Меню
Бесплатно
Главная  /  Препараты при кожных заболеваниях  /  Сочинение о радуге. Все про радугу как физическое явление Что такое радуга кратко для детей

Сочинение о радуге. Все про радугу как физическое явление Что такое радуга кратко для детей

Как часто после дождя мы наблюдаем радугу. Это красочное зрелище никого не оставляет равнодушным! Но увидев радугу в брызгах фонтана, а потом и на стене по диагонали от зеркала, я задумалась, что же является причиной её появления, если не дождь и не вода? Обратившись за помощью к учителю, я узнала, что причина радуги - явление дисперсии, узнала, кто его исследовал впервые, поняла, в чём оно заключается.

Радуга - одно из красивейших природных явлений, которое редко кого-то оставляет равнодушным. Когда-то люди считали радугу Божьим знамением. И это неудивительно, ведь она появляется буквально из ничего, и также таинственно исчезает.

Что же мы знаем о радуге?

Цвета радуги всегда расположены в одном и том же порядке сверху вниз: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый (помните из детства памятку порядка цветов в радуге - Каждый Охотник Желает Знать Где Сидит Фазан или Как Однажды Жан Звонарь Голубой Сломал Фонарь?).

Самая яркая полоса - красная. Каждый следующий цвет бледнее предыдущего. Фиолетовый вообще с трудом различим на фоне неба.

Каковы же составные части радуги? Это капельки воды в воздухе, солнечные лучи и наблюдатель, который видит радугу. При этом должен быть соблюден целый ритуал: мало того, чтобы солнце осветило дождь, оно должно находиться низко над горизонтом, а наблюдатель должен стоять между дождем и солнцем - спиной к солнцу, лицом к дождю. В этот момент он и видит радугу. Каким образом это происходит?

Солнечный луч освещает каплю дождя. Проникая внутрь капли, луч слегка преломляется. Как известно, лучи различного цвета преломляются по-разному, то есть внутри капли луч белого цвета распадается на составляющие его цвета. Это явление дисперсии. Пройдя каплю, свет отражается от её стенки, как от зеркала. Отраженные цветные лучи идут в обратном направлении, ещё сильнее преломляясь. Весь радужный спектр покидает каплю с той же стороны, с которой в неё проник солнечный луч.

Свет от солнца проник в каплю со стороны наблюдателя. Теперь этот луч, разложенный в цветной спектр, к нему же и возвращается. Человек видит огромную цветную радугу, раскинувшуюся по всему небу, - свет, преломленный и отраженный миллиардами дождевых капель.


Двойная радуга

Реже можно наблюдать в небе одновременно две радуги. Как правило, вторая радуга хуже различима, иногда еле заметна. Цвета в такой радуге перевёрнуты, то есть сначала идёт фиолетовый цвет. Её появление объясняется повторным отражением световых лучей внутри капли.

Ещё мы можем видеть явление радуги, когда свет преломляется капельками тумана или испарениями с поверхности моря, а в городе - у фонтана.

Опыт

Радугу можно наблюдать и с помощью водяной капли.
Посадите каплю воды на палочку или травинку. Встаньте спиной к Солнцу или другому яркому источнику света. Когда лучи света образуют с направлением глаз - капля угол около 42 градусов, прозрачная капля вдруг вспыхнет чрезвычайно чистым по тону цветом!
Каким?
Любым!
Если каплю осторожно перемещать по дуге окружности, можно увидеть все цвета радуги!

Явление дисперсии - разложения белого света в спектр (по цветам радуги) - было открыто и исследовано И. Ньютоном. Это явление говорит о сложном составе белого света. Я отправилась в Музей Науки Лондона на представление, посвящённое сэру Исааку Ньютону. Окунувшись в атмосферу XVII века, «побывав» в воссозданной (пусть даже на сцене) лаборатории учёного, я почувствовала себя естествоиспытателем.
Загляните и вы в Музей науки, узнайте больше об открытиях, сделанных Ньютоном, перейдя по ниже расположенным ссылкам.


Задача

Ответ : оказывается, радуга видна лишь тогда, когда высота солнца над горизонтом не превышает 42 градусов. 22 июня в полдень солнце стоит на небе выше, и нет возможности увидеть радугу.

Посмотрим опыт, объясняющий явление дисперсии и сложный состав белого света.

Волновые свойства света. Дисперсия.


Интересный факт

С поверхности земли радуга выглядит обычно как часть окружности, а с самолета она может представлять собой и целую окружность!

