Meni
Besplatno
Dom  /  Vrste staračkih pjega/ Kako naučiti rješavati složene derivate. Pravilo za razlikovanje složene funkcije

Kako naučiti rješavati složene derivate. Pravilo za razlikovanje složene funkcije

Složeni derivati. Logaritamski izvod.
Derivat snage eksponencijalna funkcija

Nastavljamo da poboljšavamo našu tehniku ​​diferencijacije. U ovoj lekciji ćemo konsolidirati materijal koji smo obradili, pogledati složenije derivacije, a također ćemo se upoznati s novim tehnikama i trikovima za pronalaženje izvoda, posebno s logaritamskim izvodom.

Onim čitaocima koji imaju nizak nivo pripreme, trebali biste pogledati članak Kako pronaći derivat? Primjeri rješenja, što će vam omogućiti da podignete svoje vještine gotovo od nule. Zatim morate pažljivo proučiti stranicu Derivat kompleksne funkcije, razumjeti i riješiti Sve primjere koje sam naveo. Ova lekcija je logično treća po redu, a nakon što je savladate, pouzdano ćete razlikovati prilično složene funkcije. Nepoželjno je zauzimati stav „Gdje drugdje? Da, dosta je!”, jer su svi primjeri i rješenja preuzeti iz stvarnosti testovi i često se susreću u praksi.

Počnimo s ponavljanjem. Na lekciji Derivat kompleksne funkcije Pogledali smo niz primjera s detaljnim komentarima. Tokom proučavanja diferencijalnog računa i drugih sekcija matematička analiza– morat ćete vrlo često razlikovati, a nije uvijek zgodno (i nije uvijek neophodno) detaljno opisati primjere. Stoga ćemo vježbati pronalaženje izvedenica usmeno. Najprikladniji "kandidati" za to su derivati ​​najjednostavnijih složenih funkcija, na primjer:

Prema pravilu diferencijacije složenih funkcija :

Prilikom izučavanja drugih matan tema u budućnosti, ovako detaljan zapis najčešće nije potreban, pretpostavlja se da student zna pronaći takve derivate na autopilotu. Zamislimo da je u 3 sata ujutro bilo a telefonski poziv, a prijatan glas upita: "Koja je derivacija tangenta dva X-a?" Ovo bi trebalo da bude praćeno skoro trenutnim i ljubaznim odgovorom: .

Prvi primjer će odmah biti namijenjen za samostalno rješenje.

Primjer 1

Pronađi sljedeće izvedenice usmeno, u jednoj radnji, na primjer: . Za završetak zadatka potrebno je samo koristiti tablica izvoda elementarnih funkcija(ako se još niste sjetili). Ako imate bilo kakvih poteškoća, preporučujem da ponovo pročitate lekciju Derivat kompleksne funkcije.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Odgovori na kraju lekcije

Složeni derivati

Nakon preliminarne artiljerijske pripreme, primjeri sa 3-4-5 ugniježđenja funkcija bit će manje zastrašujući. Sljedeća dva primjera nekome mogu izgledati komplikovana, ali ako ih shvatite (neko će patiti), onda će gotovo sve ostalo u diferencijalnom računu izgledati kao dječja šala.

Primjer 2

Pronađite izvod funkcije

Kao što je već napomenuto, pri pronalaženju derivacije kompleksne funkcije, prije svega, to je neophodno U redu RAZUMIJETE svoja ulaganja. U slučajevima kada postoje sumnje, podsjećam vas na korisnu tehniku: uzimamo eksperimentalnu vrijednost “x”, na primjer, i pokušavamo (mentalno ili na nacrtu) zamijeniti ovu vrijednost u “užasan izraz”.

1) Prvo trebamo izračunati izraz, što znači da je zbir najdublje ugrađivanje.

2) Zatim morate izračunati logaritam:

4) Zatim izrežite kosinus na kocku:

5) U petom koraku razlika:

6) I na kraju, najspoljnija funkcija je Kvadratni korijen:

Formula za diferenciranje složene funkcije će se koristiti u obrnutim redosledom, od najudaljenije funkcije do najunutarnje. Odlučujemo:

Izgleda da nema grešaka...

(1) Uzmite izvod kvadratnog korijena.

(2) Izvod razlike uzimamo pomoću pravila

(3) Derivat trojke je nula. U drugom članu uzimamo derivaciju stepena (kocke).

(4) Uzmimo derivaciju kosinusa.

(5) Uzmimo izvod logaritma.

(6) I konačno, uzimamo derivaciju najdubljeg ugrađivanja.

Možda izgleda preteško, ali ovo nije najbrutalniji primjer. Uzmite, na primjer, kolekciju Kuznjecova i cijenit ćete svu ljepotu i jednostavnost analiziranog derivata. Primijetio sam da vole da daju sličnu stvar na ispitu kako bi provjerili da li student razumije kako pronaći izvod kompleksne funkcije ili ne razumije.

Sljedeći primjer možete sami riješiti.

Primjer 3

Pronađite izvod funkcije

Savjet: Prvo primjenjujemo pravila linearnosti i pravilo diferencijacije proizvoda

Potpuno rješenje i odgovor na kraju lekcije.

Vrijeme je da pređete na nešto manje i ljepše.
Nije neuobičajeno da primjer prikazuje proizvod ne dvije, već tri funkcije. Kako pronaći derivaciju proizvoda tri faktora?

Primjer 4

Pronađite izvod funkcije

Prvo pogledamo, da li je moguće pretvoriti proizvod tri funkcije u proizvod dvije funkcije? Na primjer, ako imamo dva polinoma u proizvodu, onda bismo mogli otvoriti zagrade. Ali u primjeru koji se razmatra, sve funkcije su različite: stepen, eksponent i logaritam.

U takvim slučajevima je neophodno sekvencijalno primijeniti pravilo diferencijacije proizvoda dvaput

Trik je u tome što sa “y” označavamo proizvod dvije funkcije: , a sa “ve” označavamo logaritam: . Zašto se to može uraditi? Da li je zaista – ovo nije proizvod dva faktora i pravilo ne funkcionira?! Nema ništa komplikovano:

Sada preostaje primijeniti pravilo po drugi put u zagradu:

Možete se i uvrnuti i staviti nešto van zagrada, ali u ovom slučaju je bolje ostaviti odgovor upravo u ovom obliku - lakše će se provjeriti.

Razmatrani primjer se može riješiti na drugi način:

Oba rješenja su apsolutno ekvivalentna.

Primjer 5

Pronađite izvod funkcije

Ovo je primjer za nezavisno rješenje; u uzorku se rješava prvom metodom.

Hajde da razmotrimo slični primjeri sa razlomcima.

