Meni
Besplatno
Dom  /  Bradavice/ Koristeći definiciju derivacije, pronađite izvod funkcije. Kako riješiti probleme o fizičkom značenju izvedenice. Geometrijsko značenje izvedenice. Tangenta na graf funkcije

Koristeći definiciju derivacije, pronađite izvod funkcije. Kako riješiti probleme o fizičkom značenju izvedenice. Geometrijsko značenje izvedenice. Tangenta na graf funkcije

U koordinatnoj ravni xOy razmotriti graf funkcije y=f(x). Hajde da popravimo stvar M(x 0 ; f (x 0)). Dodajmo apscisu x 0 prirast Δh. Dobićemo novu apscisu x 0 +Δx. Ovo je apscisa tačke N, a ordinata će biti jednaka f (x 0 +Δx). Promjena apscise povlači za sobom promjenu ordinate. Ova promjena naziva se inkrement funkcije i označava se Δy.

Δy=f (x 0 +Δx) - f (x 0). Kroz tačke M I N nacrtajmo sekantu MN, koji formira ugao φ sa pozitivnim smjerom ose Oh. Odredimo tangentu ugla φ iz pravouglog trougla MPN.

Neka Δh teži nuli. Zatim sekansa MNće težiti da zauzme tangentni položaj MT, i ugao φ postaće ugao α . Dakle, tangenta ugla α Tu je granična vrijednost tangenta ugla φ :

Granica omjera prirasta funkcije i prirasta argumenta, kada potonji teži nuli, naziva se derivacija funkcije u datoj tački:

Geometrijsko značenje derivat leži u činjenici da je numerički izvod funkcije u datoj tački jednak tangenti ugla koji formira tangenta povučena kroz ovu tačku na datu krivulju i pozitivan smjer ose Oh:

Primjeri.

1. Pronađite prirast argumenta i inkrement funkcije y= x 2, ako je početna vrijednost argumenta bila jednaka 4 , i novi - 4,01 .

Rješenje.

Nova vrijednost argumenta x=x 0 +Δx. Zamenimo podatke: 4.01=4+Δh, otuda i prirast argumenta Δh=4,01-4=0,01. Prirast funkcije, po definiciji, jednak je razlici između nove i prethodne vrijednosti funkcije, tj. Δy=f (x 0 +Δx) - f (x 0). Pošto imamo funkciju y=x2, To Δu=(x 0 +Δx) 2 - (x 0) 2 =(x 0) 2 +2x 0 · Δx+(Δx) 2 - (x 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

odgovor: povećanje argumenta Δh=0,01; povećanje funkcije Δu=0,0801.

Povećanje funkcije se može naći drugačije: Δy=y (x 0 +Δx) -y (x 0)=y(4.01) -y(4)=4.01 2 -4 2 =16.0801-16=0.0801.

2. Pronađite ugao nagiba tangente na graf funkcije y=f(x) u tački x 0, Ako f "(x 0) = 1.

Rješenje.

Vrijednost derivata u tački tangente x 0 i je vrijednost tangente ugla tangente (geometrijsko značenje derivacije). Imamo: f "(x 0) = tanα = 1 → α = 45°, jer tg45°=1.

odgovor: tangenta na graf ove funkcije formira ugao s pozitivnim smjerom ose Ox jednakim 45°.

3. Izvedite formulu za izvod funkcije y=xn.

Diferencijacija je akcija pronalaženja derivacije funkcije.

Prilikom pronalaženja izvoda koristite formule koje su izvedene na osnovu definicije derivacije, na isti način na koji smo izveli formulu za stepen izvoda: (x n)" = nx n-1.

Ovo su formule.

Tabela derivata Lakše je zapamtiti izgovaranjem verbalnih formulacija:

1. Derivat konstantne veličine je nula.

2. X prost je jednak jedan.

3. Konstantni faktor se može izvaditi iz predznaka derivacije.

4. Izvod stepena jednak je umnošku eksponenta ovog stepena za stepen sa istom bazom, ali je eksponent jedan manji.

5. Izvod korijena jednak je jedinici podijeljenoj sa dva jednaka korijena.

6. Derivat jedinice podijeljen sa x jednak je minus jedan podijeljen sa x na kvadrat.

7. Izvod sinusa jednak je kosinsu.

8. Derivat kosinusa je jednak minus sinus.

9. Izvod tangente jednak je jedinici podijeljenoj s kvadratom kosinusa.

10. Derivat kotangensa jednak je minus jedan podijeljen kvadratom sinusa.

Mi predajemo pravila diferencijacije.

1. Izvod algebarskog zbira jednak je algebarskom zbiru izvoda članova.

2. Izvod proizvoda jednak je umnošku izvoda prvog faktora i drugog plus proizvod prvog faktora i izvoda drugog.

3. Derivat “y” podijeljen sa “ve” jednak je razlomku u kojem je brojilac “y prost pomnožen sa “ve” minus “y pomnožen sa ve prostim”, a nazivnik je “ve na kvadrat”.