Интересные оптические физическия явления : http://class-fizika.narod.ru/w25.htm

Вы можете познакомиться с некоторыми оптическими явлениями, перейдя по ссылке на одну из страничек нашей школьной энциклопедии по математике и физике "Алгоритм успеха" .

Вывод

Явление дисперсии света, объясняющее причины возникновения радуги, позволило мне понять, почему белый свет окрашивает окружающий нас мир разноцветными красками. Одни прозрачные предметы мы видим красными, другие переливающимися разными цветами. И всё благодаря сложной природе белого света, благодаря тому, что тела по-разному отражают, преломляют и поглощают свет разных длин волн. Поэтому блестят и переливаются в солнечных лучах обыкновенный осколок прозрачного стекла и бриллиант.

Таким образом, мы доказали, что радугу мы видим благодаря особым свойствам световых волн, и у неё есть свое, интересное объяснение, как и у многих других оптических явлений в природе.

НАУЧНО - ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

Два человека, стоящие рядом, видят каждый свою радугу! Потому что в каждый момент радуга образована преломлением солнечных лучей в новых и новых каплях. Капли дождя падают. Место упавшей капли занимает другая и успевает послать свои цветные лучи в радугу, за ней следующая и так далее

Подготовили: Полозова Юлия, Стёжкина Анастасия, Химина Елена

Научный руководитель: Запорожцева Ольга Ивановна (учитель физики)


С. Лосево 2015 год

СОДЕРЖАНИЕ

1.Введение ……………………………………………………………………………………………….

2.Что такое радуга, история исследования …………………………………………………………….

3.Радуга в мифологии и религии ……………………………………………………………………….

4.История исследования ………………………………………………………………………………..

5.Физика радуги …………………………………………………………………………………………

5.1.Откуда же берётся радуга? Условия наблюдения ……………………………………………….

5.2.Почему радуга имеет форму дуги ………………………………………………………………..

5.3.Окраска радуги и вторичная радуга ………………………………………………………………

5.4.Причина радуги – преломление и дисперсия света ……………………………………………..

5.4.1.Опыты Ньютона ……………………………………………………………………………….

5.4.2.»Ньютон» в капле ……………………………………………………………………………..

5.4.3.Схема образования радуги ……………………………………………………………………

6.Необычные радуги …………………………………………………………………………………….

7.Радуга и ассоциированные термины …………………………………………………………………

1.ВВЕДЕНИЕ

Однажды, оказавшись на природе, мы наблюдали довольно красивое явление – радугу. Красота этого явления нас просто заворожила. У нас возникло довольно много опросов, которые позже мы и сформулировали в нашем проекте.

Цели проекта:

Понять как образуется радуга.

Почему она образуется всегда под одним углом?

Почему радуга имеет форму дуги?

Радуга: главная и побочная. Чем отличаются?

Почему связывают в ученом мире имя Исаака Ньютона с радугой?

И вот наше исследование началось.

2.ЧТО ТАКОЕ РАДУГА

Радуга - это вообще не объект, а оптическое явление. Возникает это явление вследствие преломления лучей света в каплях воды, и все это исключительно во время дождя. То есть, радуга - это никакой не объект, а всего лишь игра света. Но какая красивая игра, надо сказать!

На самом деле привычная для глаза человека дуга является лишь частью разноцветной окружности. Целиком же это природное явление можно лицезреть лишь с борта самолета, да и то лишь при достаточной степени наблюдательности

Первые исследования формы радуги еще в XVII веке проводил французский философ и математик Рене Декарт. Для этого ученый использовал стеклянный шар, заполненный водой, что давало возможность представить, как отражается солнечный луч в капле дождя, преломляясь и тем самым становясь видимым.

Чтобы запомнить последовательность цветов в радуге (или спектре) есть специальные простые фразы - в них первые буквы соответствуют первым буквам названий цветов:

    К ак О днажды Ж а к - З вонарь Г оловой С ломал Ф онарь.

    К аждый О хотник Ж елает З нать Г де С идит Ф азан.

Запомните их - и вы без труда в любое время сможете нарисовать радугу!

Первым, кто объяснил природу радуги был Аристотель . Он определил, что "радуга - это оптическое явление, а не материальный объект".

Элементарное объяснение явления радуги дано было еще в 1611 г. А. де-Домини в его сочинении "De Radiis Visus et Lucis", развито затем Декартом ("Les météores", 1637) и вполне разработано Ньютоном в его "Оптике" (1750).