Primjer 6

Pronađite izvod funkcije

Ovdje možete doći na nekoliko načina:

ili ovako:

Ali rješenje će biti napisano kompaktnije ako prvo upotrijebimo pravilo diferencijacije količnika , uzimajući za cijeli brojnik:

U principu, primjer je riješen, a ako se ostavi kako jeste, neće biti greške. Ali ako imate vremena, uvijek je preporučljivo provjeriti nacrt kako biste vidjeli da li se odgovor može pojednostaviti? Svedimo izraz brojnika na zajednički nazivnik i oslobodimo se trospratne frakcije:

Nedostatak dodatnih pojednostavljenja je u tome što postoji rizik od greške ne pri pronalaženju derivacije, već prilikom banalnih školskih transformacija. S druge strane, nastavnici često odbacuju zadatak i traže da se „spomene” izvedenica.

Jednostavniji primjer koji možete sami riješiti:

Primjer 7

Pronađite izvod funkcije

Nastavljamo da savladavamo metode pronalaženja derivacije, a sada ćemo razmotriti tipičan slučaj kada se "strašni" logaritam predlaže za diferencijaciju

Primjer 8

Pronađite izvod funkcije

Ovdje možete ići daleko, koristeći pravilo za razlikovanje složene funkcije:

Ali već prvi korak vas odmah uranja u malodušnost - morate uzeti neugodnu izvedenicu od frakciona snaga, a zatim i iz razlomka.

Zbog toga prije kako uzeti derivaciju "sofisticiranog" logaritma, prvo se pojednostavljuje korištenjem dobro poznatih školskih svojstava:



! Ako imate pri ruci bilježnicu za vježbanje, kopirajte ove formule direktno tamo. Ako nemate svesku, kopirajte je na komad papira, jer će se preostali primjeri lekcije vrtjeti oko ovih formula.

Samo rješenje se može napisati otprilike ovako:

Transformirajmo funkciju:

Pronalaženje derivata:

Prethodno pretvaranje same funkcije uvelike je pojednostavilo rješenje. Stoga, kada se sličan logaritam predlaže za diferencijaciju, uvijek je preporučljivo da ga „razbijete“.

A sada nekoliko jednostavnih primjera koje možete sami riješiti:

Primjer 9

Pronađite izvod funkcije

Primjer 10

Pronađite izvod funkcije

Sve transformacije i odgovori nalaze se na kraju lekcije.

Logaritamski izvod

Ako je derivat logaritama tako slatka muzika, onda se postavlja pitanje: da li je u nekim slučajevima moguće organizovati logaritam veštački? Može! Čak i neophodno.

Primjer 11

Pronađite izvod funkcije

Nedavno smo pogledali slične primjere. sta da radim? Možete uzastopno primijeniti pravilo diferencijacije količnika, a zatim pravilo diferencijacije proizvoda. Nedostatak ove metode je što na kraju dobijete ogroman trospratni dio, s kojim uopće ne želite da se bavite.

Ali u teoriji i praksi postoji tako divna stvar kao što je logaritamski izvod. Logaritmi se mogu umjetno organizirati tako što će se "okačiti" na obje strane:

Sada morate što je više moguće „dezintegrirati“ logaritam desne strane (formule pred vašim očima?). Opisaću ovaj proces veoma detaljno:

Počnimo s diferencijacijom.
Oba dijela zaključujemo pod udarom:

Izvedba desne strane je prilično jednostavna, neću je komentirati, jer ako čitate ovaj tekst, trebali biste moći samopouzdano upravljati njime.

Šta je sa lijevom stranom?

Na lijevoj strani imamo složena funkcija. Predviđam pitanje: “Zašto, ima li jedno slovo “Y” ispod logaritma?”

Činjenica je da ova "igra jednog slova" - JE SAMA FUNKCIJA(ako nije baš jasno, pogledajte članak Derivat funkcije specificirane implicitno). Dakle, logaritam je eksterna funkcija, a "y" je interna funkcija. I koristimo pravilo za razlikovanje složene funkcije :

Na lijevoj strani, kao magijom čarobni štapić imamo derivat. Zatim, prema pravilu proporcije, prenosimo "y" iz nazivnika lijeve strane na vrh desne strane:

A sada da se prisjetimo o kakvoj smo "igračkoj" funkciji govorili tokom diferencijacije? Pogledajmo stanje:

Konačan odgovor:

Primjer 12

Pronađite izvod funkcije

Ovo je primjer koji možete sami riješiti. Primjer dizajna ovog tipa na kraju lekcije.

Koristeći logaritamsku derivaciju bilo je moguće riješiti bilo koji od primjera br. 4-7, druga stvar je što su tamo funkcije jednostavnije, a, možda, upotreba logaritamskog izvoda nije baš opravdana.

Derivat eksponencijalne funkcije stepena

Ovu funkciju još nismo razmatrali. Eksponencijalna funkcija je funkcija za koju i stepen i baza zavise od "x". Klasičan primjer koji će vam biti dat u bilo kojem udžbeniku ili predavanju:

Kako pronaći izvod eksponencijalne funkcije stepena?

Neophodno je koristiti tehniku ​​o kojoj smo upravo govorili - logaritamski izvod. Objesite logaritme na obje strane:

Po pravilu, na desnoj strani stepen se vadi ispod logaritma:

Kao rezultat, na desnoj strani imamo proizvod dvije funkcije, koje će se razlikovati prema standardnoj formuli .

Pronalazimo derivaciju; da bismo to učinili, stavljamo oba dijela ispod poteza:

Dalje radnje su jednostavne:

konačno:

Ako bilo koja konverzija nije sasvim jasna, pažljivo pročitajte objašnjenja primjera #11.

U praktičnim zadacima, stepen eksponencijalna funkcija će uvijek biti složenija od razmatranog primjera predavanja.

Primjer 13

Pronađite izvod funkcije

Koristimo logaritamski izvod.

Na desnoj strani imamo konstantu i proizvod dva faktora – “x” i “logaritma logaritma x” (drugi logaritam je ugniježđen ispod logaritma). Prilikom diferenciranja, kao što se sjećamo, bolje je odmah pomaknuti konstantu iz predznaka derivacije kako ne bi smetala; i, naravno, primjenjujemo poznato pravilo :


Kao što vidite, algoritam za korištenje logaritamske derivacije ne sadrži nikakve posebne trikove ili trikove, a pronalaženje izvoda eksponencijalne funkcije potencijskog tipa obično nije povezano s "mučenjem".

Prvi nivo

Derivat funkcije. Sveobuhvatni vodič (2019)

Zamislimo ravan put koji prolazi kroz brdsko područje. Odnosno, ide gore-dolje, ali ne skreće desno ili lijevo. Ako je os usmjerena vodoravno duž ceste i okomito, tada će linija ceste biti vrlo slična grafu neke kontinuirane funkcije:

Osa je određeni nivo nulte nadmorske visine; u životu kao nju koristimo nivo mora.