4. Poseban slučaj formule 3.

Prilikom rješavanja različitih problema geometrije, mehanike, fizike i drugih grana znanja pojavila se potreba da se iz ove funkcije koristi isti analitički proces. y=f(x) dobiti novu funkciju koja se zove derivirajuća funkcija(ili jednostavno derivacija) date funkcije f(x) i označen je simbolom

Proces kojim iz date funkcije f(x) nabavite novu funkciju f" (x), zvao diferencijaciju a sastoji se od sljedeća tri koraka: 1) dati argument x prirast  x i odredite odgovarajući prirast funkcije  y = f(x+ x) -f(x); 2) uspostaviti vezu

3) brojanje x konstantan i  x0, nalazimo
, koje označavamo sa f" (x), kao da naglašava da rezultirajuća funkcija ovisi samo o vrijednosti x, na kojoj idemo do granice. Definicija: Derivat y " =f " (x) data funkcija y=f(x) za dati x naziva se granica omjera prirasta funkcije i prirasta argumenta, pod uslovom da prirast argumenta teži nuli, ako, naravno, ova granica postoji, tj. konačan. dakle,
, ili

Imajte na umu da ako za neku vrijednost x, na primjer kada x=a, stav
at  x0 ne teži konačnoj granici, onda u ovom slučaju kažu da je funkcija f(x) at x=a(ili u tački x=a) nema izvod ili nije diferencibilan u tački x=a.

2. Geometrijsko značenje izvedenice.

Razmotrimo graf funkcije y = f (x), diferencibilne u blizini tačke x 0

f(x)

Razmotrimo proizvoljnu pravu liniju koja prolazi kroz tačku na grafu funkcije - tačku A(x 0, f (x 0)) i seče graf u nekoj tački B(x;f(x)). Takva prava (AB) se naziva sekansa. Od ∆ABC: ​​AC = ∆x; VS =∆u; tgβ=∆y/∆x.

Budući da AC || Ox, zatim ALO = BAC = β (kao što odgovara za paralelu). Ali ALO je ugao nagiba sekante AB prema pozitivnom smjeru ose Ox. To znači da je tanβ = k nagib prave AB.

Sada ćemo smanjiti ∆x, tj. ∆h→ 0. U ovom slučaju, tačka B će se približiti tački A prema grafu, a sekansa AB će se rotirati. Granični položaj sekante AB na ∆x→ 0 bit će prava linija (a), nazvana tangenta na graf funkcije y = f (x) u tački A.

Ako idemo na granicu kao ∆x → 0 u jednakosti tgβ =∆y/∆x, dobićemo
ortg =f "(x 0), pošto
-ugao nagiba tangente na pozitivan pravac ose Ox
, po definiciji derivata. Ali tg = k je ugaoni koeficijent tangente, što znači k = tg = f "(x 0).

Dakle, geometrijsko značenje derivacije je sljedeće:

Derivat funkcije u tački x 0 jednak nagib tangenta na graf funkcije nacrtane u tački sa apscisom x 0 .

3. Fizičko značenje izvedenice.

Razmotrimo kretanje tačke duž prave linije. Neka je data koordinata tačke u bilo kom trenutku x(t). Poznato je (iz kursa fizike) da je prosječna brzina u određenom vremenskom periodu jednaka odnosu pređenog puta u tom vremenskom periodu i vremena, tj.

Vav = ∆x/∆t. Idemo do granice u posljednjoj jednakosti kao ∆t → 0.

lim Vav (t) = (t 0) - trenutna brzina u trenutku t 0, ∆t → 0.

i lim = ∆x/∆t = x"(t 0) (po definiciji derivacije).

Dakle, (t) =x"(t).

Fizičko značenje izvoda je sljedeće: izvod funkcijey = f(x) u tačkix 0 je stopa promjene funkcijef(x) u tačkix 0

Izvod se koristi u fizici za pronalaženje brzine iz poznate funkcije koordinata u odnosu na vrijeme, ubrzanje iz poznate funkcije brzine u odnosu na vrijeme.

(t) = x"(t) - brzina,

a(f) = "(t) - ubrzanje, ili

Ako je poznat zakon kretanja materijalne tačke u krugu, onda se može pronaći ugaona brzina i ugaono ubrzanje tokom rotacionog kretanja:

φ = φ(t) - promjena ugla tokom vremena,

ω = φ"(t) - ugaona brzina,

ε = φ"(t) - kutno ubrzanje, ili ε = φ"(t).

Ako je poznat zakon raspodjele mase nehomogenog štapa, tada se može pronaći linearna gustina nehomogenog štapa:

m = m(x) - masa,

x  , l - dužina štapa,

p = m"(x) - linearna gustina.

Koristeći derivaciju, rješavaju se problemi iz teorije elastičnosti i harmonijskih vibracija. Dakle, prema Hookeovom zakonu

F = -kx, x – varijabilna koordinata, k – koeficijent elastičnosti opruge. Stavljajući ω 2 =k/m, dobijamo diferencijalnu jednačinu opružnog klatna x"(t) + ω 2 x(t) = 0,

gdje je ω = √k/√m frekvencija oscilovanja (l/c), k - krutost opruge (H/m).

Jednačina oblika y" + ω 2 y = 0 naziva se jednadžba harmonijskih oscilacija (mehaničkih, električnih, elektromagnetskih). Rješenje takvih jednačina je funkcija

y = Asin(ωt + φ 0) ili y = Acos(ωt + φ 0), gdje je

A - amplituda oscilacija, ω - ciklična frekvencija,

φ 0 - početna faza.

Derivat funkcije je jedna od teških tema u školskom programu. Neće svaki diplomac odgovoriti na pitanje šta je derivat.

Ovaj članak na jednostavan i jasan način objašnjava što je derivat i zašto je potreban.. Nećemo sada težiti matematičkoj strogosti u prezentaciji. Najvažnije je razumjeti značenje.

Prisjetimo se definicije:

Izvod je stopa promjene funkcije.

Na slici su prikazani grafikoni tri funkcije. Šta mislite koji od njih raste brže?