Радуга от одной капли слабая, и в природе ее невозможно увидеть отдельно, так как капель в завесе дождя много. Радуга, которую мы видим на небосводе, образована мириадами капель. Каждая капля создает серию вложенных одна в другую цветных воронок (или конусов). Но от отдельной капли в радугу попадает только один цветной луч. Глаз наблюдателя является общей точкой, в которой пересекаются цветные лучи от множества капель. Например, все красные лучи, вышедшие из различных капель, но под одним и тем же углом и попавшие в глаз наблюдателю, образуют красную дугу радуги. Также образуют дуги все оранжевые и другие цветные лучи. Поэтому радуга круглая.

3.РАДУГА В МИФОЛОГИИ И РЕЛИГИИ

Люди давно задумывались над природой этого красивейшего явления природы. Человечество связало радугу с множеством поверий и легенд. В древнегреческой мифологии, например, радуга – это дорога между небом и землей, по которой ходила посланница между миром богов и миром людей Ирида. В Китае считали, что радуга - это небесный дракон, союз Неба и Земли. В славянских мифах и легендах радугу считали волшебным небесным мостом, перекинутым с неба на землю, дорогой, по которой ангелы сходят с небес набирать воду из рек. Эту воду они наливают в облака и оттуда она падает живительным дождем.

Суеверные люди считали, что радуга является дурным знаком. Они считали, что души умерших переходят в потусторонний мир по радуге, и если появилась радуга, это означает чью-то близкую кончину.

Конечно, с самых давних времен люди пытались дать объяснение радуге. В Африке, например, считали, что радугой является огромная змея, которая периодически вылезает из небытия для совершения своих темных дел. Однако, вразумительные объяснения относительно этого оптического чуда смогли дать только к концу семнадцатого века. Жил тогда себе помаленьку знаменитый Рене Декарт. Именно он впервые смог смоделировать преломление лучей в водяной капле. В своих исследованиях Декарт использовал стеклянный шар, наполненный водой. Однако, до конца секрет радуги он объяснить так и не смог. Зато Ньютон, заменивший это самый шар призмой, сумел-таки разложить луч света в спектр.

ОБОБЩЕНИЕ:

    В радуга - это мост , соединающий (мир людей) и (мир богов).

    В древнеиндийской - лук , бога грома и молнии.

    В - дорога , посланницы между мирами богов и людей.

    По поверьям, радуга, подобно змею, пьёт воду из озёр, рек и морей, которая потом проливается дождём.

    Прячет горшок золота в месте, где радуга коснулась земли.

    По поверьям, если пройти сквозь радугу, то можно поменять пол.

    В радуга появилась после как символ прощения человечества, и является символом союза (на иврите- брит) бога и человечества (в лице ноя) о том что потопа никогда больше не будет.(глава бейрешит)

4.ИСТОРИЯ ИССЛЕДОВАНИЯ РАДУГИ

Персидский астроном (1236-1311), а возможно, его ученик (1260-1320), видимо, был первым, кто дал достаточно точное объяснение феномена .

Общая физическая картина радуги была описана в в книге «De radiis visus et lucis in vitris perspectivis et iride». На основании опытных наблюдений он пришел к заключению, что радуга получается в результате отражения от внутренней поверхности капли дождя и двукратного преломления - при входе в каплю и при выходе из нее.

Дал более полное объяснение радуги в году в своем труде «Метеоры» в главе «О радуге».

Хотя многоцветный спектр радуги непрерывен, по в нем выделяют 7 цветов. Считают, что первым выбрал число 7 , для которого число имело специальное значение (по , или соображениям). Причём первоначально он различал только пять цветов - красный, желтый, зеленый, голубой и фиолетовый, о чём и написал в своей "Оптике".Но вспоследствии, стремясь создать соответствие между числом цветов спектра и числом основных тонов музыкальной гаммы, Ньютон добавил к пяти перечисленным цветам спектра еще два.

5.ФИЗИКА РАДУГИ

5.1. Откуда же берется радуга? Условия наблюдения

Радугу можно наблюдать только перед дождем или после него. И только в том случае, если одновременно с дождем сквозь тучи пробивается солнце, когда солнце освещает пелену падающего дождя и наблюдатель находится между солнцем и дождем. Что при этом происходит? Лучи Солнца проходят через капельки дождя. А каждая такая капелька работает как призма. То есть она разлагает белый свет Солнца на его составляющие - лучи красного, оранжевого, желтого, зеленого, глубого, синего и фиолетового цвета. Причем капельки по-разному отклоняют свет разных цветов, в результате чего белый свет разлагается в разноцветную полосу, которую называют спектром .