Kako se krećemo naprijed takvim putem, tako se krećemo gore ili dolje. Možemo reći i: kada se promijeni argument (kretanje duž apscisne ose), mijenja se vrijednost funkcije (kretanje duž ose ordinate). Sada razmislimo o tome kako odrediti "strminu" našeg puta? Kakva bi ovo mogla biti vrijednost? Vrlo je jednostavno: koliko će se visina promijeniti pri kretanju naprijed na određenu udaljenost. Zaista, na različitim dionicama puta, krećući se naprijed (duž x-ose) za jedan kilometar, mi ćemo se podizati ili spuštati za različite količine metara u odnosu na nivo mora (duž ordinatne ose).

Označimo napredak (čitaj "delta x").

Grčko slovo (delta) se obično koristi u matematici kao prefiks koji znači "promjena". To jest - ovo je promjena količine, - promjena; šta je onda? Tako je, promjena veličine.

Važno: izraz je jedna cjelina, jedna varijabla. Nikada ne odvajajte “delta” od “x” ili bilo koje drugo slovo! To je, na primjer, .

Dakle, krenuli smo naprijed, horizontalno, mimo. Ako uporedimo liniju puta sa grafom funkcije, kako onda označavamo uspon? Svakako, . Odnosno, kako idemo naprijed, dižemo se više.

Vrijednost je lako izračunati: ako smo na početku bili na visini, a nakon kretanja našli smo se na visini, onda. Ako je krajnja tačka niža od početne, bit će negativna - to znači da se ne penjemo, već se spuštamo.

Vratimo se na "strminu": ovo je vrijednost koja pokazuje koliko (strmo) raste visina kada se kreće naprijed za jednu jedinicu udaljenosti:

Pretpostavimo da se na nekom dijelu puta, pri kretanju naprijed za kilometar, put uzdiže za kilometar. Tada je nagib na ovom mjestu jednak. A ako se put, dok se kreće naprijed za m, spusti za km? Tada je nagib jednak.

Pogledajmo sada vrh brda. Ako uzmete početak dionice pola kilometra prije vrha, a kraj pola kilometra nakon njega, možete vidjeti da je visina gotovo ista.

Odnosno, prema našoj logici, ispada da je nagib ovdje gotovo jednak nuli, što očito nije tačno. Na udaljenosti od nekoliko kilometara mnogo toga se može promijeniti. Potrebno je razmotriti manje površine radi adekvatnije i preciznije procjene strmine. Na primjer, ako izmjerite promjenu visine dok se krećete jedan metar, rezultat će biti mnogo precizniji. Ali ni ta preciznost nam možda neće biti dovoljna – uostalom, ako postoji stub na sredini puta, možemo ga jednostavno proći. Koju udaljenost onda da izaberemo? Centimetar? Milimetar? Manje je bolje!

IN pravi zivot Mjerenje udaljenosti do najbližeg milimetra je više nego dovoljno. Ali matematičari uvijek teže savršenstvu. Stoga je koncept izmišljen infinitezimal, to jest, apsolutna vrijednost je manja od bilo kojeg broja koji možemo imenovati. Na primjer, kažete: trilionti dio! Koliko manje? I podijelite ovaj broj sa - i bit će još manje. I tako dalje. Ako želimo da zapišemo da je veličina beskonačno mala, pišemo ovako: (čitamo „x teži nuli“). Veoma je važno razumjeti da ovaj broj nije nula! Ali vrlo blizu tome. To znači da možete podijeliti s tim.

Koncept suprotan infinitezimalnom je beskonačno velik (). Vjerovatno ste već naišli na to kada ste radili na nejednačinama: ovaj broj je modulo veći od bilo kojeg broja kojeg možete zamisliti. Ako dođete do najvećeg mogućeg broja, samo ga pomnožite sa dva i dobit ćete još veći broj. I dalje beskonačnost Nadalješta će se desiti. U stvari, beskonačno veliki i beskonačno mali su inverzni jedno drugom, to jest at, i obrnuto: at.

Sada se vratimo na naš put. Idealno izračunati nagib je nagib izračunat za beskonačno mali segment puta, odnosno:

Napominjem da će s beskonačno malim pomakom promjena visine također biti beskonačno mala. Ali da vas podsjetim da beskonačno malo ne znači jednak nuli. Ako podijelite beskonačno male brojeve jedni s drugima, možete dobiti potpuno običan broj, na primjer, . To jest, jedna mala vrijednost može biti tačno puta veća od druge.

čemu sve ovo? Put, strmina... Ne idemo na auto rally, ali predajemo matematiku. A u matematici je sve potpuno isto, samo se drugačije zove.

Koncept derivata

Derivat funkcije je omjer prirasta funkcije i inkrementa argumenta za beskonačno mali prirast argumenta.

Postepeno u matematici nazivaju promjenom. Poziva se stepen do kojeg se argument () mijenja dok se kreće duž ose povećanje argumenta i označen je. Koliko se funkcija (visina) promijenila pri pomicanju naprijed duž ose za rastojanje naziva se povećanje funkcije i određen je.

Dakle, derivacija funkcije je omjer kada. Izvod označavamo istim slovom kao i funkcija, samo sa prostim brojem u gornjem desnom uglu: ili jednostavno. Dakle, napišimo formulu derivacije koristeći ove oznake:

Kao iu analogiji sa cestom, i ovdje kada se funkcija povećava, derivacija je pozitivna, a kada se smanjuje negativna.

Može li izvod biti jednak nuli? Svakako. Na primjer, ako vozimo po ravnom horizontalnom putu, strmina je nula. I istina je, visina se uopšte ne menja. Tako je i sa izvodom: izvod konstantne funkcije (konstante) jednak je nuli:

budući da je prirast takve funkcije jednak nuli za bilo koju.

Sjetimo se primjera na vrhu brda. Pokazalo se da je moguće rasporediti krajeve segmenta na suprotnim stranama vrha na takav način da visina na krajevima bude ista, odnosno da je segment paralelan s osi:

Ali veliki segmenti su znak netačnog mjerenja. Naš segment ćemo podići paralelno sa sobom, a zatim će se njegova dužina smanjiti.

Na kraju, kada smo beskonačno blizu vrha, dužina segmenta će postati beskonačno mala. Ali u isto vrijeme, ostao je paralelan s osom, odnosno razlika u visinama na njegovim krajevima jednaka je nuli (ne teži, već je jednaka). Dakle, derivat

Ovo se može shvatiti ovako: kada stojimo na samom vrhu, mali pomak ulijevo ili udesno neznatno mijenja našu visinu.

Postoji i čisto algebarsko objašnjenje: lijevo od vrha funkcija raste, a desno opada. Kao što smo ranije saznali, kada se funkcija povećava, izvod je pozitivan, a kada se smanjuje negativan. Ali mijenja se glatko, bez skokova (pošto put nigdje naglo ne mijenja nagib). Dakle, između negativnih i pozitivne vrijednosti sigurno mora postojati. To će biti tamo gdje se funkcija niti povećava niti smanjuje - u točki vrha.

