednačinu:


Dobijamo dva konjugirana korijena.

Nepotpuna kvadratna jednadžba.

Razmotrimo posebne slučajeve, to je kada je koeficijent “b” ili “c” jednak nuli (ili su oba jednaka nuli). Oni se mogu lako riješiti bez ikakvih diskriminanata.

Slučaj 1. Koeficijent b = 0.

Jednačina postaje:

transformirajmo:

primjer:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Slučaj 2. Koeficijent c = 0.

Jednačina postaje:

Transformirajmo i faktorizirajmo:

*Proizvod je jednak nuli kada je barem jedan od faktora jednak nuli.

primjer:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 ili x–5 =0

x 1 = 0 x 2 = 5

Slučaj 3. Koeficijenti b = 0 i c = 0.

Ovdje je jasno da će rješenje jednadžbe uvijek biti x = 0.

Korisna svojstva i obrasci koeficijenata.

Postoje svojstva koja vam omogućavaju rješavanje jednadžbi s velikim koeficijentima.

Ax 2 + bx+ c=0 jednakost važi

a + b+ c = 0, To

- ako za koeficijente jednačine Ax 2 + bx+ c=0 jednakost važi

a+ c =b, To

Ova svojstva pomažu u rješavanju određene vrste jednadžbe.

Primjer 1: 5001 x 2 –4995 x – 6=0

Zbir kvota je 5001+( 4995)+( 6) = 0, što znači

Primjer 2: 2501 x 2 +2507 x+6=0

Jednakost važi a+ c =b, Sredstva

Pravilnosti koeficijenata.

1. Ako je u jednačini ax 2 + bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” je numerički jednak koeficijentu"a", tada su njegovi korijeni jednaki

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Primjer. Razmotrimo jednačinu 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Ako je u jednačini ax 2 – bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ako u jednadžbi ax 2 + bx – c = 0 koeficijent “b” je jednako (a 2 – 1), i koeficijent “c” je numerički jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Ako je u jednačini ax 2 – bx – c = 0 koeficijent “b” jednak (a 2 – 1), a koeficijent c brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Primjer. Razmotrimo jednačinu 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietin teorem.

Vietina teorema je dobila ime po poznatom francuskom matematičaru Francois Vieti. Koristeći Vietin teorem, možemo izraziti zbir i proizvod korijena proizvoljnog KU u terminima njegovih koeficijenata.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Ukupno, broj 14 daje samo 5 i 9. Ovo su korijeni. Uz određenu vještinu, koristeći prikazanu teoremu, možete odmah usmeno riješiti mnoge kvadratne jednadžbe.

Osim toga, Vietin teorem. zgodno u tome što nakon rješavanja kvadratne jednadžbe na uobičajen način(preko diskriminanta) rezultujući korijeni se mogu provjeriti. Preporučujem da to radite uvijek.

NAČIN TRANSPORTA

Ovom metodom koeficijent “a” se množi slobodnim pojmom, kao da mu je “bačen”, zbog čega se naziva metoda "transfera". Ova metoda se koristi kada se korijeni jednadžbe mogu lako pronaći pomoću Vietine teoreme i, što je najvažnije, kada je diskriminanta tačan kvadrat.

Ako A± b+c≠ 0, tada se koristi tehnika prijenosa, na primjer:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Koristeći Vietinu teoremu u jednačini (2), lako je odrediti da je x 1 = 10 x 2 = 1

Rezultirajući korijeni jednadžbe moraju se podijeliti sa 2 (budući da su dva "izbačena" iz x 2), dobijamo

x 1 = 5 x 2 = 0,5.

Šta je obrazloženje? Pogledaj šta se dešava.

Diskriminante jednačina (1) i (2) su jednake:

Ako pogledate korijene jednadžbi, dobit ćete samo različite nazivnike, a rezultat ovisi upravo o koeficijentu x 2:


Drugi (modificirani) ima korijene koji su 2 puta veći.

