Meni
Besplatno
Dom  /  Papilomi/ Kako riješiti jednostavnu jednačinu sa logaritmima. Rješavanje logaritamskih jednadžbi. Potpuni vodič (2019.)

Kako riješiti jednostavnu jednačinu sa logaritmima. Rješavanje logaritamskih jednadžbi. Potpuni vodič (2019.)

Logaritamske jednadžbe. Od jednostavnog do složenog.

Pažnja!
Postoje dodatni
materijala u Posebnom dijelu 555.
Za one koji su veoma "ne baš..."
I za one koji "jako...")

Šta je logaritamska jednačina?

Ovo je jednadžba sa logaritmima. Iznenađen sam, zar ne?) Onda ću pojasniti. Ovo je jednadžba u kojoj se nalaze nepoznanice (x) i izrazi s njima unutar logaritma. I samo tamo! Važno je.

Evo nekoliko primjera logaritamske jednačine :

log 3 x = log 3 9

log 3 (x 2 -3) = log 3 (2x)

log x+1 (x 2 +3x-7) = 2

lg 2 (x+1)+10 = 11lg(x+1)

Pa razumes... )

Bilješka! Locirani su najraznovrsniji izrazi sa X-ovima isključivo unutar logaritma. Ako se iznenada pojavi X negdje u jednadžbi vani, Na primjer:

log 2 x = 3+x,

ovo će biti jednačina mješoviti tip. Takve jednačine nemaju jasna pravila za njihovo rješavanje. Za sada ih nećemo razmatrati. Usput, postoje jednadžbe gdje su unutar logaritma samo brojevi. Na primjer:

Šta da kažem? Imaš sreće ako naiđeš na ovo! Logaritam sa brojevima je neki broj. To je sve. Za rješavanje takve jednačine dovoljno je poznavati svojstva logaritma. Poznavanje posebnih pravila, tehnika prilagođenih posebno za rješavanje logaritamske jednadžbe, ovdje nije potrebno.

dakle, šta je logaritamska jednačina- Shvatili smo.

Kako riješiti logaritamske jednadžbe?

Rješenje logaritamske jednačine- stvar zapravo nije baš jednostavna. Dakle, naša sekcija je četiri... Potrebna je pristojna količina znanja o svim vrstama srodnih tema. Osim toga, u ovim jednačinama postoji posebna karakteristika. A ova karakteristika je toliko važna da se može sa sigurnošću nazvati glavnim problemom u rješavanju logaritamskih jednadžbi. Ovaj problem ćemo se detaljno pozabaviti u sljedećoj lekciji.

Za sada, ne brini. Ići ćemo pravim putem od jednostavnog do složenog. On konkretni primjeri. Glavna stvar je da se udubite u jednostavne stvari i ne budite lijeni pratiti linkove, stavio sam ih tamo s razlogom... I sve će vam uspjeti. Nužno.

Počnimo s najelementarnijim, najjednostavnijim jednadžbama. Da biste ih riješili, preporučljivo je imati ideju o logaritmu, ali ništa više. Samo nemam pojma logaritam, doneti odluku logaritamski jednadžbe - nekako čak i nespretne... Vrlo hrabro, rekao bih).

Najjednostavnije logaritamske jednadžbe.

Ovo su jednadžbe oblika:

1. log 3 x = log 3 9

2. log 7 (2x-3) = log 7 x

3. log 7 (50x-1) = 2

Proces rješenja bilo koja logaritamska jednadžba sastoji se u prijelazu iz jednadžbe s logaritmima u jednačinu bez njih. U najjednostavnijim jednačinama ovaj prijelaz se izvodi u jednom koraku. Zato su i najjednostavniji.)

A takve logaritamske jednačine je iznenađujuće lako riješiti. Uvjerite se sami.

Da riješimo prvi primjer:

log 3 x = log 3 9

Da biste riješili ovaj primjer, ne morate znati gotovo ništa, da... Čisto intuicija!) Šta nam treba posebno ne sviđa vam se ovaj primjer? Šta-šta... Ne volim logaritme! U redu. Pa hajde da ih se riješimo. Pažljivo pogledamo primjer i u nama se javlja prirodna želja... Baš neodoljiva! Uzmite i izbacite logaritme u potpunosti. A ono što je dobro je to Može uradi! Matematika dozvoljava. Logaritmi nestaju odgovor je:

Odlično, zar ne? To se uvijek može (i treba) učiniti. Eliminacija logaritama na ovaj način jedan je od glavnih načina rješavanja logaritamskih jednačina i nejednačina. U matematici se ova operacija naziva potenciranje. Naravno, postoje pravila za takvu likvidaciju, ali ih je malo. Zapamtite:

Možete bez straha eliminisati logaritme ako imaju:

a) iste numeričke baze

c) logaritmi s lijeva na desno su čisti (bez koeficijenata) i u sjajnoj su izolaciji.

Dozvolite mi da pojasnim poslednju tačku. U jednačini, recimo

log 3 x = 2log 3 (3x-1)

Logaritmi se ne mogu ukloniti. Dvojica sa desne strane to ne dozvoljavaju. Koeficijent, znate... U primjeru

log 3 x+log 3 (x+1) = log 3 (3+x)

Također je nemoguće potencirati jednačinu. Na lijevoj strani nema usamljenog logaritma. Ima ih dvoje.

Ukratko, možete ukloniti logaritme ako jednadžba izgleda ovako i samo ovako:

log a (.....) = log a (.....)

U zagradama, gdje je trotočka, može biti bilo kakvih izraza. Jednostavno, super složeno, sve vrste. Kako god. Bitno je da nam nakon eliminisanja logaritama ostaje jednostavnija jednačina. Pretpostavlja se, naravno, da već znate rješavati linearne, kvadratne, razlomke, eksponencijalne i druge jednadžbe bez logaritama.)

Sada možete lako riješiti drugi primjer:

log 7 (2x-3) = log 7 x

Zapravo, to se odlučuje u umu. Potenciramo, dobijamo:

Pa, je li jako teško?) Kao što vidite, logaritamski dio rješenja jednačine je samo u eliminisanju logaritama... A onda dolazi rješenje preostale jednačine bez njih. Trivijalna stvar.

Riješimo treći primjer:

log 7 (50x-1) = 2

Vidimo da je na lijevoj strani logaritam:

Podsjetimo da je ovaj logaritam broj na koji se baza mora podići (tj. sedam) da bi se dobio sublogaritamski izraz, tj. (50x-1).

Ali ovaj broj je dva! Prema jednadžbi To je:

To je u osnovi sve. Logaritam nestao, Ono što ostaje je bezopasna jednačina:

Ovu logaritamsku jednačinu riješili smo samo na osnovu značenja logaritma. Da li je još lakše eliminisati logaritme?) Slažem se. Usput, ako napravite logaritam od dva, ovaj primjer možete riješiti eliminacijom. Bilo koji broj se može pretvoriti u logaritam. Štaviše, onako kako nam je potrebno. Vrlo korisna tehnika u rješavanju logaritamskih jednačina i (posebno!) nejednačina.

Ne znate kako napraviti logaritam od broja!? Uredu je. Odjeljak 555 detaljno opisuje ovu tehniku. Možete ga savladati i iskoristiti u potpunosti! To uvelike smanjuje broj grešaka.

Četvrta jednačina se rješava na potpuno sličan način (po definiciji):

To je to.

Hajde da rezimiramo ovu lekciju. Na primjerima smo pogledali rješenje najjednostavnijih logaritamskih jednadžbi. To je veoma važno. I ne samo zato što se takve jednadžbe pojavljuju u testovima i ispitima. Činjenica je da se čak i najzlobnije i najkomplikovanije jednadžbe nužno svode na najjednostavnije!