Isto vrijedi i za korito (područje gdje se funkcija s lijeve strane smanjuje, a na desnoj povećava):

Još malo o inkrementima.

Dakle, mijenjamo argument u veličinu. Mi mijenjamo od koje vrijednosti? Šta je to (argument) sada postalo? Možemo izabrati bilo koju tačku, a sada ćemo plesati iz nje.

Zamislite tačku sa koordinatama. Vrijednost funkcije u njemu je jednaka. Zatim radimo isti inkrement: povećavamo koordinatu za. Šta je sada argument? Vrlo jednostavno: . Koja je sada vrijednost funkcije? Gdje ide argument, ide i funkcija: . Šta je sa povećanjem funkcije? Ništa novo: ovo je još uvijek iznos za koji se funkcija promijenila:

Vježbajte pronalaženje inkremenata:

  1. Pronađite prirast funkcije u tački kada je prirast argumenta jednak.
  2. Isto vrijedi i za funkciju u jednoj tački.

rješenja:

U različitim točkama s istim prirastom argumenta, inkrement funkcije će biti različit. To znači da je derivacija u svakoj tački različita (o tome smo razgovarali na samom početku - strmina puta je različita u različitim tačkama). Stoga, kada pišemo derivat, moramo naznačiti u kojoj točki:

Funkcija napajanja.

Funkcija snage je funkcija u kojoj je argument u određenoj mjeri (logičan, zar ne?).

Štaviše - u bilo kojoj mjeri: .

Najjednostavniji slučaj je kada je eksponent:

Nađimo njen derivat u jednoj tački. Prisjetimo se definicije derivata:

Dakle, argument se mijenja od do. Koliki je prirast funkcije?

Prirast je ovo. Ali funkcija u bilo kojoj tački jednaka je svom argumentu. Zbog toga:

Izvod je jednak:

Derivat od je jednak:

b) Sada razmotrite kvadratna funkcija (): .

A sada da se prisjetimo toga. To znači da se vrijednost prirasta može zanemariti, jer je beskonačno mala, a samim tim i beznačajna na pozadini drugog pojma:

Dakle, došli smo do još jednog pravila:

c) Nastavljamo logički niz: .

Ovaj izraz se može pojednostaviti na različite načine: otvoriti prvu zagradu koristeći formulu za skraćeno množenje kocke zbira, ili faktorizirati cijeli izraz koristeći formulu razlike kocki. Pokušajte to učiniti sami koristeći bilo koju od predloženih metoda.

Dakle, dobio sam sledeće:

I opet da se prisjetimo toga. To znači da možemo zanemariti sve pojmove koji sadrže:

Dobijamo: .

d) Slična pravila se mogu dobiti za velike snage:

e) Ispada da se ovo pravilo može generalizirati za funkciju stepena s proizvoljnim eksponentom, čak ni cijelim brojem:

(2)

Pravilo se može formulirati riječima: "stepen se iznosi naprijed kao koeficijent, a zatim se smanjuje za ."

Ovo pravilo ćemo dokazati kasnije (skoro na samom kraju). Pogledajmo sada nekoliko primjera. Pronađite izvod funkcija:

  1. (na dva načina: formulom i korištenjem definicije derivacije - izračunavanjem prirasta funkcije);
  1. . Vjerovali ili ne, ovo je funkcija snage. Ako imate pitanja poput „Kako je ovo? Gdje je diploma?”, zapamtite temu “”!
    Da, da, korijen je također stepen, samo razlomak: .
    To znači da je naš kvadratni korijen samo potencija s eksponentom:
    .
    Izvod tražimo koristeći nedavno naučenu formulu:

    Ako u ovom trenutku ponovo postane nejasno, ponovite temu “”!!! (otprilike stepen sa negativnim eksponentom)

  2. . Sada eksponent:

    A sada kroz definiciju (jeste li već zaboravili?):
    ;
    .
    Sada, kao i obično, zanemarujemo pojam koji sadrži:
    .

  3. . Kombinacija prethodnih slučajeva: .

Trigonometrijske funkcije.

Ovdje ćemo koristiti jednu činjenicu iz više matematike:

Sa izrazom.

Dokaz ćete naučiti na prvoj godini instituta (a da biste tamo stigli, potrebno je dobro položiti Jedinstveni državni ispit). Sada ću to samo grafički prikazati:

Vidimo da kada funkcija ne postoji - tačka na grafu je izrezana. Ali što je bliže vrijednosti, to je funkcija bliža. To je ono što „cilj“.

Osim toga, ovo pravilo možete provjeriti pomoću kalkulatora. Da, da, ne stidite se, uzmite kalkulator, nismo još na Jedinstvenom državnom ispitu.

Dakle, pokušajmo: ;

Ne zaboravite da prebacite svoj kalkulator u način rada radijana!

itd. Vidimo da što je manji, to je bliža vrijednost omjera.

a) Razmotrite funkciju. Kao i obično, pronađimo njegov prirast:

Pretvorimo razliku sinusa u proizvod. Da bismo to učinili, koristimo formulu (zapamtite temu “”): .

Sada derivat:

Napravimo zamjenu: . Tada je za infinitezimalno također infinitezimalno: . Izraz za ima oblik:

I sada se toga sećamo sa izrazom. I takođe, šta ako se beskonačno mala količina može zanemariti u zbiru (to jest, at).

Dakle, dobijamo sledeće pravilo: derivacija sinusa je jednaka kosinsu:

Ovo su osnovne (“tabelarne”) izvedenice. Evo ih na jednoj listi:

Kasnije ćemo im dodati još nekoliko, ali ovo su najvažnije, jer se najčešće koriste.

vježbajte:

  1. Pronađite derivaciju funkcije u tački;
  2. Pronađite izvod funkcije.

rješenja:

  1. Prvo, pronađimo derivat u opšti pogled, a zatim zamijenite njegovu vrijednost:
    ;
    .
  2. Ovdje imamo nešto slično funkcija snage. Pokušajmo je dovesti do toga
    normalan pogled:
    .
    Odlično, sada možete koristiti formulu:
    .
    .
  3. . Eeeeeee….. Šta je ovo????

Dobro, u pravu ste, još ne znamo kako pronaći takve derivate. Ovdje imamo kombinaciju nekoliko vrsta funkcija. Da biste radili s njima, morate naučiti još nekoliko pravila:

Eksponent i prirodni logaritam.

U matematici postoji funkcija čiji je izvod za bilo koju vrijednost u isto vrijeme jednak vrijednosti same funkcije. Zove se “eksponent” i eksponencijalna je funkcija

Osnova ove funkcije je konstanta - ona je beskonačna decimalni, odnosno iracionalan broj (kao što je). Zove se "Eulerov broj", zbog čega je označen slovom.

Dakle, pravilo:

Vrlo lako za pamćenje.