Stoga, rezultat dijelimo sa 2.

*Ako prebacimo trojku, rezultat ćemo podijeliti sa 3, itd.

Odgovor: x 1 = 5 x 2 = 0,5

Sq. ur-ie i Jedinstveni državni ispit.

Reći ću vam ukratko o njegovoj važnosti - MORATE MOĆI DA ODLUČITE brzo i bez razmišljanja, morate znati formule korijena i diskriminanata napamet. Mnogi problemi uključeni u zadatke Jedinstvenog državnog ispita svode se na rješavanje kvadratne jednačine (uključujući i geometrijske).

Nešto vredno pažnje!

1. Oblik pisanja jednačine može biti „implicitan“. Na primjer, moguć je sljedeći unos:

15+ 9x 2 - 45x = 0 ili 15x+42+9x 2 - 45x=0 ili 15 -5x+10x 2 = 0.

Morate ga dovesti standardni pogled(da se ne zbunite prilikom odlučivanja).

2. Zapamtite da je x nepoznata veličina i može se označiti bilo kojim drugim slovom - t, q, p, h i drugim.

Kvadratne jednadžbe. Diskriminantno. Rješenje, primjeri.

Pažnja!
Postoje dodatni
materijala u Posebnom dijelu 555.
Za one koji su veoma "ne baš..."
I za one koji "jako...")

Vrste kvadratnih jednadžbi

Šta je kvadratna jednačina? Kako izgleda? U terminu kvadratna jednačina ključna riječ je "kvadrat". To znači da u jednačini Neophodno mora postojati x na kvadrat. Pored toga, jednadžba može (ili ne mora!) sadržavati samo X (na prvi stepen) i samo broj (besplatan član). I ne bi trebalo biti X na stepenu većem od dva.

U matematičkom smislu, kvadratna jednačina je jednačina oblika:

Evo a, b i c- neki brojevi. b i c- apsolutno bilo koje, ali A– bilo šta osim nule. Na primjer:

Evo A =1; b = 3; c = -4

Evo A =2; b = -0,5; c = 2,2

Evo A =-3; b = 6; c = -18

Pa razumes...

U ovim kvadratnim jednadžbama na lijevoj strani postoji full setčlanovi. X na kvadrat s koeficijentom A, x na prvi stepen sa koeficijentom b I besplatni član s.

Takve kvadratne jednačine se nazivaju pun.

I ako b= 0, šta dobijamo? Imamo X će biti izgubljen na prvi stepen. To se događa kada se pomnoži sa nulom.) Ispada, na primjer:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

I tako dalje. A ako oba koeficijenta b I c jednaki su nuli, onda je još jednostavnije:

2x 2 =0,

-0,3x 2 =0

Takve jednačine u kojima nešto nedostaje nazivaju se nepotpune kvadratne jednadžbe.Što je sasvim logično.) Imajte na umu da je x na kvadrat prisutan u svim jednadžbama.

Usput, zašto A ne može biti jednako nuli? I umjesto toga zamijenite A nula.) Naš X na kvadrat će nestati! Jednačina će postati linearna. A rješenje je potpuno drugačije...

To su sve glavne vrste kvadratnih jednačina. Potpuna i nepotpuna.

Rješavanje kvadratnih jednadžbi.

Rješavanje potpunih kvadratnih jednadžbi.

Kvadratne jednačine je lako riješiti. Prema formulama i jasnim, jednostavnim pravilima. U prvoj fazi je neophodno zadata jednačina dovesti do standardne forme, tj. na obrazac:

Ako vam je jednadžba već data u ovom obliku, ne morate raditi prvu fazu.) Glavna stvar je ispravno odrediti sve koeficijente, A, b I c.