Zapravo, najjednostavnije jednačine su završni dio rješenja bilo koji jednačine. I ovaj završni dio mora se striktno razumjeti! I dalje. Obavezno pročitajte ovu stranicu do kraja. Tu je iznenađenje...)

Sada odlučujemo sami. Hajde da se popravimo, da tako kažem...)

Pronađite korijen (ili zbir korijena, ako ih ima nekoliko) jednadžbi:

ln(7x+2) = ln(5x+20)

log 2 (x 2 +32) = log 2 (12x)

log 16 (0,5x-1,5) = 0,25

log 0,2 (3x-1) = -3

ln(e 2 +2x-3) = 2

log 2 (14x) = log 2 7 + 2

Odgovori (naravno u neredu): 42; 12; 9; 25; 7; 1.5; 2; 16.

Šta, ne ide sve? Dešava se. Ne brini! Odjeljak 555 objašnjava rješenje za sve ove primjere na jasan i detaljan način. Tamo ćete sigurno shvatiti. Također ćete naučiti korisne praktične tehnike.

Sve je ispalo!? Svi primjeri "jedan lijevo"?) Čestitamo!

Vrijeme je da vam otkrijem gorku istinu. Uspješno rješavanje ovih primjera ne garantuje uspjeh u rješavanju svih ostalih logaritamskih jednačina. Čak i najjednostavniji poput ovih. Avaj.

Činjenica je da se rješenje bilo koje logaritamske jednadžbe (čak i najosnovnije!) sastoji od dva jednaka dela. Rješavanje jednadžbe i rad sa ODZ-om. Savladali smo jedan dio - rješavanje same jednačine. Nije tako teško zar ne?

Za ovu lekciju posebno sam odabrao primjere u kojima DL ni na koji način ne utiče na odgovor. Ali nisu svi ljubazni kao ja, zar ne?...)

Stoga je imperativ ovladati drugim dijelom. ODZ. Ovo je glavni problem u rješavanju logaritamskih jednačina. I ne zato što je težak - ovaj dio je čak lakši od prvog. Ali zato što ljudi jednostavno zaborave na ODZ. Ili ne znaju. Ili oboje). I padaju iz vedra neba...

U sledećoj lekciji bavićemo se ovim problemom. Tada možete sa sigurnošću odlučiti bilo koji jednostavne logaritamske jednadžbe i pristupaju sasvim solidnim zadacima.

Ako vam se sviđa ovaj sajt...

Inače, imam još par zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoj nivo. Testiranje sa trenutnom verifikacijom. Učimo - sa interesovanjem!)

Možete se upoznati sa funkcijama i izvedenicama.

Završni video zapisi u dugoj seriji lekcija o rješavanju logaritamskih jednadžbi. Ovaj put ćemo prvenstveno raditi sa ODZ logaritma – upravo zbog pogrešnog razmatranja (ili čak zanemarivanja) domena definicije najviše grešaka nastaje prilikom rješavanja ovakvih problema.

U ovoj kratkoj video lekciji ćemo se osvrnuti na upotrebu formula za sabiranje i oduzimanje logaritama, a takođe ćemo se pozabaviti i razlomcima racionalnih jednačina, sa kojima mnogi učenici takođe imaju problema.

O čemu ćemo razgovarati? Glavna formula koju bih želio razumjeti izgleda ovako:

log a (f g ) = log a f + log a g

Ovo je standardni prijelaz sa proizvoda na zbir logaritama i nazad. Vjerovatno znate ovu formulu od samog početka proučavanja logaritama. Međutim, postoji jedan problem.

Sve dok su varijable a, f i g obični brojevi, nema problema. Ova formula radi odlično.

Međutim, čim se umjesto f i g pojave funkcije, javlja se problem proširenja ili sužavanja domene definicije ovisno o tome u kojem smjeru transformirati. Procijenite sami: u logaritmu napisanom lijevo, domen definicije je sljedeći:

fg > 0

Ali u količini napisanoj desno, domen definicije je već nešto drugačiji:

f > 0

g > 0

Ovaj skup zahtjeva je stroži od prvobitnog. U prvom slučaju ćemo se zadovoljiti opcijom f< 0, g < 0 (ведь их произведение положительное, поэтому неравенство fg >0 se izvršava).

Dakle, pri prelasku sa lijeve konstrukcije na desnu dolazi do sužavanja domena definicije. Ako smo u početku imali zbroj, pa ga prepišemo u obliku proizvoda, onda se domen definicije širi.

Drugim riječima, u prvom slučaju mogli bismo izgubiti korijenje, au drugom bismo mogli dobiti dodatne. Ovo se mora uzeti u obzir prilikom rješavanja realnih logaritamskih jednačina.

Dakle, prvi zadatak:

[Natpis za sliku]

Na lijevoj strani vidimo zbir logaritama koji koriste istu bazu. Stoga se ovi logaritmi mogu dodati:

[Natpis za sliku]

Kao što vidite, na desnoj strani zamijenili smo nulu koristeći formulu:

a = log b b a

Hajdemo još malo da preuredimo našu jednačinu:

log 4 (x − 5) 2 = log 4 1

Pred nama je kanonski oblik logaritamske jednadžbe; možemo precrtati log znak i izjednačiti argumente:

(x − 5) 2 = 1

|x − 5| = 1

Napomena: odakle je došao modul? Da vas podsjetim da je korijen tačnog kvadrata jednak modulu:

[Natpis za sliku]

Zatim rješavamo klasičnu jednačinu sa modulom:

|f | = g (g > 0) ⇒f = ±g

x − 5 = ±1 ⇒x 1 = 5 − 1 = 4; x 2 = 5 + 1 = 6

Evo dva odgovora kandidata. Jesu li oni rješenje originalne logaritamske jednadžbe? Nema šanse!

Nemamo pravo sve ostaviti samo tako i zapisati odgovor. Pogledajte korak u kojem zamjenjujemo zbir logaritama jednim logaritmom proizvoda argumenata. Problem je što u originalnim izrazima imamo funkcije. Stoga bi vam trebalo:

x(x − 5) > 0; (x − 5)/x > 0.

Kada smo transformisali proizvod, dobijajući tačan kvadrat, promenili su se zahtevi:

(x − 5) 2 > 0

Kada je ovaj uslov ispunjen? Da, skoro uvek! Osim u slučaju kada je x − 5 = 0. To jest nejednakost će se svesti na jednu probušenu tačku:

x − 5 ≠ 0 ⇒ x ≠ 5

Kao što vidite, proširio se obim definicije, o čemu smo govorili na samom početku lekcije. Posljedično, mogu se pojaviti dodatni korijeni.

Kako možete spriječiti pojavu ovih dodatnih korijena? Vrlo je jednostavno: gledamo naše dobivene korijene i upoređujemo ih s domenom definicije izvorne jednadžbe. izbrojimo:

x (x − 5) > 0

Riješit ćemo metodom intervala:

x (x − 5) = 0 ⇒ x = 0; x = 5

Rezultirajuće brojeve označavamo na liniji. Nedostaju sve tačke jer je nejednakost stroga. Uzmi bilo koji broj veći od 5 i zamijeni:

[Natpis za sliku]

Zanimaju nas intervali (−∞; 0) ∪ (5; ∞). Ako na segmentu označimo naše korijene, vidjet ćemo da nam x = 4 ne odgovara, jer se taj korijen nalazi izvan domene definicije originalne logaritamske jednadžbe.

Vraćamo se na ukupnost, precrtavamo korijen x = 4 i zapisujemo odgovor: x = 6. Ovo je konačni odgovor na originalnu logaritamsku jednačinu. To je to, problem rešen.