Pa, da ne idemo daleko, pogledajmo to odmah inverzna funkcija. Koja je funkcija inverzna eksponencijalnoj funkciji? logaritam:

U našem slučaju, osnova je broj:

Takav logaritam (tj. logaritam s bazom) naziva se „prirodnim“, a za njega koristimo posebnu notaciju: umjesto toga pišemo.

Čemu je to jednako? Naravno, .

Izvod prirodnog logaritma je također vrlo jednostavan:

primjeri:

  1. Pronađite izvod funkcije.
  2. Što je derivacija funkcije?

odgovori: Izlagač i prirodni logaritam- funkcije su jedinstveno jednostavne u smislu izvoda. Eksponencijalne i logaritamske funkcije s bilo kojom drugom bazom imat će drugačiji izvod, koji ćemo analizirati kasnije, nakon što prođemo kroz pravila diferencijacije.

Pravila diferencijacije

Pravila čega? Opet novi mandat, opet?!...

Diferencijacija je proces pronalaženja derivacije.

To je sve. Kako još jednom riječju možete nazvati ovaj proces? Nije derivacija... Matematičari diferencijal nazivaju istim prirastom funkcije u. Ovaj izraz dolazi od latinskog differentia - razlika. Evo.

Prilikom izvođenja svih ovih pravila, koristit ćemo dvije funkcije, na primjer, i. Također će nam trebati formule za njihove priraštaje:

Postoji ukupno 5 pravila.

Konstanta se izvlači iz predznaka derivacije.

Ako - neki konstantni broj (konstanta), onda.

Očigledno, ovo pravilo radi i za razliku: .

Dokažimo to. Neka bude, ili jednostavnije.

Primjeri.

Pronađite derivate funkcija:

  1. u jednom trenutku;
  2. u jednom trenutku;
  3. u jednom trenutku;
  4. u tački.

rješenja:

  1. (izvod je isti u svim tačkama, budući da je ovo linearna funkcija, sjećaš se?);

Derivat proizvoda

Ovdje je sve slično: uvedemo novu funkciju i pronađemo njen prirast:

Derivat:

primjeri:

  1. Naći izvode funkcija i;
  2. Pronađite izvod funkcije u tački.

rješenja:

Derivat eksponencijalne funkcije

Sada je vaše znanje dovoljno da naučite kako pronaći derivaciju bilo koje eksponencijalne funkcije, a ne samo eksponenata (jeste li već zaboravili šta je to?).

Dakle, gdje je neki broj.

Već znamo derivaciju funkcije, pa pokušajmo svesti našu funkciju na novu bazu:

Za ovo ćemo koristiti jednostavno pravilo: . onda:

Pa, upalilo je. Sada pokušajte pronaći izvod i ne zaboravite da je ova funkcija složena.

Desilo se?

Evo, uvjerite se sami:

Ispostavilo se da je formula vrlo slična izvedenici eksponenta: onakva kakva je bila, ostala je ista, pojavio se samo faktor, koji je samo broj, ali ne i varijabla.

primjeri:
Pronađite izvode funkcija:

odgovori:

Ovo je samo broj koji se ne može izračunati bez kalkulatora, odnosno ne može se više zapisati u jednostavnom obliku. Stoga ga ostavljamo u ovom obliku u odgovoru.

Derivat logaritamske funkcije

Ovdje je slično: već znate derivaciju prirodnog logaritma:

Stoga, da biste pronašli proizvoljan logaritam s različitom bazom, na primjer:

Ovaj logaritam moramo svesti na bazu. Kako se mijenja baza logaritma? Nadam se da se sjećate ove formule:

Tek sada ćemo umjesto toga napisati:

Imenilac je jednostavno konstanta (konstantan broj, bez varijable). Izvod se dobija vrlo jednostavno:

Derivati ​​eksponencijalnih i logaritamskih funkcija gotovo se nikada ne nalaze u Jedinstvenom državnom ispitu, ali neće biti suvišno poznavati ih.

Derivat kompleksne funkcije.

Šta je "složena funkcija"? Ne, ovo nije logaritam, niti arktangens. Ove funkcije mogu biti teško razumljive (mada ako vam je logaritam težak, pročitajte temu “Logaritmi” i biće vam dobro), ali sa matematičke tačke gledišta, riječ “složeno” ne znači “teško”.

Zamislite malu pokretnu traku: dvoje ljudi sjede i rade neke radnje s nekim predmetima. Na primjer, prvi umota čokoladicu u omot, a drugi je veže trakom. Rezultat je kompozitni predmet: čokoladica umotana i vezana vrpcom. Da biste pojeli čokoladicu, morate učiniti obrnutim koracima obrnutim redoslijedom.

Napravimo sličan matematički cevovod: prvo ćemo pronaći kosinus broja, a zatim kvadrirati rezultirajući broj. Dakle, dat nam je broj (čokolada), ja pronađem njegov kosinus (omotač), a onda kvadriraš ono što sam dobio (zaveži ga vrpcom). Šta se desilo? Funkcija. Ovo je primjer složene funkcije: kada, da bismo pronašli njenu vrijednost, izvršimo prvu akciju direktno s promjenljivom, a zatim drugu akciju s onim što je rezultat prve.

Lako možemo napraviti iste korake obrnutim redoslijedom: prvo ga kvadriraš, a ja onda tražim kosinus rezultirajućeg broja: . Lako je pretpostaviti da će rezultat gotovo uvijek biti drugačiji. Važna karakteristika složenih funkcija: kada se redoslijed radnji promijeni, funkcija se mijenja.

Drugim riječima, složena funkcija je funkcija čiji je argument druga funkcija: .

Za prvi primjer, .

Drugi primjer: (ista stvar). .

Akcija koju radimo posljednja će biti pozvana "vanjsku" funkciju, a radnja izvedena prva - prema tome "interne" funkcije(ovo su neformalni nazivi, koristim ih samo da objasnim gradivo jednostavnim jezikom).

Pokušajte sami odrediti koja je funkcija vanjska, a koja unutrašnja:

odgovori: Razdvajanje unutrašnjih i vanjskih funkcija vrlo je slično mijenjanju varijabli: na primjer, u funkciji

  1. Koju akciju ćemo prvo izvesti? Prvo izračunajmo sinus, pa ga tek onda kockiraj. To znači da je to interna funkcija, ali vanjska.
    A originalna funkcija je njihov sastav: .
  2. Interni: ; eksterno: .
    Ispitivanje: .
  3. Interni: ; eksterno: .
    Ispitivanje: .
  4. Interni: ; eksterno: .
    Ispitivanje: .
  5. Interni: ; eksterno: .
    Ispitivanje: .

Mijenjamo varijable i dobijamo funkciju.