Formula za pronalaženje korijena kvadratne jednadžbe izgleda ovako:

Izraz pod znakom korijena se zove diskriminatorno. Ali više o njemu u nastavku. Kao što vidite, da bismo pronašli X, koristimo se samo a, b i c. One. koeficijenti iz kvadratne jednadžbe. Samo pažljivo zamijenite vrijednosti a, b i c Računamo u ovoj formuli. Zamenimo sa svojim znakovima! Na primjer, u jednadžbi:

A =1; b = 3; c= -4. Evo mi to zapisujemo:

Primjer je skoro riješen:

Ovo je odgovor.

Sve je vrlo jednostavno. I šta, mislite da je nemoguće pogrešiti? Pa da, kako...

Najčešće greške su zabuna sa vrijednostima znakova a, b i c. Ili bolje rečeno, ne njihovim znakovima (gdje se zbuniti?), već zamjenom negativne vrijednosti u formulu za izračunavanje korijena. Ono što ovdje pomaže je detaljno snimanje formule s određenim brojevima. Ako postoje problemi sa proračunima, uradi to!

Pretpostavimo da trebamo riješiti sljedeći primjer:

Evo a = -6; b = -5; c = -1

Recimo da znate da retko dobijate odgovore prvi put.

Pa, nemoj biti lijen. Trebat će oko 30 sekundi da se napiše dodatni red i broj grešaka će se naglo smanjiti. Zato pišemo detaljno, sa svim zagradama i znakovima:

Čini se da je neverovatno teško pisati tako pažljivo. Ali tako se samo čini. Pokušati. Pa, ili biraj. Šta je bolje, brzo ili ispravno? Osim toga, usrećit ću te. Nakon nekog vremena neće biti potrebe da sve tako pažljivo zapisujete. To će uspjeti samo od sebe. Pogotovo ako koristite praktične tehnike koje su opisane u nastavku. Ovo zao primjer sa gomilom minusa se moze lako i bez gresaka resiti!

Ali, često kvadratne jednadžbe izgledaju malo drugačije. Na primjer, ovako:

Da li ste ga prepoznali?) Da! Ovo nepotpune kvadratne jednadžbe.

Rješavanje nepotpunih kvadratnih jednadžbi.

Oni se također mogu riješiti korištenjem opće formule. Samo treba ispravno shvatiti čemu su oni ovdje jednaki. a, b i c.

Jeste li shvatili? U prvom primjeru a = 1; b = -4; A c? Uopšte ga nema! Pa da, tako je. U matematici to znači da c = 0 ! To je sve. Umjesto toga u formulu zamijenite nulu c, i uspjet ćemo. Isto je i sa drugim primjerom. Samo što ovdje nemamo nulu With, A b !

Ali nepotpune kvadratne jednadžbe mogu se riješiti mnogo jednostavnije. Bez ikakvih formula. Razmotrimo prvu nepotpunu jednačinu. Šta možete učiniti na lijevoj strani? Možete izvaditi X iz zagrada! Hajde da ga izvadimo.

I šta od ovoga? I činjenica da je proizvod jednak nuli ako i samo ako je bilo koji od faktora jednak nuli! Ne veruješ mi? U redu, onda smislite dva broja različita od nule koji će, kada se pomnože, dati nulu!
Ne radi? To je to...
Stoga sa sigurnošću možemo napisati: x 1 = 0, x 2 = 4.

Sve. Ovo će biti korijeni naše jednadžbe. Oba su pogodna. Prilikom zamjene bilo koje od njih u originalnu jednačinu, dobijamo ispravan identitet 0 = 0. Kao što vidite, rješenje je mnogo jednostavnije od korištenja opće formule. Dozvolite mi da primetim, uzgred, koji će X biti prvi, a koji drugi - apsolutno je svejedno. Zgodno je pisati redom, x 1- šta je manje i x 2- ono što je veće.

Druga jednačina se također može jednostavno riješiti. Pomaknite 9 na desnu stranu. Dobijamo:

Ostaje samo da izvučete korijen iz 9, i to je to. Ispostaviće se:

Takođe dva korena . x 1 = -3, x 2 = 3.