Pređimo na drugu logaritamsku jednačinu:

[Natpis za sliku]

Hajde da to rešimo. Imajte na umu da je prvi član razlomak, a drugi isti razlomak, ali obrnut. Nemojte se plašiti izraza lgx - to je samo decimalni logaritam, možemo ga napisati:

lgx = log 10 x

Pošto imamo dva obrnuta razlomka, predlažem uvođenje nove varijable:

[Natpis za sliku]

Stoga se naša jednačina može prepisati na sljedeći način:

t + 1/t = 2;

t + 1/t − 2 = 0;

(t 2 − 2t + 1)/t = 0;

(t − 1) 2 /t = 0.

Kao što vidite, brojilac razlomka je tačan kvadrat. Razlomak je jednak nuli kada mu je brojilac jednaka nuli, a imenilac je različit od nule:

(t − 1) 2 = 0; t ≠ 0

Rešimo prvu jednačinu:

t − 1 = 0;

t = 1.

Ova vrijednost zadovoljava drugi zahtjev. Stoga možemo reći da smo u potpunosti riješili našu jednačinu, ali samo u odnosu na varijablu t. Sada se prisjetimo šta je t:

[Natpis za sliku]

Dobili smo proporciju:

logx = 2 logx + 1

2 logx − logx = −1

logx = −1

Ovu jednačinu dovodimo do njenog kanonskog oblika:

logx = log 10 −1

x = 10 −1 = 0,1

Kao rezultat, dobili smo jedan korijen, koji je, u teoriji, rješenje originalne jednadžbe. Ipak, igrajmo na sigurno i napišimo domenu definicije originalne jednadžbe:

[Natpis za sliku]

Dakle, naš root zadovoljava sve zahtjeve. Pronašli smo rješenje originalne logaritamske jednadžbe. Odgovor: x = 0,1. Problem je riješen.

Postoji samo jedna ključna točka u današnjoj lekciji: kada koristite formulu za pomicanje od proizvoda do zbroja i nazad, vodite računa da se opseg definicije može suziti ili proširiti ovisno o tome u kojem smjeru se prijelaz vrši.

Kako razumjeti šta se dešava: kontrakcija ili ekspanzija? Veoma jednostavno. Ako su ranije funkcije bile zajedno, a sada su odvojene, onda se opseg definicije suzio (jer ima više zahtjeva). Ako su u početku funkcije stajale odvojeno, a sada su zajedno, onda je domen definicije proširen (manje zahtjeva se nameće proizvodu nego pojedinačnim faktorima).

Uzimajući u obzir ovu napomenu, želio bih napomenuti da druga logaritamska jednadžba uopće ne zahtijeva ove transformacije, odnosno nigdje ne sabiramo niti množimo argumente. Međutim, ovdje bih vam skrenuo pažnju na još jednu divnu tehniku ​​koja može značajno pojednostaviti rješenje. Radi se o zamjeni varijable.

Međutim, zapamtite da nas nikakve zamjene ne oslobađaju opsega definicije. Zato nakon što su svi korijeni pronađeni, nismo lijeni i vratili smo se na prvobitnu jednačinu da pronađemo njen ODZ.

Često, prilikom zamjene varijable, dolazi do dosadne greške kada učenici pronađu vrijednost t i misle da je rješenje potpuno. Nema šanse!

Nakon što ste pronašli vrijednost t, morate se vratiti na prvobitnu jednačinu i vidjeti šta smo tačno mislili sa ovim slovom. Kao rezultat, moramo riješiti još jednu jednadžbu, koja će, međutim, biti mnogo jednostavnija od originalne.

To je upravo poenta uvođenja nove varijable. Prvobitnu jednačinu podijelimo na dvije međusobne, od kojih svaka ima mnogo jednostavnije rješenje.

Kako riješiti "ugniježđene" logaritamske jednadžbe

Danas nastavljamo sa proučavanjem logaritamskih jednadžbi i analiziraćemo konstrukcije kada je jedan logaritam pod znakom drugog logaritma. Obje jednačine ćemo riješiti koristeći kanonski oblik.

Danas nastavljamo da proučavamo logaritamske jednačine i analiziraćemo konstrukcije kada je jedan logaritam pod znakom drugog. Obje jednačine ćemo riješiti koristeći kanonski oblik. Da vas podsjetim da ako imamo najjednostavniju logaritamsku jednačinu oblika log a f (x) = b, tada za rješavanje takve jednačine izvodimo sljedeće korake. Prije svega, trebamo zamijeniti broj b:

b = log a a b

Napomena: a b je argument. Slično, u originalnoj jednačini, argument je funkcija f(x). Zatim prepisujemo jednačinu i dobijamo ovu konstrukciju:

log a f (x) = log a a b

Tada možemo izvesti treći korak - osloboditi se znaka logaritma i jednostavno napisati:

f (x) = a b

Kao rezultat, dobijamo novu jednačinu. U ovom slučaju nema ograničenja na funkciju f (x). Na primjer, na njegovom mjestu također može postojati logaritamska funkcija. I tada ćemo opet dobiti logaritamsku jednačinu, koju ćemo opet svesti na njen najjednostavniji oblik i riješiti kroz kanonski oblik.

Međutim, dosta tekstova. Hajde da rešimo pravi problem. Dakle, zadatak broj 1:

log 2 (1 + 3 log 2 x ) = 2

Kao što vidite, imamo jednostavnu logaritamsku jednačinu. Uloga f (x) je konstrukcija 1 + 3 log 2 x, a uloga broja b je broj 2 (ulogu a imaju i dvojica). Prepišimo ovo dvoje na sljedeći način:

Važno je shvatiti da su nam prve dvije dvije došle iz baze logaritma, tj. da je u originalnoj jednačini bilo 5, onda bismo dobili da je 2 = log 5 5 2. Općenito, baza ovisi isključivo o logaritmu koji je izvorno dat u zadatku. A u našem slučaju ovo je broj 2.

Dakle, prepisujemo našu logaritamsku jednačinu uzimajući u obzir činjenicu da je dva desno zapravo također logaritam. Dobijamo:

log 2 (1 + 3 log 2 x ) = log 2 4

Prijeđimo na posljednji korak naše sheme - oslobađanje od kanonskog oblika. Moglo bi se reći, jednostavno precrtavamo znakove balvana. Međutim, s matematičke točke gledišta, nemoguće je "precrtati dnevnik" - ispravnije bi bilo reći da jednostavno izjednačavamo argumente:

1 + 3 log 2 x = 4

Odavde možemo lako pronaći 3 log 2 x:

3 log 2 x = 3

log 2 x = 1

Ponovo smo dobili najjednostavniju logaritamsku jednačinu, vratimo je u kanonski oblik. Da bismo to uradili potrebno je da izvršimo sledeće promene:

1 = log 2 2 1 = log 2 2

Zašto je dvojka u bazi? Jer u našoj kanonskoj jednadžbi na lijevoj strani postoji logaritam tačno na osnovu 2. Prepisujemo problem uzimajući u obzir ovu činjenicu:

log 2 x = log 2 2

Ponovo se oslobađamo znaka logaritma, tj. jednostavno izjednačavamo argumente. Na to imamo pravo jer su baze iste, a nikakve dodatne radnje nisu vršene ni s desne ni s lijeve strane:

To je sve! Problem je riješen. Pronašli smo rješenje logaritamske jednačine.

Bilješka! Iako se varijabla x pojavljuje u argumentu (tj. postoje zahtjevi za domenu definicije), nećemo postavljati nikakve dodatne zahtjeve.