Pa, sada ćemo izvaditi našu čokoladicu i potražiti derivat. Procedura je uvijek obrnuta: prvo tražimo izvod vanjske funkcije, a zatim rezultat množimo s izvodom unutrašnje funkcije. U odnosu na originalni primjer, to izgleda ovako:

Drugi primjer:

Dakle, hajde da konačno formulišemo zvanično pravilo:

Algoritam za pronalaženje derivacije kompleksne funkcije:

Čini se jednostavno, zar ne?

Provjerimo na primjerima:

rješenja:

1) Interni: ;

Vanjski: ;

2) Interni: ;

(Samo nemojte pokušavati da ga isečete do sada! Ništa ne izlazi ispod kosinusa, sjećate se?)

3) Interni: ;

Vanjski: ;

Odmah je jasno da se radi o kompleksnoj funkciji na tri nivoa: na kraju krajeva, ovo je već složena funkcija sama po sebi, a iz nje izvlačimo i korijen, odnosno izvodimo treću radnju (čokoladu stavljamo u omot i sa trakom u aktovci). Ali nema razloga za strah: i dalje ćemo „raspakovati“ ovu funkciju istim redoslijedom kao i obično: od kraja.

Odnosno, prvo razlikujemo korijen, zatim kosinus, pa tek onda izraz u zagradama. A onda sve to pomnožimo.

U takvim slučajevima, zgodno je numerisati radnje. Odnosno, zamislimo šta znamo. Kojim redoslijedom ćemo izvršiti radnje za izračunavanje vrijednosti ovog izraza? Pogledajmo primjer:

Što se radnja izvrši kasnije, to će odgovarajuća funkcija biti „spoljašnja“. Redoslijed radnji je isti kao i prije:

Ovdje je gniježđenje općenito na 4 nivoa. Hajde da odredimo pravac akcije.

1. Radikalni izraz. .

2. Root. .

3. Sinus. .

4. Kvadrat. .

5. Stavljajući sve zajedno:

DERIVAT. UKRATKO O GLAVNIM STVARIMA

Derivat funkcije- omjer povećanja funkcije i inkrementa argumenta za beskonačno mali prirast argumenta:

Osnovni derivati:

Pravila diferencijacije:

Konstanta je uzeta iz predznaka derivacije:

Derivat sume:

Derivat proizvoda:

Derivat količnika:

Derivat kompleksne funkcije:

Algoritam za pronalaženje derivacije kompleksne funkcije:

  1. Definiramo “internu” funkciju i nalazimo njen izvod.
  2. Definiramo “vanjsku” funkciju i nalazimo njen izvod.
  3. Množimo rezultate prve i druge tačke.

Definicija. Neka je funkcija \(y = f(x) \) definirana u određenom intervalu koji sadrži tačku \(x_0\) unutar sebe. Dajmo argumentu inkrement \(\Delta x \) tako da ne napušta ovaj interval. Nađimo odgovarajući prirast funkcije \(\Delta y \) (kada se krećemo od tačke \(x_0 \) do tačke \(x_0 + \Delta x \)) i sastavimo relaciju \(\frac(\Delta y)(\Delta x) \). Ako postoji ograničenje za ovaj omjer na \(\Delta x \rightarrow 0\), tada se navedena granica naziva derivat funkcije\(y=f(x) \) u tački \(x_0 \) i označimo \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Simbol y se često koristi za označavanje izvoda. Imajte na umu da je y" = f(x) nova funkcija, ali prirodno povezana sa funkcijom y = f(x), definiranom u svim točkama x u kojima postoji gornja granica. Ova funkcija se zove ovako: derivacija funkcije y = f(x).

Geometrijsko značenje derivacije je kako slijedi. Ako je moguće nacrtati tangentu na graf funkcije y = f(x) u tački sa apscisom x=a, koja nije paralelna sa y-osi, tada f(a) izražava nagib tangente :
\(k = f"(a)\)

Pošto je \(k = tg(a) \), onda je jednakost \(f"(a) = tan(a) \) tačna.

Protumačimo sada definiciju derivacije sa stanovišta približnih jednakosti. Neka funkcija \(y = f(x)\) ima izvod u određenoj tački \(x\):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
To znači da je blizu tačke x približna jednakost \(\frac(\Delta y)(\Delta x) \approx f"(x)\), tj. \(\Delta y \approx f"(x) \cdot\ Delta x\). Smisaono značenje rezultirajuće približne jednakosti je sljedeće: prirast funkcije je „gotovo proporcionalan“ prirastu argumenta, a koeficijent proporcionalnosti je vrijednost derivacije u dati poen X. Na primjer, za funkciju \(y = x^2\) vrijedi približna jednakost \(\Delta y \approx 2x \cdot \Delta x \). Ako pažljivo analiziramo definiciju derivacije, otkrićemo da ona sadrži algoritam za njeno pronalaženje.

Hajde da to formulišemo.

Kako pronaći derivaciju funkcije y = f(x)?

1. Popravite vrijednost \(x\), pronađite \(f(x)\)
2. Dajte argumentu \(x\) povećanje \(\Delta x\), idite na novu tačku \(x+ \Delta x \), pronađite \(f(x+ \Delta x) \)
3. Pronađite prirast funkcije: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Kreirajte relaciju \(\frac(\Delta y)(\Delta x) \)
5. Izračunajte $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ova granica je derivacija funkcije u tački x.

Ako funkcija y = f(x) ima izvod u tački x, onda se naziva diferencijabilna u tački x. Poziva se postupak za pronalaženje izvoda funkcije y = f(x). diferencijaciju funkcije y = f(x).

Razgovarajmo o sljedećem pitanju: kako su kontinuitet i diferencijabilnost funkcije u nekoj tački međusobno povezani?

Neka je funkcija y = f(x) diferencijabilna u tački x. Tada se tangenta može povući na graf funkcije u tački M(x; f(x)), i, podsjetimo, kutni koeficijent tangente je jednak f"(x). Takav graf se ne može „lomiti“ u tački M, tj. funkcija mora biti kontinuirana u tački x.

To su bili „praktični“ argumenti. Hajde da damo rigoroznije rezonovanje. Ako je funkcija y = f(x) diferencijabilna u tački x, tada vrijedi približna jednakost \(\Delta y \approx f"(x) \cdot \Delta x \). Ako u ovoj jednakosti \(\Delta x \) teži nuli, tada će \(\Delta y \) težiti nuli, a to je uslov za kontinuitet funkcije u tački.

dakle, ako je funkcija diferencijabilna u tački x, tada je u toj tački kontinuirana.

Obrnuta izjava nije tačna. Na primjer: funkcija y = |x| je kontinuirano svuda, posebno u tački x = 0, ali tangenta na graf funkcije u “tački spajanja” (0; 0) ne postoji. Ako se u nekom trenutku tangenta ne može povući na graf funkcije, onda izvod ne postoji u toj tački.