Вы можете видеть радугу только в том случае, если находитесь строго между солнцем (оно должно быть сзади) и дождем (он должен быть перед вами). Иначе радуги не увидеть!

Иногда, очень редко, радуга наблюдается в тех же условиях и при освещении дождевой тучи луною. То же явление радуги замечается иногда и при освещении солнцем водяной пыли, носящейся в воздухе вблизи фонтана или водопада. Когда солнце закрыто легкими облаками - первая радуга кажется иногда совершенно не окрашенной и представляется в виде белесоватой дуги, более светлой, чем фон небосвода; такую радугу называют белой.

Наблюдения явления радуги показали, что дуги ее представляют правильные части кругов, центр которых лежит всегда на линии, проходящей через голову наблюдателя и солнце; так как таким образом центр радуги при высоко стоящем солнце лежит ниже горизонта, то наблюдатель видит лишь небольшую часть дуги; при закате и восходе солнца, когда солнце на горизонте, радуга представляется в виде полудуги окружности. С вершины очень высоких гор, с воздушного шара можно увидеть радугу и в виде большей части дуги окружности, так как при этих условиях центр радуги расположен над видимым горизонтом.

ВЫВОД: Радуга появляется только тогда, когда для этого создаются подходящие условия. Солнечный свет должен светить вам в спину, а капли дождя падать где-то впереди. (Поскольку для образования радуги нужен яркий солнечный свет, это означает, что ливень уже ушел дальше или вообще прошел стороной, а вы стоите к нему лицом.)

5.2. Почему радуга имеет форму дуги.

Почему радуга полукруглая? Люди давно задавались этим вопросом. В некоторых мифах Африки радуга - это змея, которая охватывает Землю кольцом. Но теперь-то мы знаем, что радуга - это оптическое явление - результат преломления лучей света в капельках воды во время дождя. Но почему мы видим радугу именно в форме дуги, а не, например, в форме вертикальной цветной полосы?

Здесь вступает в силу закон оптического преломления, при котором луч, проходя через каплю дождя, находящуюся в определенном положении в пространстве, претерпевает 42-кратное преломление и становится видимым человеческому глазу именно в форме окружности. Вот как раз часть этой окружности вы привыкли наблюдать.

Форма радуги определяется формой капелек воды, в которых преломляется солнечный свет. А капельки воды - более или менее сферические (круглые). Проходя через каплю и преломляясь в ней, пучок белых солнечных лучей преобразуется в серию цветных воронок, вставленных одна в другую, обращенных к наблюдателю. Наружная воронка красная, в нее вставлена оранжевая, желтая, далее идет зеленая и т. д., кончая внутренней фиолетовой. Таким образом, каждая отдельная капля образует целую радугу.

Конечно, радуга от одной капли слабая, и в природе ее невозможно увидеть отдельно, так как капель в завесе дождя много. Радуга, которую мы видим на небосводе, образована мириадами капель. Каждая капля создает серию вложенных одна в другую цветных воронок (или конусов). Но от отдельной капли в радугу попадает только один цветной луч. Глаз наблюдателя является общей точкой, в которой пересекаются цветные лучи от множества капель. Например, все красные лучи, вышедшие из различных капель, но под одним и тем же углом и попавшие в глаз наблюдателю, образуют красную дугу радуги. Также образуют дуги все оранжевые и другие цветные лучи. Поэтому радуга круглая.

Радуга и есть огромный изогнутый спектр. Для наблюдателя на земле радуга обычно выглядит как дуга - часть окружности, И чем выше находится наблюдатель, тем радуга полнее. С горы или самолёта можно увидеть и полную окружность!

Интересно отметить, что два человека, стоящие рядом и наблюдающие радугу, видят ее каждый по-своему! Все это от того, что в каждый отдельный момент просмотра, радуга образуется постоянно в новых каплях воды. То есть, одна капля падает, а вместо нее появляется другая. Также, вид и цвет радуги зависит от размера капель воды. Чем капли дождя крупнее, тем ярче будет радуга. Самым насыщенным цветом в радуге является красный. Если капли мелкие, то радуга будет более широкой с ярко выраженным оранжевым цветом с краю. Надо сказать, что самую длинную волну света мы воспринимаем как красную, а самую короткую - как фиолетовую. Это касается не только случаев наблюдения за радугой, но и вообще всего и вся. То есть, вы теперь сможете с умным видом комментировать состояние, размер и цвет радуги, а также всех других видимых человеческому глазу предметов.