Kao što sam rekao gore, ova provjera je suvišna ako se varijabla pojavljuje u samo jednom argumentu samo jednog logaritma. U našem slučaju, x se zaista pojavljuje samo u argumentu i samo pod jednim log znakom. Stoga nisu potrebne dodatne provjere.

Međutim, ako nemate povjerenja u ovu metodu, lako možete provjeriti da je x = 2 zaista korijen. Dovoljno je zamijeniti ovaj broj u originalnu jednačinu.

Pređimo na drugu jednačinu, malo je zanimljivija:

log 2 (log 1/2 (2x − 1) + log 2 4) = 1

Ako izraz unutar velikog logaritma označimo funkcijom f (x), dobićemo najjednostavniju logaritamsku jednačinu s kojom smo započeli današnju video lekciju. Stoga možemo primijeniti kanonski oblik, za koji ćemo jedinicu morati predstaviti u obliku log 2 2 1 = log 2 2.

Prepišimo našu veliku jednačinu:

log 2 (log 1/2 (2x − 1) + log 2 4) = log 2 2

Odmaknimo se od znaka logaritma, izjednačavajući argumente. Na to imamo pravo, jer su i na lijevoj i na desnoj osnovi iste. Dodatno, imajte na umu da log 2 4 = 2:

log 1/2 (2x − 1) + 2 = 2

log 1/2 (2x − 1) = 0

Pred nama je opet najjednostavnija logaritamska jednadžba oblika log a f (x) = b. Pređimo na kanonski oblik, odnosno predstavljamo nulu u obliku log 1/2 (1/2)0 = log 1/2 1.

Prepisujemo našu jednačinu i oslobađamo se log znaka, izjednačavajući argumente:

log 1/2 (2x − 1) = log 1/2 1

2x − 1 = 1

Opet, odmah smo dobili odgovor. Nisu potrebne dodatne provjere jer u originalnoj jednadžbi samo jedan logaritam sadrži funkciju kao argument.

Stoga nisu potrebne dodatne provjere. Možemo sa sigurnošću reći da je x = 1 jedini korijen ove jednačine.

Ali ako bi u drugom logaritmu bila neka funkcija od x umjesto četiri (ili 2x nije bilo u argumentu, već u bazi) - tada bi bilo potrebno provjeriti domenu definicije. U suprotnom, postoji velika šansa da naletite na dodatne korijene.

Odakle dolaze ovi dodatni korijeni? Ova tačka mora biti shvaćena vrlo jasno. Pogledajte originalne jednadžbe: svugdje je funkcija x pod znakom logaritma. Shodno tome, pošto smo zapisali log 2 x, automatski postavljamo zahtjev x > 0. Inače, ovaj unos jednostavno nema smisla.

Međutim, kako rješavamo logaritamsku jednadžbu, oslobađamo se svih log znakova i dobivamo jednostavne konstrukcije. Ovdje više nisu postavljena ograničenja, jer linearna funkcija definirano za bilo koju vrijednost x.

Upravo je taj problem, kada je konačna funkcija svugdje i uvijek definirana, ali originalna nije svugdje i ne uvijek, razlog zašto se u rješavanju logaritamskih jednačina vrlo često pojavljuju dodatni korijeni.

Ali ponavljam još jednom: to se događa samo u situaciji kada je funkcija ili u nekoliko logaritama ili u osnovi jednog od njih. U problemima koje danas razmatramo, u principu, nema problema sa proširenjem domena definicije.

Slučajevi različitih osnova

Ova lekcija je posvećena složenijim strukturama. Logaritmi u današnjim jednačinama više se neće rješavati odmah, već će se prvo morati izvršiti neke transformacije.

Počinjemo rješavati logaritamske jednadžbe s potpuno različitim bazama, koje nisu tačne potencije jedna drugoj. Ne dozvolite da vas takvi problemi uplaše – njih nije teže riješiti od većine jednostavni dizajni o kojoj smo gore govorili.

Ali prije nego što pređemo direktno na probleme, dopustite mi da vas podsjetim na formulu za rješavanje najjednostavnijih logaritamskih jednadžbi pomoću kanonskog oblika. Razmotrite ovakav problem:

log a f (x) = b

Važno je da je funkcija f (x) samo funkcija, a uloga brojeva a i b treba da budu brojevi (bez ikakvih varijabli x). Naravno, doslovce za minut ćemo pogledati takve slučajeve kada umjesto varijabli a i b postoje funkcije, ali to sada nije o tome.

Kao što se sjećamo, broj b mora biti zamijenjen logaritmom na istu bazu a, koja je na lijevoj strani. Ovo se radi vrlo jednostavno:

b = log a a b

Naravno, riječi "bilo koji broj b" i "bilo koji broj a" znače vrijednosti koje zadovoljavaju opseg definicije. Konkretno, u ovoj jednačini mi pričamo o tome samo baza a > 0 i a ≠ 1.

Međutim, ovaj zahtjev je automatski zadovoljen, jer izvorni problem već sadrži logaritam za bazu a – sigurno će biti veći od 0, a ne jednak 1. Stoga nastavljamo sa rješavanjem logaritamske jednadžbe:

log a f (x) = log a a b

Takva notacija se zove kanonska forma. Njegova pogodnost leži u činjenici da se možemo odmah riješiti znaka dnevnika izjednačavanjem argumenata:

f (x) = a b

Upravo ovu tehniku ​​ćemo sada koristiti za rješavanje logaritamskih jednadžbi s promjenjivom bazom. Dakle, idemo!

log 2 (x 2 + 4x + 11) = log 0,5 0,125

Šta je sledeće? Neko će sada reći da treba izračunati pravi logaritam, ili ih svesti na istu bazu, ili nešto drugo. I zaista, sada moramo obje baze dovesti u isti oblik - ili 2 ili 0,5. Ali naučimo jednom za svagda sljedeće pravilo:

Ako logaritamska jednadžba sadrži decimale, obavezno pretvorite ove razlomke iz decimalnog zapisa u obične. Ova transformacija može uvelike pojednostaviti rješenje.

Takav prijelaz mora se izvršiti odmah, čak i prije izvođenja bilo kakvih radnji ili transformacija. Hajde da pogledamo:

log 2 (x 2 + 4x + 11) = log 1 /2 1/8

Šta nam takav zapis daje? Možemo predstaviti 1/2 i 1/8 kao stepene sa negativnim eksponentom:


[Natpis za sliku]

Pred nama je kanonski oblik. Izjednačavamo argumente i dobijamo klasiku kvadratna jednačina:

x 2 + 4x + 11 = 8

x 2 + 4x + 3 = 0

Pred nama je sljedeća kvadratna jednadžba, koja se lako može riješiti korištenjem Vietinih formula. U srednjoj školi trebalo bi da vidite slične prikaze doslovno usmeno:

(x + 3)(x + 1) = 0

x 1 = −3

x 2 = −1

To je sve! Originalna logaritamska jednadžba je riješena. Imamo dva korena.

Da vas podsjetim da u ovom slučaju nije potrebno određivati ​​domen definicije, jer je funkcija sa varijablom x prisutna samo u jednom argumentu. Stoga se opseg definicije izvodi automatski.

Dakle, prva jednačina je riješena. Pređimo na drugo:

log 0,5 (5x 2 + 9x + 2) = log 3 1/9

log 1/2 (5x 2 + 9x + 2) = log 3 9 −1

Sada imajte na umu da se argument prvog logaritma može zapisati i kao stepen sa negativnim eksponentom: 1/2 = 2 −1. Tada možete izvaditi potencije na obje strane jednačine i podijeliti sve sa −1:

[Natpis za sliku]

I sada smo postigli veoma važan korak u rješavanju logaritamske jednadžbe. Možda neko nešto nije primetio, pa da objasnim.