Još jedan primjer. Funkcija \(y=\sqrt(x)\) je kontinuirana na cijeloj brojevnoj pravoj, uključujući u tački x = 0. A tangenta na graf funkcije postoji u bilo kojoj tački, uključujući i tačku x = 0 Ali u ovoj tački tangenta se poklapa sa y-osom, tj. okomita je na osu apscise, njena jednadžba ima oblik x = 0. Koeficijent nagiba takva linija nema, što znači da ni \(f"(0) \) ne postoji

Dakle, upoznali smo se sa novim svojstvom funkcije - diferencijabilnošću. Kako se iz grafa funkcije može zaključiti da je diferencibilna?

Odgovor je zapravo dat gore. Ako je u nekom trenutku moguće povući tangentu na graf funkcije koja nije okomita na osu apscise, tada je funkcija diferencibilna. Ako u nekom trenutku tangenta na graf funkcije ne postoji ili je okomita na osu apscise, tada funkcija nije diferencibilna.

Pravila diferencijacije

Operacija pronalaženja derivacije se zove diferencijaciju. Prilikom izvođenja ove operacije često morate raditi s količnikima, zbrojima, produktima funkcija, kao i "funkcijama funkcija", odnosno složenim funkcijama. Na osnovu definicije derivacije, možemo izvesti pravila diferencijacije koja olakšavaju ovaj rad. Ako je C konstantan broj i f=f(x), g=g(x) su neke diferencibilne funkcije, onda je sljedeće istinito pravila diferencijacije:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Derivat kompleksne funkcije:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Tablica izvoda nekih funkcija

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

I teorema o derivaciji kompleksne funkcije, čija je formulacija sljedeća:

Neka 1) funkcija $u=\varphi (x)$ ima u nekom trenutku $x_0$ izvod $u_(x)"=\varphi"(x_0)$, 2) funkciju $y=f(u)$ imati u odgovarajućoj tački $u_0=\varphi (x_0)$ izvod $y_(u)"=f"(u)$. Tada će kompleksna funkcija $y=f\left(\varphi (x) \right)$ u spomenutoj tački također imati izvod jednak proizvodu izvoda funkcija $f(u)$ i $\varphi ( x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

ili, kraće rečeno: $y_(x)"=y_(u)"\cdot u_(x)"$.

U primjerima u ovom dijelu, sve funkcije imaju oblik $y=f(x)$ (tj. razmatramo samo funkcije jedne varijable $x$). Shodno tome, u svim primjerima izvod $y"$ se uzima u odnosu na varijablu $x$. Da bi se naglasilo da se izvod uzima u odnosu na varijablu $x$, $y"_x$ se često piše umjesto $y "$.

Primjeri br. 1, br. 2 i br. 3 prikazuju detaljan proces za pronalaženje izvoda složenih funkcija. Primjer br. 4 namijenjen je potpunijem razumijevanju tabele izvedenica i ima smisla upoznati se s njom.

Preporučljivo je nakon proučavanja materijala u primjerima br. 1-3 preći na nezavisna odluka primjeri br. 5, br. 6 i br. Primjeri br. 5, br. 6 i br. 7 sadrže kratko rešenje tako da čitalac može provjeriti ispravnost svog rezultata.

Primjer br. 1

Pronađite izvod funkcije $y=e^(\cos x)$.

Moramo pronaći izvod kompleksne funkcije $y"$. Pošto je $y=e^(\cos x)$, onda je $y"=\left(e^(\cos x)\right)"$. nađemo izvod $ \left(e^(\cos x)\right)"$ koristimo formulu br. 6 iz tabele izvoda. Da bismo koristili formulu br. 6, moramo uzeti u obzir da je u našem slučaju $u=\cos x$. Dalje rješenje se sastoji u jednostavnoj zamjeni izraza $\cos x$ umjesto $u$ u formulu br. 6:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Sada treba da nađemo vrednost izraza $(\cos x)"$. Ponovo se okrećemo tabeli derivacija, birajući iz nje formulu br. 10. Zamenivši $u=x$ u formulu br. 10, imamo : $(\cos x)"=-\ sin x\cdot x"$. Sada nastavimo jednakost (1.1), dopunivši je pronađenim rezultatom:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Pošto je $x"=1$, nastavljamo jednakost (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Dakle, iz jednakosti (1.3) imamo: $y"=-\sin x\cdot e^(\cos x)$. Naravno, objašnjenja i međujednakosti se obično preskaču, zapisujući nalaz izvoda u jednom redu, kao u jednakosti (1.3) Dakle, derivacija kompleksne funkcije je pronađena, preostaje samo da zapišemo odgovor.

Odgovori: $y"=-\sin x\cdot e^(\cos x)$.

Primjer br. 2

Pronađite izvod funkcije $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Moramo izračunati izvod $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Za početak, napominjemo da se konstanta (tj. broj 9) može izvaditi iz predznaka derivacije:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \desno)" \tag (2.1) $$

Sada se okrenemo izrazu $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Da bismo lakše odabrali željenu formulu iz tabele izvoda, predstaviću izraz u pitanju u ovom obliku: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Sada je jasno da je potrebno koristiti formulu br. 2, tj. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Zamijenimo $u=\arctg(4\cdot \ln x)$ i $\alpha=12$ u ovu formulu:

Dopunjujući jednakost (2.1) dobijenim rezultatom, imamo:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

U ovoj situaciji često se pravi greška kada rešavač u prvom koraku odabere formulu $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ umesto formule $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Poenta je da derivat eksterne funkcije mora biti prvi. Da biste razumjeli koja će funkcija biti vanjska u odnosu na izraz $\arctg^(12)(4\cdot 5^x)$, zamislite da izračunavate vrijednost izraza $\arctg^(12)(4\cdot 5^) x)$ po nekoj vrijednosti $x$. Prvo ćete izračunati vrijednost $5^x$, a zatim pomnožiti rezultat sa 4 i dobiti $4\cdot 5^x$. Sada uzimamo arktangens iz ovog rezultata, dobijajući $\arctg(4\cdot 5^x)$. Zatim podižemo rezultirajući broj na dvanaesti stepen, dobijajući $\arctg^(12)(4\cdot 5^x)$. Posljednja radnja, tj. povećanje na stepen 12 će biti eksterna funkcija. I upravo od toga moramo početi da tražimo derivaciju, što je učinjeno u jednakosti (2.2).

Sada treba da pronađemo $(\arctg(4\cdot \ln x))"$. Koristimo formulu br. 19 tabele derivata, zamenjujući u nju $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Hajde da malo pojednostavimo rezultirajući izraz, uzimajući u obzir $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Jednakost (2.2) će sada postati:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Ostaje da pronađemo $(4\cdot \ln x)"$. Uzmimo konstantu (tj. 4) iz predznaka derivacije: $(4\cdot \ln x)"=4\cdot (\ln x)" $. Za da bismo pronašli $(\ln x)"$ koristimo formulu br. 8, zamjenjujući $u=x$ u nju: $(\ln x)"=\frac(1)(x)\cdot x "$. Pošto je $x"=1$, onda je $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x ) $ Zamjenom dobijenog rezultata u formulu (2.3) dobijamo:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).$ $

Da vas podsjetim da se izvod kompleksne funkcije najčešće nalazi u jednom redu, kao što je napisano u posljednjoj jednakosti. Stoga, prilikom izrade standardnih proračuna ili kontrolnih radova, uopće nije potrebno tako detaljno opisivati ​​rješenje.