Ovako se rješavaju sve nepotpune kvadratne jednadžbe. Ili stavljanjem X izvan zagrada, ili jednostavnim pomicanjem broja udesno i zatim izdvajanjem korijena.
Izuzetno je teško zbuniti ove tehnike. Jednostavno zato što ćete u prvom slučaju morati izvući korijen X, što je nekako neshvatljivo, a u drugom slučaju nema šta vaditi iz zagrada...

Diskriminantno. Diskriminantna formula.

Čarobna riječ diskriminatorno ! Rijetko koji srednjoškolac nije čuo ovu riječ! Izraz „rješavamo putem diskriminanta“ ulijeva povjerenje i sigurnost. Jer nema potrebe očekivati ​​trikove od diskriminatora! Jednostavan je i bez problema za korištenje.) Podsjećam vas na najviše opšta formula za rješenja bilo koji kvadratne jednadžbe:

Izraz pod znakom korijena naziva se diskriminant. Diskriminant se obično označava slovom D. Diskriminantna formula:

D = b 2 - 4ac

I šta je tako izvanredno u ovom izrazu? Zašto je zaslužio poseban naziv? Šta značenje diskriminanta? Nakon svega -b, ili 2a u ovoj formuli to ne zovu posebno... Slova i slova.

Evo u čemu je stvar. Prilikom rješavanja kvadratne jednadžbe pomoću ove formule, to je moguće samo tri slučaja.

1. Diskriminant je pozitivan. To znači da se korijen može izvući iz njega. Drugo je pitanje da li je korijen dobro ili loše izvađen. Bitno je šta se izvlači u principu. Tada vaša kvadratna jednadžba ima dva korijena. Dva različita rješenja.

2. Diskriminant je nula. Tada ćete imati jedno rješenje. Pošto dodavanje ili oduzimanje nule u brojiocu ne mijenja ništa. Strogo govoreći, ovo nije jedan korijen, već dva identična. Ali, u pojednostavljenoj verziji, uobičajeno je govoriti o tome jedno rešenje.

3. Diskriminant je negativan. Ne može se uzeti kvadratni korijen negativnog broja. Pa, ok. To znači da nema rješenja.

Iskreno govoreći, kada jednostavno rješenje kvadratne jednačine, koncept diskriminanta nije posebno potreban. Zamjenjujemo vrijednosti koeficijenata u formulu i brojimo. Sve se tamo dešava samo od sebe, dva korena, jedan i nijedan. Međutim, kod rješavanja složenijih zadataka, bez znanja značenje i formula diskriminanta nije dovoljno. Posebno u jednadžbama s parametrima. Takve jednadžbe su akrobatika za Državni ispit i Jedinstveni državni ispit!)

dakle, kako se rješavaju kvadratne jednadžbe kroz diskriminant kojeg si zapamtio. Ili ste naučili, što takođe nije loše.) Znate kako pravilno odrediti a, b i c. Znate li kako? pažljivo zamijenite ih u korijen formulu i pažljivo prebrojati rezultat. Shvaćate da je ključna riječ ovdje pažljivo?

Sada uzmite u obzir praktične tehnike koje dramatično smanjuju broj grešaka. Isti oni koji su zbog nepažnje... za koje kasnije postaje bolno i uvredljivo...

Prvi sastanak . Nemojte biti lijeni prije rješavanja kvadratne jednadžbe i dovedite je u standardni oblik. Šta to znači?
Recimo da nakon svih transformacija dobijete sljedeću jednačinu:

Nemojte žuriti s pisanjem korijenske formule! Gotovo sigurno ćete pomiješati šanse a, b i c. Konstruirajte primjer ispravno. Prvo, X na kvadrat, zatim bez kvadrata, zatim slobodni član. Volim ovo:

I opet, ne žurite! Minus ispred X na kvadrat može vas zaista uznemiriti. Lako je zaboraviti... Riješite se minusa. Kako? Da, kao što smo učili u prethodnoj temi! Moramo pomnožiti cijelu jednačinu sa -1. Dobijamo:

Ali sada možete sigurno zapisati formulu za korijene, izračunati diskriminanta i završiti rješavanje primjera. Odlučite sami. Sada bi trebali imati korijene 2 i -1.