Pogledajte našu jednačinu: i na lijevoj i na desnoj strani nalazi se log znak, ali na lijevoj je logaritam na bazu 2, a na desnoj je logaritam na bazu 3. Tri nije cijeli broj od dva i, obrnuto, ne možete napisati da je 2 3 u cijelom broju stupnjeva.

Posljedično, radi se o logaritmima s različitim bazama koji se ne mogu svesti jedan na drugi jednostavnim zbrajanjem potencija. Jedini način za rješavanje takvih problema je da se riješimo jednog od ovih logaritama. U ovom slučaju, pošto još uvijek razmatramo prilično jednostavni zadaci, logaritam desno je jednostavno izračunat i dobili smo najjednostavniju jednačinu – upravo onu o kojoj smo govorili na samom početku današnje lekcije.

Predstavimo broj 2, koji je desno, kao log 2 2 2 = log 2 4. I onda se riješimo znaka logaritma, nakon čega nam jednostavno ostaje kvadratna jednadžba:

log 2 (5x 2 + 9x + 2) = log 2 4

5x 2 + 9x + 2 = 4

5x 2 + 9x − 2 = 0

Pred nama je obična kvadratna jednačina, ali ona nije redukovana jer je koeficijent od x 2 različit od jedinice. Stoga ćemo to riješiti pomoću diskriminanta:

D = 81 − 4 5 (−2) = 81 + 40 = 121

x 1 = (−9 + 11)/10 = 2/10 = 1/5

x 2 = (−9 − 11)/10 = −2

To je sve! Pronašli smo oba korijena, što znači da smo dobili rješenje originalne logaritamske jednadžbe. Zaista, u originalnom problemu, funkcija s promjenljivom x je prisutna u samo jednom argumentu. Shodno tome, nisu potrebne nikakve dodatne provjere u domeni definicije - oba korijena za koja smo otkrili sigurno ispunjavaju sva moguća ograničenja.

Ovo bi mogao biti kraj današnje video lekcije, ali u zaključku želim još jednom reći: budite sigurni da ste pretvorili sve decimalne razlomke u obične razlomke kada rješavate logaritamske jednadžbe. U većini slučajeva to uvelike pojednostavljuje njihovo rješenje.

Rijetko, vrlo rijetko, naiđete na probleme u kojima uklanjanje decimalnih razlomaka samo komplikuje proračune. Međutim, u takvim jednadžbama, u pravilu, u početku je jasno da nema potrebe da se riješite decimalnih razlomaka.

U većini drugih slučajeva (naročito ako tek počinjete vježbati rješavanje logaritamskih jednadžbi), slobodno se riješite decimala i pretvorite ih u obične. Jer praksa pokazuje da ćete na taj način značajno pojednostaviti naknadno rješenje i proračune.

Suptilnosti i trikovi rješenja

Danas prelazimo na složenije probleme i rješavamo logaritamsku jednadžbu, koja se ne zasniva na broju, već na funkciji.

Čak i ako je ova funkcija linearna, morat će se napraviti male promjene u shemi rješenja, čije se značenje svodi na dodatne zahtjeve nametnute domeni definicije logaritma.

Složeni zadaci

Ovaj vodič će biti prilično dug. U njemu ćemo analizirati dvije prilično ozbiljne logaritamske jednačine, pri rješavanju kojih mnogi učenici griješe. Tokom prakse kao nastavnik matematike, stalno sam nailazio na dvije vrste grešaka:

  1. Pojava dodatnih korijena zbog proširenja domena definicije logaritama. Da biste izbjegli takve uvredljive greške, samo pažljivo pratite svaku transformaciju;
  2. Gubitak korijena zbog činjenice da je student zaboravio razmotriti neke „suptilne“ slučajeve - to su situacije na koje ćemo se danas fokusirati.

Ovo zadnja lekcija, posvećen logaritamskim jednačinama. Biće dugo, analiziraćemo složene logaritamske jednačine. Raskomotite se, skuvajte sebi čaj i krenimo.

Prva jednadžba izgleda sasvim standardno:

log x + 1 (x − 0,5) = log x − 0,5 (x + 1)

Odmah primijetimo da su oba logaritma obrnute kopije jedan drugog. Prisjetimo se divne formule:

log a b = 1/log b a

Međutim, ova formula ima niz ograničenja koja nastaju ako umjesto brojeva a i b postoje funkcije varijable x:

b > 0

1 ≠ a > 0

Ovi zahtjevi se odnose na bazu logaritma. S druge strane, u razlomku je potrebno da imamo 1 ≠ a > 0, jer ne samo da je varijabla a u argumentu logaritma (dakle a > 0), već je i sam logaritam u nazivniku razlomka . Ali log b 1 = 0, a imenilac mora biti različit od nule, tako da je a ≠ 1.

Dakle, ograničenja za varijablu a ostaju. Ali šta se dešava sa promenljivom b? S jedne strane, baza implicira b > 0, s druge strane varijabla b ≠ 1, jer baza logaritma mora biti različita od 1. Ukupno, iz desne strane formule slijedi da je 1 ≠ b > 0.

Ali evo problema: drugi zahtjev (b ≠ 1) nedostaje u prvoj nejednakosti, koja se bavi lijevim logaritmom. Drugim riječima, kada vršimo ovu transformaciju moramo provjerite posebno, da je argument b različit od jedan!

Pa hajde da to proverimo. Primijenimo našu formulu:

[Natpis za sliku]

1 ≠ x − 0,5 > 0; 1 ≠ x + 1 > 0

Dakle, dobili smo da već iz originalne logaritamske jednadžbe slijedi da i a i b moraju biti veći od 0, a ne jednaki 1. To znači da možemo lako invertirati logaritamsku jednačinu:

Predlažem uvođenje nove varijable:

log x + 1 (x − 0,5) = t

U ovom slučaju, naša konstrukcija će biti prepisana na sljedeći način:

(t 2 − 1)/t = 0

Imajte na umu da u brojniku imamo razliku kvadrata. Otkrivamo razliku kvadrata koristeći skraćenu formulu množenja:

(t − 1)(t + 1)/t = 0

Razlomak je jednak nuli kada mu je brojilac nula, a imenilac različit od nule. Ali brojilac sadrži proizvod, pa svaki faktor izjednačavamo sa nulom:

t 1 = 1;

t 2 = −1;

t ≠ 0.

Kao što vidimo, odgovaraju nam obje vrijednosti varijable t. Međutim, rješenje se tu ne završava, jer moramo pronaći ne t, već vrijednost x. Vraćamo se na logaritam i dobijamo:

log x + 1 (x − 0,5) = 1;

log x + 1 (x − 0,5) = −1.

Stavimo svaku od ovih jednačina u kanonski oblik:

log x + 1 (x − 0,5) = log x + 1 (x + 1) 1

log x + 1 (x − 0,5) = log x + 1 (x + 1) −1

Riješimo se znaka logaritma u prvom slučaju i izjednačavamo argumente:

x − 0,5 = x + 1;

x − x = 1 + 0,5;

Takva jednadžba nema korijena, stoga prva logaritamska jednadžba također nema korijen. Ali s drugom jednačinom sve je mnogo zanimljivije:

(x − 0,5)/1 = 1/(x + 1)

Rješavajući proporciju, dobijamo:

(x − 0,5)(x + 1) = 1

Da vas podsjetim da je pri rješavanju logaritamskih jednadžbi mnogo zgodnije koristiti sve decimalne razlomke kao obične, pa prepišimo našu jednadžbu na sljedeći način:

(x − 1/2)(x + 1) = 1;

x 2 + x − 1/2x − 1/2 − 1 = 0;

x 2 + 1/2x − 3/2 = 0.