Odgovor je očigledan - treći. Ima najveću stopu promjene, odnosno najveći derivat.

Evo još jednog primjera.

Kostya, Grisha i Matvey dobili su posao u isto vrijeme. Pogledajmo kako su im se prihodi promijenili tokom godine:

Grafikon prikazuje sve odjednom, zar ne? Kostijin prihod se više nego udvostručio za šest mjeseci. I Grišin prihod se također povećao, ali samo malo. A Matveyev prihod pao je na nulu. Početni uslovi su isti, ali brzina promjene funkcije, tj derivat, - drugačije. Što se tiče Matveya, njegov derivat prihoda je općenito negativan.

Intuitivno, lako procjenjujemo brzinu promjene funkcije. Ali kako da ovo uradimo?

Ono što zapravo gledamo je koliko strmo grafik funkcije ide nagore (ili naniže). Drugim riječima, koliko brzo se mijenja y kako se mijenja x? Očigledno, ista funkcija u različitim tačkama može imati drugačije značenje derivat – to jest, može se mijenjati brže ili sporije.

Derivat funkcije je označen .

Pokazat ćemo vam kako ga pronaći pomoću grafikona.

Nacrtan je graf neke funkcije. Uzmimo tačku sa apscisom na njoj. Nacrtajmo tangentu na graf funkcije u ovoj tački. Želimo procijeniti koliko strmo grafik funkcije ide gore. Pogodna vrijednost za ovo je tangenta tangentnog ugla.

Derivat funkcije u nekoj tački jednak je tangenti tangentnog ugla nacrtanog na graf funkcije u ovoj tački.

Imajte na umu da kao ugao nagiba tangente uzimamo ugao između tangente i pozitivnog smera ose.

Ponekad učenici pitaju šta je tangenta na graf funkcije. Ovo je prava linija koja ima jednu zajedničku tačku sa grafikom u ovom odeljku, kao što je prikazano na našoj slici. Izgleda kao tangenta na kružnicu.

Hajde da ga nađemo. Sjećamo se da je tangenta oštrog ugla u pravougaonog trougla jednak omjeru suprotnoj nozi na susednu. Iz trougla:

Izvod smo pronašli koristeći graf, a da nismo ni znali formulu funkcije. Takvi problemi se često nalaze na Jedinstvenom državnom ispitu iz matematike pod brojem.

Postoji još jedan važan odnos. Podsjetimo da je ravna linija data jednadžbom

Količina u ovoj jednačini se zove nagib prave linije. Jednaka je tangenti ugla nagiba prave linije prema osi.

.

Shvatili smo to

Prisjetimo se ove formule. Izražava geometrijsko značenje izvedenice.

Derivat funkcije u tački jednak je nagibu tangente povučene na graf funkcije u toj tački.

Drugim riječima, derivacija je jednaka tangentu ugla tangente.

Već smo rekli da ista funkcija može imati različite izvode u različitim tačkama. Pogledajmo kako je derivacija povezana s ponašanjem funkcije.

Nacrtajmo graf neke funkcije. Neka se ova funkcija povećava u nekim područjima, a smanjuje u drugim, i sa različitim brzinama. I neka ova funkcija ima maksimum i minimum bodova.

U jednom trenutku funkcija se povećava. Tangenta na graf nacrtan u tački se formira oštri ugao; sa pozitivnim smjerom ose. To znači da je izvod u tački pozitivan.

U trenutku kada se naša funkcija smanjuje. Tangenta u ovoj tački formira tupi ugao; sa pozitivnim smjerom ose. Pošto je tangenta tupog ugla negativna, derivacija u tački je negativna.

Evo šta se dešava:

Ako je funkcija rastuća, njen izvod je pozitivan.

Ako se smanjuje, njegov izvod je negativan.

Šta će se dogoditi na maksimalnim i minimalnim tačkama? Vidimo da je u tačkama (maksimalna tačka) i (tačka minimuma) tangenta horizontalna. Dakle, tangenta tangentnog ugla u ovim tačkama jednak nuli, a derivacija je također nula.

Point - maksimalni poen. U ovom trenutku povećanje funkcije zamjenjuje se smanjenjem. Posljedično, predznak derivacije se mijenja u tački sa “plus” na “minus”.

U tački - minimalnoj tački - derivacija je također nula, ali se njen predznak mijenja sa "minus" na "plus".

Zaključak: pomoću izvoda možemo saznati sve što nas zanima o ponašanju funkcije.

Ako je izvod pozitivan, tada se funkcija povećava.

Ako je izvod negativan, tada se funkcija smanjuje.

U tački maksimuma, izvod je nula i mijenja predznak iz “plus” u “minus”.

U minimalnoj tački, derivacija je također nula i mijenja predznak iz “minus” u “plus”.

Zapišimo ove zaključke u obliku tabele:

povećava maksimalni poen smanjuje se minimalna tačka povećava
+ 0 - 0 +

Hajde da napravimo dva mala pojašnjenja. Jedan od njih će vam trebati prilikom rješavanja problema. Drugi - na prvoj godini, sa ozbiljnijim proučavanjem funkcija i derivata.

Moguće je da je derivacija funkcije u nekoj tački jednaka nuli, ali funkcija nema ni maksimum ni minimum u ovoj tački. Ovo je tzv :

U tački, tangenta na graf je horizontalna, a derivacija je nula. Međutim, prije točke funkcija se povećala - a nakon točke nastavlja rasti. Predznak derivacije se ne mijenja - ostaje pozitivan kakav je bio.