Prijem drugi. Provjerite korijene! Prema Vietinoj teoremi. Ne boj se, sve ću ti objasniti! Provjeravam poslednja stvar jednačina. One. onaj koji smo koristili da zapišemo formulu korijena. Ako (kao u ovom primjeru) koeficijent a = 1, provjera korijena je laka. Dovoljno ih je umnožiti. Rezultat bi trebao biti slobodan član, tj. u našem slučaju -2. Imajte na umu, ne 2, već -2! Besplatan član sa tvojim znakom . Ako ne uspije, znači da su već negdje zeznuli. Potražite grešku.

Ako radi, morate dodati korijene. Poslednja i konačna provera. Koeficijent bi trebao biti b With suprotno poznat. U našem slučaju -1+2 = +1. Koeficijent b, koji je ispred X, jednako je -1. Dakle, sve je tačno!
Šteta što je to tako jednostavno samo za primjere gdje je x na kvadrat čist, s koeficijentom a = 1. Ali barem provjerite takve jednadžbe! Biće sve manje i manje grešaka.

Prijem treći . Ako vaša jednadžba ima koeficijente razlomaka, riješite se razlomaka! Pomnožite jednačinu zajedničkim nazivnikom kao što je opisano u lekciji "Kako riješiti jednadžbe? Transformacije identiteta." Kada radite sa razlomcima, greške se iz nekog razloga stalno uvlače...

Inače, obećao sam da ću pojednostaviti zao primjer s gomilom minusa. Molim te! Evo ga.

Da nas ne bi zbunili minusi, pomnožimo jednačinu sa -1. Dobijamo:

To je sve! Rešavanje je zadovoljstvo!

Dakle, da rezimiramo temu.

Praktični savjeti:

1. Prije rješavanja, dovodimo kvadratnu jednačinu u standardni oblik i gradimo je U redu.

2. Ako postoji negativan koeficijent ispred X na kvadrat, eliminiramo ga množenjem cijele jednačine sa -1.

3. Ako su koeficijenti razlomci, eliminiramo razlomke množenjem cijele jednačine odgovarajućim faktorom.

4. Ako je x na kvadrat čist, njegov koeficijent jednako jedan, rješenje se može lako provjeriti korištenjem Vietine teoreme. Učini to!

Sada možemo odlučiti.)

Riješite jednačine:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Odgovori (u neredu):

x 1 = 0
x 2 = 5

x 1,2 =2

x 1 = 2
x 2 = -0,5

x - bilo koji broj

x 1 = -3
x 2 = 3

nema rješenja

x 1 = 0,25
x 2 = 0,5

Da li sve odgovara? Odlično! Kvadratne jednačine nisu vaša glavobolja. Prva tri su uspjela, ali ostala nisu? Tada problem nije s kvadratnim jednadžbama. Problem je u identičnim transformacijama jednačina. Pogledajte link, od pomoći je.

Ne ide baš? Ili uopšte ne ide? Tada će vam pomoći Odjeljak 555. Svi ovi primjeri su ovdje raščlanjeni. Pokazano main greške u rješenju. Naravno, govori i o upotrebi transformacije identiteta u rješavanju raznih jednačina. Pomaže puno!

Ako vam se sviđa ovaj sajt...

Inače, imam još par zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoj nivo. Testiranje sa trenutnom verifikacijom. Učimo - sa interesovanjem!)

Možete se upoznati sa funkcijama i izvedenicama.