Pred nama je kvadratna jednadžba u nastavku, koja se lako može riješiti korištenjem Vietinih formula:

(x + 3/2) (x − 1) = 0;

x 1 = −1,5;

x 2 = 1.

Dobili smo dva korijena - oni su kandidati za rješavanje originalne logaritamske jednadžbe. Da bismo razumjeli koji će korijeni zapravo ući u odgovor, vratimo se izvornom problemu. Sada ćemo provjeriti svaki od naših korijena da vidimo da li se uklapaju u domenu definicije:

1,5 ≠ x > 0,5; 0 ≠ x > −1.

Ovi zahtjevi su jednaki dvostrukoj nejednakosti:

1 ≠ x > 0,5

Odavde odmah vidimo da nam korijen x = −1,5 ne odgovara, ali nam sasvim dobro odgovara x = 1. Stoga je x = 1 konačno rješenje logaritamske jednačine.

Pređimo na drugi zadatak:

log x 25 + log 125 x 5 = log 25 x 625

Na prvi pogled može izgledati da su svi logaritmi različitih razloga i različite argumente. Šta učiniti s takvim strukturama? Prije svega, imajte na umu da su brojevi 25, 5 i 625 potenci od 5:

25 = 5 2 ; 625 = 5 4

Sada iskoristimo divno svojstvo logaritma. Poenta je da možete izvući moći iz argumenta u obliku faktora:

log a b n = n ∙ log a b

Ova transformacija je također podložna ograničenjima u slučaju kada je b zamijenjen funkcijom. Ali za nas je b samo broj i nema dodatnih ograničenja. Prepišimo našu jednačinu:

2 ∙ log x 5 + log 125 x 5 = 4 ∙ log 25 x 5

Dobili smo jednačinu sa tri člana koji sadrže log znak. Štaviše, argumenti sva tri logaritma su jednaki.

Vrijeme je da obrnemo logaritme kako bismo ih doveli na istu bazu - 5. Pošto je varijabla b konstanta, ne dolazi do promjena u domenu definicije. Samo prepisujemo:


[Natpis za sliku]

Očekivano, isti logaritmi su se pojavili u nazivniku. Predlažem zamjenu varijable:

log 5 x = t

U ovom slučaju, naša jednačina će biti prepisana na sljedeći način:

Napišimo brojilac i otvorimo zagrade:

2 (t + 3) (t + 2) + t (t + 2) − 4t (t + 3) = 2 (t 2 + 5t + 6) + t 2 + 2t − 4t 2 − 12t = 2t 2 + 10t + 12 + t 2 + 2t − 4t 2 − 12t = −t 2 + 12

Vratimo se našem razlomku. Brojilac mora biti nula:

[Natpis za sliku]

I imenilac je drugačiji od nule:

t ≠ 0; t ≠ −3; t ≠ −2

Posljednji zahtjevi se ispunjavaju automatski, jer su svi „vezani“ za cijele brojeve, a svi odgovori su iracionalni.

dakle, frakciona racionalna jednačina riješeno, pronalaze se vrijednosti varijable t. Vratimo se rješavanju logaritamske jednadžbe i prisjetimo se šta je t:

[Natpis za sliku]

Svodimo ovu jednačinu na kanonski oblik i dobijamo broj sa iracionalnim stepenom. Ne dozvolite da vas ovo zbuni - čak se i takvi argumenti mogu izjednačiti:

[Natpis za sliku]

Imamo dva korena. Preciznije, dva kandidata odgovora - hajde da ih proverimo da li su u skladu sa domenom definicije. Budući da je osnova logaritma varijabla x, potrebno je sljedeće:

1 ≠ x > 0;

Sa istim uspjehom tvrdimo da je x ≠ 1/125, inače će se osnova drugog logaritma pretvoriti u jedinicu. Konačno, x ≠ 1/25 za treći logaritam.

Ukupno smo dobili četiri ograničenja:

1 ≠ x > 0; x ≠ 1/125; x ≠ 1/25

Sada se postavlja pitanje: da li naši korijeni zadovoljavaju ove zahtjeve? Naravno da zadovoljavaju! Zato što će 5 na bilo koji stepen biti veće od nule, a zahtjev x > 0 je automatski zadovoljen.

S druge strane, 1 = 5 0, 1/25 = 5 −2, 1/125 = 5 −3, što znači da ova ograničenja za naše korijene (koji, da vas podsjetim, imaju iracionalan broj u eksponentu) su također zadovoljni, a oba odgovora su rješenja problema.

Dakle, imamo konačan odgovor. Ključne točke U ovom problemu postoje dva:

  1. Budite oprezni kada okrećete logaritam kada se argument i baza zamjenjuju. Takve transformacije nameću nepotrebna ograničenja na opseg definicije.
  2. Nemojte se bojati transformirati logaritme: oni se ne mogu samo obrnuti, već i proširiti pomoću formule sume i općenito mijenjati pomoću bilo koje formule koju ste proučavali prilikom rješavanja logaritamskih izraza. Međutim, uvijek zapamtite: neke transformacije proširuju opseg definicije, a neke ih sužavaju.

Kao što znate, kada se množe izrazi sa stepenom, njihovi eksponenti se uvijek sabiraju (a b *a c = a b+c). Ovaj matematički zakon je izveo Arhimed, a kasnije, u 8. veku, matematičar Virasen je napravio tabelu celobrojnih eksponenata. Upravo su oni poslužili za dalje otkrivanje logaritama. Primjeri korištenja ove funkcije mogu se naći gotovo svugdje gdje trebate pojednostaviti glomazno množenje jednostavnim sabiranjem. Ako odvojite 10 minuta čitajući ovaj članak, objasnit ćemo vam što su logaritmi i kako s njima raditi. Jednostavnim i pristupačnim jezikom.

Definicija u matematici

Logaritam je izraz sljedećeg oblika: log a b=c, to jest, logaritam bilo kojeg nenegativnog broja (tj. bilo kojeg pozitivnog) “b” na njegovu bazu “a” smatra se stepenom “c ” na koju se baza “a” mora podići da bi se na kraju dobila vrijednost “b”. Analizirajmo logaritam na primjerima, recimo da postoji izraz log 2 8. Kako pronaći odgovor? Vrlo je jednostavno, potrebno je pronaći takvu snagu da od 2 do tražene snage dobijete 8. Nakon nekih proračuna u glavi, dobijamo broj 3! I to je tačno, jer 2 na stepen od 3 daje odgovor kao 8.

Vrste logaritama

Za mnoge učenike i studente ova se tema čini komplikovanom i nerazumljivom, ali zapravo logaritmi nisu toliko strašni, najvažnije je razumjeti njihovo općenito značenje i zapamtiti njihova svojstva i neka pravila. Ima ih tri pojedinačne vrste logaritamski izrazi:

  1. Prirodni logaritam ln a, gdje je baza Ojlerov broj (e = 2,7).
  2. Decimala a, gdje je osnova 10.
  3. Logaritam bilo kojeg broja b na osnovu a>1.

Svaki od njih se rješava na standardni način, uključujući pojednostavljenje, redukciju i naknadno svođenje na jedan logaritam korištenjem logaritamskih teorema. Da biste dobili ispravne vrijednosti logaritama, trebali biste zapamtiti njihova svojstva i redoslijed radnji prilikom njihovog rješavanja.