Takođe se dešava da u tački maksimuma ili minimuma izvod ne postoji. Na grafikonu to odgovara oštrom prekidu, kada je nemoguće nacrtati tangentu u datoj tački.

Kako pronaći izvod ako funkcija nije data grafom, već formulom? U ovom slučaju se primjenjuje

Prvi nivo

Derivat funkcije. Sveobuhvatni vodič (2019)

Zamislimo ravan put koji prolazi kroz brdsko područje. Odnosno, ide gore-dolje, ali ne skreće desno ili lijevo. Ako je os usmjerena vodoravno duž ceste i okomito, tada će linija ceste biti vrlo slična grafu neke kontinuirane funkcije:

Osa je određeni nivo nulte nadmorske visine; u životu kao nju koristimo nivo mora.

Kako se krećemo naprijed takvim putem, tako se krećemo gore ili dolje. Možemo reći i: kada se promijeni argument (kretanje duž apscisne ose), mijenja se vrijednost funkcije (kretanje duž ose ordinate). Sada razmislimo o tome kako odrediti "strminu" našeg puta? Kakva bi ovo mogla biti vrijednost? Vrlo je jednostavno: koliko će se visina promijeniti pri kretanju naprijed na određenu udaljenost. Zaista, na različitim dionicama puta, krećući se naprijed (duž x-ose) za jedan kilometar, mi ćemo se podizati ili spuštati za različite količine metara u odnosu na nivo mora (duž ordinatne ose).

Označimo napredak (čitaj "delta x").

Grčko slovo (delta) se obično koristi u matematici kao prefiks koji znači "promjena". To jest - ovo je promjena količine, - promjena; šta je onda? Tako je, promjena veličine.

Važno: izraz je jedna cjelina, jedna varijabla. Nikada ne odvajajte “delta” od “x” ili bilo koje drugo slovo! To je, na primjer, .

Dakle, krenuli smo naprijed, horizontalno, mimo. Ako uporedimo liniju puta sa grafom funkcije, kako onda označavamo uspon? Svakako, . Odnosno, kako idemo naprijed, dižemo se više.

Vrijednost je lako izračunati: ako smo na početku bili na visini, a nakon kretanja našli smo se na visini, onda. Ako je krajnja tačka niža od početne, bit će negativna - to znači da se ne penjemo, već se spuštamo.

Vratimo se na "strminu": ovo je vrijednost koja pokazuje koliko (strmo) raste visina kada se kreće naprijed za jednu jedinicu udaljenosti:

Pretpostavimo da se na nekom dijelu puta, pri kretanju naprijed za kilometar, put uzdiže za kilometar. Tada je nagib na ovom mjestu jednak. A ako se put, dok se kreće naprijed za m, spusti za km? Tada je nagib jednak.

Pogledajmo sada vrh brda. Ako uzmete početak dionice pola kilometra prije vrha, a kraj pola kilometra nakon njega, možete vidjeti da je visina gotovo ista.

Odnosno, prema našoj logici, ispada da je nagib ovdje gotovo jednak nuli, što očito nije tačno. Na udaljenosti od nekoliko kilometara mnogo toga se može promijeniti. Potrebno je razmotriti manje površine radi adekvatnije i preciznije procjene strmine. Na primjer, ako izmjerite promjenu visine dok se krećete jedan metar, rezultat će biti mnogo precizniji. Ali ni ta preciznost nam možda neće biti dovoljna – uostalom, ako postoji stub na sredini puta, možemo ga jednostavno proći. Koju udaljenost onda da izaberemo? Centimetar? Milimetar? Manje je bolje!

IN pravi zivot Mjerenje udaljenosti do najbližeg milimetra je više nego dovoljno. Ali matematičari uvijek teže savršenstvu. Stoga je koncept izmišljen infinitezimal, to jest, apsolutna vrijednost je manja od bilo kojeg broja koji možemo imenovati. Na primjer, kažete: trilionti dio! Koliko manje? I podijelite ovaj broj sa - i bit će još manje. I tako dalje. Ako želimo da zapišemo da je veličina beskonačno mala, pišemo ovako: (čitamo „x teži nuli“). Veoma je važno razumjeti da ovaj broj nije nula! Ali vrlo blizu tome. To znači da možete podijeliti s tim.

Koncept suprotan infinitezimalnom je beskonačno velik (). Vjerovatno ste već naišli na to kada ste radili na nejednačinama: ovaj broj je modulo veći od bilo kojeg broja kojeg možete zamisliti. Ako dođete do najvećeg mogućeg broja, samo ga pomnožite sa dva i dobit ćete još veći broj. I dalje beskonačnost Nadalješta će se desiti. U stvari, beskonačno veliki i beskonačno mali su inverzni jedno drugom, to jest at, i obrnuto: at.

Sada se vratimo na naš put. Idealno izračunati nagib je nagib izračunat za beskonačno mali segment puta, odnosno:

Napominjem da će s beskonačno malim pomakom promjena visine također biti beskonačno mala. Ali da vas podsjetim da infinitezimalno ne znači jednako nuli. Ako podijelite beskonačno male brojeve jedni s drugima, možete dobiti potpuno običan broj, na primjer, . To jest, jedna mala vrijednost može biti tačno puta veća od druge.

čemu sve ovo? Put, strmina... Ne idemo na auto rally, ali predajemo matematiku. A u matematici je sve potpuno isto, samo se drugačije zove.

Koncept derivata

Derivat funkcije je omjer prirasta funkcije i inkrementa argumenta za beskonačno mali prirast argumenta.