Odgovori: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Primjer br. 3

Pronađite $y"$ funkcije $y=\sqrt(\sin^3(5\cdot9^x))$.

Prvo, hajde da malo transformišemo funkciju $y$, izražavajući radikal (koren) kao stepen: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9) ^x) \desno)^(\frac(3)(7))$. Sada krenimo sa pronalaženjem derivata. Pošto je $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, onda:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Upotrijebimo formulu br. 2 iz tabele derivata, zamjenjujući u nju $u=\sin(5\cdot 9^x)$ i $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\desno)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Nastavimo jednakost (3.1) koristeći dobijeni rezultat:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Sada moramo pronaći $(\sin(5\cdot 9^x))"$. Za ovo koristimo formulu br. 9 iz tabele derivata, zamjenjujući u nju $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Dopunivši jednakost (3.2) dobijenim rezultatom, imamo:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Ostaje da pronađemo $(5\cdot 9^x)"$. Prvo, uzmimo konstantu (broj $5$) izvan znaka derivacije, tj. $(5\cdot 9^x)"=5\cdot (9 ^x) "$. Da biste pronašli izvod $(9^x)"$, primijenite formulu br. 5 tabele derivata, zamjenjujući u nju $a=9$ i $u=x$: $(9^x) )"=9^x\cdot \ ln9\cdot x"$. Pošto je $x"=1$, onda je $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Sada možemo nastaviti jednakost (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\desno) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Možemo se ponovo vratiti sa stepena na radikale (tj. korijene), pišući $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ u obliku $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\) cdot 9^x)))$. Tada će izvod biti napisan u ovom obliku:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).$$

Odgovori: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Primjer br. 4

Pokazati da su formule br. 3 i br. 4 tabele derivacija poseban slučaj formule br. 2 ove tabele.

Formula br. 2 tabele izvoda sadrži izvod funkcije $u^\alpha$. Zamjenom $\alpha=-1$ u formulu br. 2, dobijamo:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Pošto je $u^(-1)=\frac(1)(u)$ i $u^(-2)=\frac(1)(u^2)$, onda se jednakost (4.1) može prepisati na sljedeći način: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Ovo je formula br. 3 tabele derivata.

Vratimo se ponovo formuli br. 2 tabele derivata. Zamijenimo $\alpha=\frac(1)(2)$ u to:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Pošto je $u^(\frac(1)(2))=\sqrt(u)$ i $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1) )(2)))=\frac(1)(\sqrt(u))$, tada se jednakost (4.2) može prepisati na sljedeći način:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Rezultirajuća jednakost $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ je formula br. 4 tabele derivata. Kao što vidite, formule br. 3 i br. 4 tabele derivata se dobijaju iz formule br. 2 zamjenom odgovarajuće vrijednosti $\alpha$.

Odluči se fizičkih zadataka ili primjera iz matematike potpuno je nemoguće bez znanja o izvodu i metodama za njegovo izračunavanje. Derivat je jedan od najvažnijih koncepata matematička analiza. Odlučili smo današnji članak posvetiti ovoj temeljnoj temi. Šta je derivat, šta je njegov fizički i geometrijsko značenje kako izračunati derivaciju funkcije? Sva ova pitanja mogu se spojiti u jedno: kako razumjeti derivat?

Geometrijsko i fizičko značenje derivacije

Neka postoji funkcija f(x) , specificirano u određenom intervalu (a, b) . Tačke x i x0 pripadaju ovom intervalu. Kada se x promijeni, mijenja se i sama funkcija. Promjena argumenta - razlika u njegovim vrijednostima x-x0 . Ova razlika je zapisana kao delta x i naziva se povećanje argumenta. Promjena ili povećanje funkcije je razlika između vrijednosti funkcije u dvije točke. Definicija derivata:

Derivat funkcije u tački je granica omjera prirasta funkcije u datoj tački i priraštaja argumenta kada potonji teži nuli.

Inače se može napisati ovako:

Koja je svrha pronalaženja takve granice? A evo šta je to:

derivacija funkcije u tački jednaka je tangenti ugla između ose OX i tangente na graf funkcije u datoj tački.


Fizičko značenje derivat: derivacija putanje u odnosu na vrijeme jednaka je brzini pravolinijskog kretanja.

Zaista, još od školskih dana svi znaju da je brzina poseban put x=f(t) i vrijeme t . prosječna brzina za određeni vremenski period:

Da biste saznali brzinu kretanja u datom trenutku t0 morate izračunati granicu:

Prvo pravilo: postavite konstantu

Konstanta se može izvaditi iz predznaka derivacije. Štaviše, to se mora uraditi. Kada rješavate primjere iz matematike, uzmite to kao pravilo - Ako možete pojednostaviti izraz, obavezno ga pojednostavite .

Primjer. Izračunajmo derivaciju:

Drugo pravilo: derivacija zbira funkcija

Derivat zbira dviju funkcija jednak je zbroju izvoda ovih funkcija. Isto vrijedi i za derivaciju razlike funkcija.

Nećemo dati dokaz ove teoreme, već ćemo razmotriti praktični primjer.

Pronađite derivaciju funkcije:

Treće pravilo: derivacija proizvoda funkcija

Derivat proizvoda dvije diferencijabilne funkcije izračunava se po formuli:

Primjer: pronađite derivaciju funkcije:

Rješenje:

Ovdje je važno govoriti o izračunavanju izvoda složenih funkcija. Derivat kompleksne funkcije jednak je proizvodu izvoda ove funkcije u odnosu na međuargument i derivacije međuargumenata u odnosu na nezavisnu varijablu.

U gornjem primjeru nailazimo na izraz:

U ovom slučaju, srednji argument je 8x na peti stepen. Da bismo izračunali derivaciju takvog izraza, prvo izračunamo derivaciju eksterne funkcije u odnosu na međuargument, a zatim pomnožimo sa derivacijom samog međuargumena u odnosu na nezavisnu varijablu.

Četvrto pravilo: derivacija količnika dvije funkcije

Formula za određivanje derivacije kvocijenta dvije funkcije:

Pokušali smo da pričamo o derivatima za lutke od nule. Ova tema nije tako jednostavna kao što se čini, stoga budite upozoreni: u primjerima često postoje zamke, stoga budite oprezni pri izračunavanju izvedenica.

Za sva pitanja o ovoj i drugim temama možete se obratiti studentskoj službi. U kratkom vremenu pomoći ćemo vam da riješite najteži test i shvatite zadatke, čak i ako nikada prije niste radili izvedene proračune.