Pravila i neka ograničenja

U matematici postoji nekoliko pravila-ograničenja koja su prihvaćena kao aksiom, odnosno nisu predmet rasprave i predstavljaju istinu. Na primjer, nemoguće je podijeliti brojeve sa nulom, a također je nemoguće izvući paran korijen negativni brojevi. Logaritmi također imaju svoja pravila, slijedeći koja možete lako naučiti raditi čak i sa dugim i prostranim logaritamskim izrazima:

  • Osnova “a” uvijek mora biti veća od nule, a ne jednaka 1, inače će izraz izgubiti svoje značenje, jer su “1” i “0” u bilo kojem stepenu uvijek jednaki njihovim vrijednostima;
  • ako je a > 0, onda a b > 0, ispada da “c” takođe mora biti veće od nule.

Kako riješiti logaritme?

Na primjer, daje se zadatak pronaći odgovor na jednadžbu 10 x = 100. Ovo je vrlo lako, potrebno je odabrati stepen podizanjem broja deset na koji dobijamo 100. Ovo je, naravno, 10 2 = 100.

Sada predstavimo ovaj izraz u logaritamskom obliku. Dobijamo log 10 100 = 2. Prilikom rješavanja logaritma, sve radnje se praktično konvergiraju da bi se pronašla potencija na koju je potrebno unijeti bazu logaritma da bi se dobio dati broj.

Da biste precizno odredili vrijednost nepoznatog stepena, morate naučiti kako raditi s tablicom stupnjeva. izgleda ovako:

Kao što vidite, neki eksponenti se mogu pogoditi intuitivno ako imate tehnički um i poznavanje tablice množenja. Međutim za velike vrijednosti trebaće vam tabela stepeni. Mogu ga koristiti čak i oni koji ne znaju ništa o složenim matematičkim temama. Lijeva kolona sadrži brojeve (osnova a), gornji red brojeva je vrijednost stepena c na koji je broj a podignut. Na raskrsnici ćelije sadrže brojčane vrijednosti koje su odgovor (a c =b). Uzmimo, na primjer, prvu ćeliju sa brojem 10 i kvadriramo je, dobićemo vrijednost 100, koja je naznačena na sjecištu naše dvije ćelije. Sve je tako jednostavno i lako da će i najistinskiji humanista razumjeti!

Jednačine i nejednačine

Ispada da je pod određenim uslovima eksponent logaritam. Stoga se bilo koji matematički numerički izrazi može zapisati kao logaritamska jednakost. Na primjer, 3 4 =81 se može napisati kao logaritam 81 na bazi 3 jednak četiri (log 3 81 = 4). Za negativne potencije pravila su ista: 2 -5 = 1/32 zapišemo to kao logaritam, dobijemo log 2 (1/32) = -5. Jedna od najfascinantnijih sekcija matematike je tema "logaritma". U nastavku ćemo pogledati primjere i rješenja jednadžbi, odmah nakon proučavanja njihovih svojstava. Pogledajmo sada kako izgledaju nejednakosti i kako ih razlikovati od jednačina.

Dat je izraz sljedećeg oblika: log 2 (x-1) > 3 - jeste logaritamska nejednakost, pošto je nepoznata vrijednost "x" pod znakom logaritma. I u izrazu se upoređuju dvije veličine: logaritam željenog broja prema bazi dva je veći od broja tri.

Najvažnija razlika između logaritamskih jednačina i nejednačina je u tome što jednadžbe sa logaritmima (primjer - logaritam 2 x = √9) podrazumijevaju jednu ili više specifičnih brojčanih vrijednosti u odgovoru, dok se pri rješavanju nejednačina definiraju kao regija prihvatljive vrijednosti, i tačke prekida ove funkcije. Kao posljedica toga, odgovor nije jednostavan skup pojedinačnih brojeva, kao u odgovoru na jednadžbu, već kontinuirani niz ili skup brojeva.

Osnovne teoreme o logaritmima

Prilikom rješavanja primitivnih zadataka pronalaženja vrijednosti logaritma, njegova svojstva možda neće biti poznata. Međutim, kada su u pitanju logaritamske jednačine ili nejednačine, prije svega, potrebno je jasno razumjeti i primijeniti u praksi sva osnovna svojstva logaritama. Kasnije ćemo pogledati primjere jednadžbi; hajde da prvo pogledamo svako svojstvo detaljnije.

  1. Glavni identitet izgleda ovako: a logaB =B. Primjenjuje se samo kada je a veće od 0, nije jednako jedan, a B je veće od nule.
  2. Logaritam proizvoda se može predstaviti sljedećom formulom: log d (s 1 * s 2) = log d s 1 + log d s 2. U ovom slučaju, obavezan uslov je: d, s 1 i s 2 > 0; a≠1. Možete dati dokaz za ovu logaritamsku formulu, sa primjerima i rješenjem. Neka log a s 1 = f 1 i log a s 2 = f 2, tada a f1 = s 1, a f2 = s 2. Dobijamo da je s 1 * s 2 = a f1 *a f2 = a f1+f2 (osobine stepeni ), a zatim po definiciji: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, što je trebalo dokazati.
  3. Logaritam količnika izgleda ovako: log a (s 1/s 2) = log a s 1 - log a s 2.
  4. Teorema u obliku formule ima sljedeći oblik: log a q b n = n/q log a b.

Ova formula se naziva “svojstvo stepena logaritma”. Podsjeća na svojstva običnih stupnjeva, i nije iznenađujuće, jer se sva matematika zasniva na prirodnim postulatima. Pogledajmo dokaz.

Neka log a b = t, ispada da je a t = b. Ako oba dijela podignemo na stepen m: a tn = b n ;

ali pošto je a tn = (a q) nt/q = b n, dakle log a q b n = (n*t)/t, onda log a q b n = n/q log a b. Teorema je dokazana.

Primjeri problema i nejednakosti

Najčešći tipovi zadataka o logaritmima su primjeri jednačina i nejednačina. Nalaze se u gotovo svim knjigama zadataka, a također su obavezan dio ispita iz matematike. Da biste ušli na fakultet ili položili prijemne ispite iz matematike, morate znati kako pravilno riješiti takve zadatke.

Nažalost, ne postoji jedinstveni plan ili shema za rješavanje i određivanje nepoznate vrijednosti logaritma, ali se određena pravila mogu primijeniti na svaku matematičku nejednačinu ili logaritamsku jednačinu. Prije svega, trebali biste saznati da li se izraz može pojednostaviti ili do njega dovesti opšti izgled. Pojednostavite duge logaritamski izrazi moguće ako pravilno koristite njihova svojstva. Hajde da ih brzo upoznamo.

Prilikom rješavanja logaritamskih jednadžbi moramo odrediti koji tip logaritma imamo: primjer izraza može sadržavati prirodni logaritam ili decimalni.

Evo primjera ln100, ln1026. Njihovo rješenje se svodi na činjenicu da treba odrediti snagu kojoj će baza 10 biti jednaka 100 i 1026, respektivno. Za rješenja prirodni logaritmi morate primijeniti logaritamske identitete ili njihova svojstva. Pogledajmo rješenje na primjerima logaritamski problemi različite vrste.

Kako koristiti logaritamske formule: s primjerima i rješenjima

Dakle, pogledajmo primjere korištenja osnovnih teorema o logaritmima.

  1. Svojstvo logaritma proizvoda može se koristiti u zadacima gdje je potrebno proširiti veliki značaj brojeve b u jednostavnije činioce. Na primjer, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odgovor je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kao što vidite, koristeći četvrto svojstvo stepena logaritma, uspjeli smo riješiti naizgled složen i nerješiv izraz. Vi samo trebate faktorisati bazu, a zatim izvući vrijednosti eksponenta iz predznaka logaritma.

Zadaci sa Jedinstvenog državnog ispita

Logaritmi se često nalaze na prijemnim ispitima, posebno mnogi logaritamski problemi na Jedinstvenom državnom ispitu (državni ispit za sve maturante). Obično su ovi zadaci prisutni ne samo u dijelu A (najlakši test dio ispit), ali i u dijelu C (najsloženiji i najobimniji zadaci). Ispit zahtijeva tačno i savršeno poznavanje teme „Prirodni logaritmi“.