Postepeno u matematici nazivaju promjenom. Poziva se stepen do kojeg se argument () mijenja dok se kreće duž ose povećanje argumenta i označen je. Koliko se funkcija (visina) promijenila pri pomicanju naprijed duž ose za rastojanje naziva se povećanje funkcije i određen je.

Dakle, derivacija funkcije je omjer kada. Izvod označavamo istim slovom kao i funkcija, samo sa prostim brojem u gornjem desnom uglu: ili jednostavno. Dakle, napišimo formulu derivacije koristeći ove oznake:

Kao iu analogiji sa cestom, i ovdje kada se funkcija povećava, derivacija je pozitivna, a kada se smanjuje negativna.

Može li izvod biti jednak nuli? Svakako. Na primjer, ako vozimo po ravnom horizontalnom putu, strmina je nula. I istina je, visina se uopšte ne menja. Tako je i sa izvodom: izvod konstantne funkcije (konstante) jednak je nuli:

budući da je prirast takve funkcije jednak nuli za bilo koju.

Sjetimo se primjera na vrhu brda. Pokazalo se da je moguće rasporediti krajeve segmenta na suprotnim stranama vrha na takav način da visina na krajevima bude ista, odnosno da je segment paralelan s osi:

Ali veliki segmenti su znak netačnog mjerenja. Naš segment ćemo podići paralelno sa sobom, a zatim će se njegova dužina smanjiti.

Na kraju, kada smo beskonačno blizu vrha, dužina segmenta će postati beskonačno mala. Ali u isto vrijeme, ostao je paralelan s osom, odnosno razlika u visinama na njegovim krajevima jednaka je nuli (ne teži, već je jednaka). Dakle, derivat

Ovo se može shvatiti ovako: kada stojimo na samom vrhu, mali pomak ulijevo ili udesno neznatno mijenja našu visinu.

Postoji i čisto algebarsko objašnjenje: lijevo od vrha funkcija raste, a desno opada. Kao što smo ranije saznali, kada se funkcija povećava, izvod je pozitivan, a kada se smanjuje negativan. Ali mijenja se glatko, bez skokova (pošto put nigdje naglo ne mijenja nagib). Dakle, između negativnih i pozitivne vrijednosti sigurno mora postojati. To će biti tamo gdje se funkcija niti povećava niti smanjuje - u točki vrha.

Isto vrijedi i za korito (područje gdje se funkcija s lijeve strane smanjuje, a na desnoj povećava):

Još malo o inkrementima.

Dakle, mijenjamo argument u veličinu. Mi mijenjamo od koje vrijednosti? Šta je to (argument) sada postalo? Možemo izabrati bilo koju tačku, a sada ćemo plesati iz nje.

Zamislite tačku sa koordinatama. Vrijednost funkcije u njemu je jednaka. Zatim radimo isti inkrement: povećavamo koordinatu za. Šta je sada argument? Vrlo jednostavno: . Koja je sada vrijednost funkcije? Gdje ide argument, ide i funkcija: . Šta je sa povećanjem funkcije? Ništa novo: ovo je još uvijek iznos za koji se funkcija promijenila:

Vježbajte pronalaženje inkremenata:

  1. Pronađite prirast funkcije u tački kada je prirast argumenta jednak.
  2. Isto vrijedi i za funkciju u jednoj tački.

rješenja:

U različitim točkama s istim prirastom argumenta, inkrement funkcije će biti različit. To znači da je derivacija u svakoj tački drugačija (o tome smo razgovarali na samom početku - strmina puta je različita u različitim tačkama). Stoga, kada pišemo derivat, moramo naznačiti u kojoj točki:

Funkcija napajanja.

Funkcija snage je funkcija u kojoj je argument u određenoj mjeri (logičan, zar ne?).

Štaviše - u bilo kojoj mjeri: .

Najjednostavniji slučaj je kada je eksponent:

Nađimo njen derivat u jednoj tački. Prisjetimo se definicije derivata:

Dakle, argument se mijenja od do. Koliki je prirast funkcije?

Prirast je ovo. Ali funkcija u bilo kojoj tački jednaka je svom argumentu. Zbog toga:

Izvod je jednak:

Derivat od je jednak:

b) Sada razmotrite kvadratna funkcija (): .

A sada da se prisjetimo toga. To znači da se vrijednost prirasta može zanemariti, jer je beskonačno mala, a samim tim i beznačajna na pozadini drugog pojma:

Dakle, došli smo do još jednog pravila:

c) Nastavljamo logički niz: .

Ovaj izraz se može pojednostaviti na različite načine: otvoriti prvu zagradu koristeći formulu za skraćeno množenje kocke zbira, ili faktorizirati cijeli izraz koristeći formulu razlike kocki. Pokušajte to učiniti sami koristeći bilo koju od predloženih metoda.

Dakle, dobio sam sledeće:

I opet da se prisjetimo toga. To znači da možemo zanemariti sve pojmove koji sadrže:

Dobijamo: .

d) Slična pravila se mogu dobiti za velike snage:

e) Ispada da se ovo pravilo može generalizirati za funkciju stepena s proizvoljnim eksponentom, čak ni cijelim brojem:

(2)

Pravilo se može formulirati riječima: "stepen se iznosi naprijed kao koeficijent, a zatim se smanjuje za ."

Ovo pravilo ćemo dokazati kasnije (skoro na samom kraju). Pogledajmo sada nekoliko primjera. Pronađite izvod funkcija:

  1. (na dva načina: formulom i korištenjem definicije derivacije - izračunavanjem prirasta funkcije);
  1. . Vjerovali ili ne, ovo je funkcija snage. Ako imate pitanja poput „Kako je ovo? Gdje je diploma?”, zapamtite temu “”!
    Da, da, korijen je također stepen, samo razlomak: .
    Dakle naše Kvadratni korijen- ovo je samo diploma sa indikatorom:
    .
    Izvod tražimo koristeći nedavno naučenu formulu:

    Ako u ovom trenutku ponovo postane nejasno, ponovite temu “”!!! (otprilike stepen sa negativnim eksponentom)

  2. . Sada eksponent:

    A sada kroz definiciju (jeste li već zaboravili?):
    ;
    .
    Sada, kao i obično, zanemarujemo pojam koji sadrži:
    .

  3. . Kombinacija prethodnih slučajeva: .

Trigonometrijske funkcije.

Ovdje ćemo koristiti jednu činjenicu iz više matematike:

Sa izrazom.

Dokaz ćete naučiti na prvoj godini instituta (a da biste tamo stigli, potrebno je dobro položiti Jedinstveni državni ispit). Sada ću to samo grafički prikazati:

Vidimo da kada funkcija ne postoji - tačka na grafu je izrezana. Ali što je bliže vrijednosti, to je funkcija bliža. To je ono što „cilj“.

Osim toga, ovo pravilo možete provjeriti pomoću kalkulatora. Da, da, ne stidite se, uzmite kalkulator, nismo još na Jedinstvenom državnom ispitu.

Dakle, pokušajmo: ;

Ne zaboravite da prebacite svoj kalkulator u način rada radijana!

itd. Vidimo da što je manji, to je bliža vrijednost omjera.

a) Razmotrite funkciju. Kao i obično, pronađimo njegov prirast:

Pretvorimo razliku sinusa u proizvod. Da bismo to učinili, koristimo formulu (zapamtite temu “”): .

Sada derivat:

Napravimo zamjenu: . Tada je za infinitezimalno također infinitezimalno: . Izraz za ima oblik:

I sada se toga sećamo sa izrazom. I takođe, šta ako se beskonačno mala količina može zanemariti u zbiru (to jest, at).

Dakle, dobijamo sledeće pravilo: derivacija sinusa je jednaka kosinsu:

Ovo su osnovne (“tabelarne”) izvedenice. Evo ih na jednoj listi:

Kasnije ćemo im dodati još nekoliko, ali ovo su najvažnije, jer se najčešće koriste.

vježbajte:

  1. Pronađite derivaciju funkcije u tački;
  2. Pronađite izvod funkcije.

rješenja:

  1. Prvo, pronađimo derivat u opšti pogled, a zatim zamijenite njegovu vrijednost:
    ;
    .
  2. Ovdje imamo nešto slično funkcija snage. Pokušajmo je dovesti do toga
    normalan pogled:
    .
    Odlično, sada možete koristiti formulu:
    .
    .
  3. . Eeeeeee….. Šta je ovo????

Dobro, u pravu ste, još ne znamo kako pronaći takve derivate. Ovdje imamo kombinaciju nekoliko vrsta funkcija. Da biste radili s njima, morate naučiti još nekoliko pravila:

Eksponent i prirodni logaritam.

U matematici postoji funkcija čiji je izvod za bilo koju vrijednost u isto vrijeme jednak vrijednosti same funkcije. Zove se “eksponent” i eksponencijalna je funkcija

Osnova ove funkcije je konstanta - ona je beskonačna decimalni, odnosno iracionalan broj (kao što je). Zove se "Eulerov broj", zbog čega je označen slovom.

Dakle, pravilo:

Vrlo lako za pamćenje.

Pa, da ne idemo daleko, pogledajmo to odmah inverzna funkcija. Koja je funkcija inverzna eksponencijalna funkcija? logaritam:

U našem slučaju, osnova je broj:

Takav logaritam (tj. logaritam s bazom) naziva se „prirodnim“, a za njega koristimo posebnu notaciju: umjesto toga pišemo.

Čemu je to jednako? Naravno, .

Izvod prirodnog logaritma je također vrlo jednostavan:

primjeri:

  1. Pronađite izvod funkcije.
  2. Što je derivacija funkcije?

odgovori: Izlagač i prirodni logaritam- funkcije su jedinstveno jednostavne u smislu izvoda. Eksponencijalne i logaritamske funkcije s bilo kojom drugom bazom imat će drugačiji izvod, koji ćemo analizirati kasnije, nakon što prođemo kroz pravila diferencijacije.

Pravila diferencijacije

Pravila čega? Opet novi mandat, opet?!...

Diferencijacija je proces pronalaženja derivacije.

To je sve. Kako još jednom riječju možete nazvati ovaj proces? Nije derivacija... Matematičari diferencijal nazivaju istim prirastom funkcije u. Ovaj izraz dolazi od latinskog differentia - razlika. Evo.

Prilikom izvođenja svih ovih pravila, koristit ćemo dvije funkcije, na primjer, i. Također će nam trebati formule za njihove priraštaje:

Postoji ukupno 5 pravila.

Konstanta se izvlači iz predznaka derivacije.

Ako - neki konstantni broj (konstanta), onda.

Očigledno, ovo pravilo radi i za razliku: .

Dokažimo to. Neka bude, ili jednostavnije.

Primjeri.