Primjeri i rješenja problema preuzeti su od zvaničnika Opcije objedinjenog državnog ispita. Pogledajmo kako se takvi zadaci rješavaju.

Dat log 2 (2x-1) = 4. Rješenje:
prepišimo izraz, pojednostavljujući ga malo log 2 (2x-1) = 2 2, po definiciji logaritma dobijamo da je 2x-1 = 2 4, dakle 2x = 17; x = 8,5.

  • Najbolje je sve logaritme svesti na istu bazu kako rješenje ne bi bilo glomazno i ​​zbunjujuće.
  • Svi izrazi pod predznakom logaritma su označeni kao pozitivni, stoga, kada se eksponent izraza koji je pod predznakom logaritma i kao njegova baza izvadi kao množitelj, izraz koji ostaje pod logaritmom mora biti pozitivan.

Priprema za završni ispit iz matematike uključuje važan dio - “Logaritmi”. Zadaci iz ove teme obavezno su sadržani u Jedinstvenom državnom ispitu. Iskustvo iz prethodnih godina pokazuje da su logaritamske jednačine mnogim školarcima izazivale poteškoće. Stoga učenici sa različitim nivoima obuke moraju razumjeti kako pronaći tačan odgovor i brzo se nositi s njima.

Uspješno položite ispit za sertifikaciju koristeći obrazovni portal Shkolkovo!

Kada se pripremaju za Jedinstveni državni ispit, maturantima je potreban pouzdan izvor koji pruža najpotpunije i najtačnije informacije za uspješno rješavanje testnih zadataka. Međutim, udžbenik nije uvijek pri ruci, a traženje potrebnih pravila i formula na internetu često traje.

Obrazovni portal Shkolkovo vam omogućava da se pripremite za Jedinstveni državni ispit bilo gdje u bilo koje vrijeme. Naša web stranica nudi najpogodniji pristup ponavljanju i asimilaciji velike količine informacija o logaritmima, kao i sa jednom i nekoliko nepoznatih. Počnite s jednostavnim jednadžbama. Ako se s njima nosite bez poteškoća, prijeđite na složenije. Ako imate problema s rješavanjem određene nejednakosti, možete je dodati u svoje favorite kako biste joj se kasnije mogli vratiti.

Možete pronaći potrebne formule za dovršenje zadatka, ponavljanje posebnih slučajeva i metode za izračunavanje korijena standardne logaritamske jednadžbe gledajući odjeljak „Teorijska pomoć“. Učitelji Školkova prikupili su, sistematizovali i predstavili sve materijale neophodne za uspješno polaganje u najjednostavnijem i najrazumljivijem obliku.

Kako biste se lakše nosili sa zadacima bilo koje složenosti, na našem portalu možete se upoznati s rješenjem nekih standardnih logaritamskih jednadžbi. Da biste to učinili, idite na odjeljak "Katalozi". Predstavljamo veliki broj primjere, uključujući jednadžbe nivo profila Jedinstveni državni ispit iz matematike.

Učenici iz škola širom Rusije mogu koristiti naš portal. Da biste započeli nastavu, jednostavno se registrirajte u sistemu i počnite rješavati jednačine. Da biste konsolidirali rezultate, savjetujemo vam da se svakodnevno vraćate na web stranicu Shkolkovo.


primjeri:

\(\log_(2)(⁡x) = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡((x^2-3))=\log_3⁡((2x))\)
\(\log_(x+1)((x^2+3x-7))=2\)
\(\lg^2⁡((x+1))+10=11 \lg⁡((x+1))\)

Kako riješiti logaritamske jednadžbe:

Kada rješavate logaritamsku jednačinu, trebali biste nastojati da je transformirate u oblik \(\log_a⁡(f(x))=\log_a⁡(g(x))\), a zatim napravite prijelaz na \(f(x) )=g(x) \).

\(\log_a⁡(f(x))=\log_a⁡(g(x))\) \(⇒\) \(f(x)=g(x)\).


primjer:\(\log_2⁡(x-2)=3\)

Rješenje:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
pregled:\(10>2\) - pogodno za DL
odgovor:\(x=10\)

ODZ:
\(x-2>0\)
\(x>2\)

Veoma važno! Ovaj prelaz se može izvršiti samo ako:

Napisali ste za originalnu jednačinu, a na kraju ćete provjeriti da li su pronađene uključene u DL. Ako se to ne učini, mogu se pojaviti dodatni korijeni, što znači pogrešnu odluku.

Broj (ili izraz) s lijeve i desne strane je isti;

Logaritmi s lijeve i desne strane su "čisti", odnosno ne bi trebalo biti množenja, dijeljenja itd. – samo pojedinačni logaritmi sa obe strane znaka jednakosti.

Na primjer:

Imajte na umu da se jednadžbe 3 i 4 mogu lako riješiti primjenom potrebnih svojstava logaritama.

Primjer . Riješite jednačinu \(2\log_8⁡x=\log_8⁡2.5+\log_8⁡10\)

Rješenje :

Napišimo ODZ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2.5+\log_8⁡10\) ODZ: \(x>0\)

Lijevo ispred logaritma je koeficijent, desno je zbir logaritama. Ovo nam smeta. Pomerimo dva u eksponent \(x\) prema svojstvu: \(n \log_b(⁡a)=\log_b⁡(a^n)\). Predstavimo zbir logaritama kao jedan logaritam prema svojstvu: \(\log_a⁡b+\log_a⁡c=\log_a(⁡bc)\)

\(\log_8⁡(x^2)=\log_8⁡25\)

Sveli smo jednačinu na oblik \(\log_a⁡(f(x))=\log_a⁡(g(x))\) i zapisali ODZ, što znači da možemo preći na oblik \(f(x) =g(x)\ ).

Desilo se. Riješimo to i dobijemo korijene.

\(x_1=5\) \(x_2=-5\)

Provjeravamo da li su korijeni prikladni za ODZ. Da bismo to učinili, u \(x>0\) umjesto \(x\) zamjenjujemo \(5\) i \(-5\). Ova operacija se može izvesti oralno.

\(5>0\), \(-5>0\)

Prva nejednakost je tačna, druga nije. To znači da je \(5\) korijen jednadžbe, ali \(-5\) nije. Zapisujemo odgovor.

Odgovori : \(5\)


Primjer : Riješite jednačinu \(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\)

Rješenje :

Napišimo ODZ: \(x>0\).

\(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\) ODZ: \(x>0\)

Tipična jednačina riješena korištenjem . Zamijenite \(\log_2⁡x\) sa \(t\).

\(t=\log_2⁡x\)

Dobili smo uobičajeni. Tražimo njegove korijene.

\(t_1=2\) \(t_2=1\)

Izrada obrnute zamjene

\(\log_2(⁡x)=2\) \(\log_2(⁡x)=1\)

Transformišemo desne strane, predstavljajući ih kao logaritme: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) i \(1=\log_2⁡2\)

\(\log_2(⁡x)=\log_2⁡4\) \(\log_2(⁡x)=\log_2⁡2 \)

Sada su naše jednačine \(\log_a⁡(f(x))=\log_a⁡(g(x))\), i možemo preći na \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Provjeravamo podudarnost korijena ODZ-a. Da biste to učinili, zamijenite \(4\) i \(2\) u nejednačinu \(x>0\) umjesto \(x\).

\(4>0\) \(2>0\)

Obje nejednakosti su tačne. To znači da su i \(4\) i \(2\) korijeni jednadžbe.

Odgovori : \(4\); \(2\).