Pronađite izvode funkcija:

  1. u jednom trenutku;
  2. u jednom trenutku;
  3. u jednom trenutku;
  4. u tački.

rješenja:

  1. (izvod je isti u svim tačkama, budući da je ovo linearna funkcija, sjećaš se?);

Derivat proizvoda

Ovdje je sve slično: uvedemo novu funkciju i pronađemo njen prirast:

Derivat:

primjeri:

  1. Naći izvode funkcija i;
  2. Pronađite izvod funkcije u tački.

rješenja:

Derivat eksponencijalne funkcije

Sada je vaše znanje dovoljno da naučite kako pronaći derivaciju bilo koje eksponencijalne funkcije, a ne samo eksponenata (jeste li već zaboravili šta je to?).

Dakle, gdje je neki broj.

Već znamo derivaciju funkcije, pa pokušajmo svesti našu funkciju na novu bazu:

Za ovo ćemo koristiti jednostavno pravilo: . onda:

Pa, upalilo je. Sada pokušajte pronaći izvod i ne zaboravite da je ova funkcija složena.

Desilo se?

Evo, uvjerite se sami:

Ispostavilo se da je formula vrlo slična izvedenici eksponenta: onakva kakva je bila, ostala je ista, pojavio se samo faktor, koji je samo broj, ali ne i varijabla.

primjeri:
Pronađite izvode funkcija:

odgovori:

Ovo je samo broj koji se ne može izračunati bez kalkulatora, odnosno ne može se više zapisati u jednostavnom obliku. Stoga ga ostavljamo u ovom obliku u odgovoru.

Derivat logaritamske funkcije

Ovdje je slično: već znate derivaciju prirodnog logaritma:

Stoga, da biste pronašli proizvoljan logaritam s različitom bazom, na primjer:

Ovaj logaritam moramo svesti na bazu. Kako se mijenja baza logaritma? Nadam se da se sjećate ove formule:

Tek sada ćemo umjesto toga napisati:

Imenilac je jednostavno konstanta (konstantan broj, bez varijable). Izvod se dobija vrlo jednostavno:

Derivati ​​eksponencijalnih i logaritamskih funkcija gotovo se nikada ne nalaze u Jedinstvenom državnom ispitu, ali neće biti suvišno poznavati ih.

Derivat kompleksne funkcije.

Šta je "složena funkcija"? Ne, ovo nije logaritam, niti arktangens. Ove funkcije mogu biti teško razumljive (mada ako vam je logaritam težak, pročitajte temu “Logaritmi” i biće vam dobro), ali sa matematičke tačke gledišta, riječ “složeno” ne znači “teško”.

Zamislite malu pokretnu traku: dvoje ljudi sjede i rade neke radnje s nekim predmetima. Na primjer, prvi umota čokoladicu u omot, a drugi je veže trakom. Rezultat je kompozitni predmet: čokoladica umotana i vezana vrpcom. Da biste pojeli čokoladicu, morate napraviti obrnuti korak obrnutim redosledom.

Napravimo sličan matematički cevovod: prvo ćemo pronaći kosinus broja, a zatim kvadrirati rezultirajući broj. Dakle, dat nam je broj (čokolada), ja pronađem njegov kosinus (omotač), a onda kvadriraš ono što sam dobio (zaveži ga vrpcom). Šta se desilo? Funkcija. Ovo je primjer složene funkcije: kada, da bismo pronašli njenu vrijednost, izvršimo prvu akciju direktno s promjenljivom, a zatim drugu akciju s onim što je rezultat prve.

Lako možemo napraviti iste korake obrnutim redoslijedom: prvo ga kvadriraš, a ja onda tražim kosinus rezultirajućeg broja: . Lako je pretpostaviti da će rezultat gotovo uvijek biti drugačiji. Važna karakteristika složenih funkcija: kada se redoslijed radnji promijeni, funkcija se mijenja.

Drugim riječima, složena funkcija je funkcija čiji je argument druga funkcija: .

Za prvi primjer, .

Drugi primjer: (ista stvar). .

Akcija koju radimo posljednja će biti pozvana "vanjsku" funkciju, a radnja izvedena prva - prema tome "interne" funkcije(ovo su neformalni nazivi, koristim ih samo da objasnim gradivo jednostavnim jezikom).

Pokušajte sami odrediti koja je funkcija vanjska, a koja unutrašnja:

odgovori: Razdvajanje unutrašnjih i vanjskih funkcija vrlo je slično mijenjanju varijabli: na primjer, u funkciji

  1. Koju akciju ćemo prvo izvesti? Prvo izračunajmo sinus, pa ga tek onda kockiraj. To znači da je to interna funkcija, ali vanjska.
    A originalna funkcija je njihov sastav: .
  2. Interni: ; eksterno: .
    Ispitivanje: .
  3. Interni: ; eksterno: .
    Ispitivanje: .
  4. Interni: ; eksterno: .
    Ispitivanje: .
  5. Interni: ; eksterno: .
    Ispitivanje: .

Mijenjamo varijable i dobijamo funkciju.

Pa, sada ćemo izvaditi našu čokoladicu i potražiti derivat. Postupak je uvijek obrnut: prvo tražimo derivat eksterna funkcija, zatim pomnožite rezultat s izvodom interne funkcije. U odnosu na originalni primjer, to izgleda ovako:

Drugi primjer:

Dakle, hajde da konačno formulišemo zvanično pravilo:

Algoritam za pronalaženje derivacije kompleksne funkcije:

Čini se jednostavno, zar ne?

Provjerimo na primjerima:

rješenja:

1) Interni: ;

Vanjski: ;

2) Interni: ;

(Samo nemojte pokušavati da ga isečete do sada! Ništa ne izlazi ispod kosinusa, sjećate se?)

3) Interni: ;

Vanjski: ;

Odmah je jasno da se radi o kompleksnoj funkciji na tri nivoa: na kraju krajeva, ovo je već složena funkcija sama po sebi, a iz nje izvlačimo i korijen, odnosno izvodimo treću radnju (čokoladu stavljamo u omot i sa trakom u aktovci). Ali nema razloga za strah: i dalje ćemo „raspakovati“ ovu funkciju istim redoslijedom kao i obično: od kraja.

Odnosno, prvo razlikujemo korijen, zatim kosinus, pa tek onda izraz u zagradama. A onda sve to pomnožimo.

U takvim slučajevima, zgodno je numerisati radnje. Odnosno, zamislimo šta znamo. Kojim redoslijedom ćemo izvršiti radnje za izračunavanje vrijednosti ovog izraza? Pogledajmo primjer:

Što se radnja izvrši kasnije, to će odgovarajuća funkcija biti „spoljašnja“. Redoslijed radnji je isti kao i prije:

Ovdje je gniježđenje općenito na 4 nivoa. Hajde da odredimo pravac akcije.

1. Radikalni izraz. .

2. Root. .

3. Sinus. .

4. Kvadrat. .

5. Stavljajući sve zajedno:

DERIVAT. UKRATKO O GLAVNIM STVARIMA

Derivat funkcije- omjer povećanja funkcije i inkrementa argumenta za beskonačno mali prirast argumenta:

Osnovni derivati:

Pravila diferencijacije:

Konstanta je uzeta iz predznaka derivacije:

Derivat sume:

Derivat proizvoda:

Derivat količnika:

Derivat kompleksne funkcije:

Algoritam za pronalaženje derivacije kompleksne funkcije:

  1. Definiramo “internu” funkciju i nalazimo njen izvod.
  2. Definiramo “vanjsku” funkciju i nalazimo njen izvod.
  3. Množimo rezultate prve i druge tačke.

Odluči se fizičkih zadataka ili primjera iz matematike potpuno je nemoguće bez znanja o izvodu i metodama za njegovo izračunavanje. Derivat je jedan od najvažnijih koncepata matematička analiza. Odlučili smo današnji članak posvetiti ovoj temeljnoj temi. Šta je derivacija, koje je njeno fizičko i geometrijsko značenje, kako izračunati izvod funkcije? Sva ova pitanja mogu se spojiti u jedno: kako razumjeti derivat?

Geometrijsko i fizičko značenje derivacije

Neka postoji funkcija f(x) , specificirano u određenom intervalu (a, b) . Tačke x i x0 pripadaju ovom intervalu. Kada se x promijeni, mijenja se i sama funkcija. Promjena argumenta - razlika u njegovim vrijednostima x-x0 . Ova razlika je zapisana kao delta x i naziva se povećanje argumenta. Promjena ili povećanje funkcije je razlika između vrijednosti funkcije u dvije točke. Definicija derivata:

Derivat funkcije u tački je granica omjera prirasta funkcije u datoj tački i priraštaja argumenta kada potonji teži nuli.

Inače se može napisati ovako:

Koja je svrha pronalaženja takve granice? A evo šta je to:

derivacija funkcije u tački jednaka je tangenti ugla između ose OX i tangente na graf funkcije u datoj tački.


Fizičko značenje izvedenice: derivacija putanje u odnosu na vrijeme jednaka je brzini pravolinijskog kretanja.

Zaista, još od školskih dana svi znaju da je brzina poseban put x=f(t) i vrijeme t . prosječna brzina za određeni vremenski period:

Da biste saznali brzinu kretanja u datom trenutku t0 morate izračunati granicu:

Prvo pravilo: postavite konstantu

Konstanta se može izvaditi iz predznaka derivacije. Štaviše, to se mora uraditi. Kada rješavate primjere iz matematike, uzmite to kao pravilo - Ako možete pojednostaviti izraz, obavezno ga pojednostavite .

Primjer. Izračunajmo derivaciju:

Drugo pravilo: derivacija zbira funkcija

Derivat zbira dviju funkcija jednak je zbroju izvoda ovih funkcija. Isto vrijedi i za derivaciju razlike funkcija.

Nećemo dati dokaz ove teoreme, već ćemo razmotriti praktični primjer.

Pronađite derivaciju funkcije:

Treće pravilo: derivacija proizvoda funkcija

Derivat proizvoda dvije diferencijabilne funkcije izračunava se po formuli:

Primjer: pronađite derivaciju funkcije:

Rješenje:

Ovdje je važno govoriti o izračunavanju izvoda složenih funkcija. Derivat kompleksne funkcije jednak je proizvodu izvoda ove funkcije u odnosu na međuargument i derivacije međuargumenata u odnosu na nezavisnu varijablu.

U gornjem primjeru nailazimo na izraz:

U ovom slučaju, srednji argument je 8x na peti stepen. Da bismo izračunali derivaciju takvog izraza, prvo izračunamo derivaciju eksterne funkcije u odnosu na međuargument, a zatim pomnožimo sa derivacijom samog međuargumena u odnosu na nezavisnu varijablu.

Četvrto pravilo: derivacija količnika dvije funkcije

Formula za određivanje derivacije kvocijenta dvije funkcije:

Pokušali smo da pričamo o derivatima za lutke od nule. Ova tema nije tako jednostavna kao što se čini, stoga budite upozoreni: u primjerima često postoje zamke, stoga budite oprezni pri izračunavanju izvedenica.

Za sva pitanja o ovoj i drugim temama možete se obratiti studentskoj službi. U kratkom vremenu pomoći ćemo vam da riješite najteži test i shvatite zadatke, čak i ako nikada prije niste radili izvedene proračune.