Два человека, стоящие рядом, видят каждый свою радугу! Потому что в каждый момент радуга образована преломлением солнечных лучей в новых и новых каплях. Капли дождя падают. Место упавшей капли занимает другая и успевает послать свои цветные лучи в радугу, за ней следующая и так далее.

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Чем сильнее сплющивание капель, тем меньше радиус образуемой ими радуги.

Есть такая группа оптических явлений, которая называется гало. Они вызваны преломлением световых лучей крошечными кристалликами льда в перистых облаках и туманах. Чаще всего гало образуются вокруг Солнца или Луны. Вот пример такого явления - сферическая радуга вокруг Солнца:

На самом деле радуга - это не полукруг, а окружность. Просто мы не видим этого в полном объеме, потому что центр окружности радуги лежит на одной прямой с нашими глазами. Вот, например, с борта самолета можно увидеть полную, круглую радугу, правда бывает это крайне редко, потому что в самолетах обычно смотрят на красивых соседок, или жрут гамбургеры, играя в AngryBirds. Так почему же радуга имеет форму полукруга? Все это потому, что капли дождя, образующие радугу, представляют собой сгустки воды с закругленной поверхностью. Свет, выходящий из этой самой капли, отражает ее поверхность. Вот и весь секрет.

ВЫВОД: Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Чем сильнее сплющивание капель, тем меньше радиус образуемой ими радуги Дуга радуги - это всего лишь отрезок световой окружности, в центре сектора обзора которого находится наблюдатель, то есть вы. И чем выше вы стоите, тем более полной будет радуга

Вид радуги - ширина дуг, наличие, расположение и яркость отдельных цветовых тонов, положение дополнительных дуг - очень сильно зависят от размера капель дождя. Чем крупнее капли дождя, тем уже и ярче получается радуга. Характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Многочисленные дополнительные дуги также имеют яркие тона и непосредственно, без промежутков, примыкают к основным радугам. Чем капли мельче, тем радуга становится более широкой и блеклой с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг. Таким образом, по виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу.

5.3.Окраска радуги и вторичная радуга

Окрашенность радужного кольца обуславливается преломлением солнечных лучей в сферических каплях дождя, отражением их от поверхности капель, а также дифракцией (от лат. diffractus – разломанный) и интерференцией (от лат. inter – взаимно и ferio – ударяю) отраженных лучей разной длины волн.

Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это вторичная радуга, в которой свет отражается в капле два раза. Во вторичной радуге «перевёрнутый» порядок цветов - снаружи находится фиолетовый, а внутри красный:

Внутренняя, наиболее часто видимая дуга окрашена с наружного края в красный цвет, с внутреннего - в фиолетовый; между ними в обычном порядке солнечного спектра лежат цвета: (красный), оранжевый, желтый, зеленый, синий и фиолетовый. Вторая, реже наблюдаемая дуга лежит над первой, окрашена обыкновенно более слабо, и порядок расположения цветов в ней обратный. Часть небосвода внутри первой дуги кажется обыкновенно очень светлой, часть небосвода над второй дугой кажется менее светлой, кольцевое же пространство между дугами кажется темным. Иногда, кроме этих двух главных элементов радуги, наблюдаются еще дополнительные дуги, представляющие слабые цветные размытые полосы, окаймляющие верхнюю часть внутреннего края первой радуги и реже - верхнюю часть внешнего края второй радуги

Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это вторичная радуга, в которой свет отражается в капле два раза. Во вторичной радуге «перевёрнутый» порядок цветов - снаружи находится , а внутри красный. Угловой радиус вторичной радуги 50-53°. Небо между двумя радугами обычно имеет заметно более темный оттенок.

В горах и других местах, где очень чистый воздух, можно наблюдать третью радугу (угловой радиус порядка 60°).

Нерезкость и размытость красок радуги объясняется тем, что источником освещения является не точка, но целая поверхность - солнце, и что отдельные более резкие радуги, образуемые отдельными точками солнца, налагаются друг на друга. Если солнце светит сквозь пелену тонких облаков, то светящимся источником является облако, окружающее солнце, на протяжении 2 -3° и отдельные цветные полосы настолько налагаются друг на друга, что глаз уже не различает цветов, а видит лишь бесцветную светлую дугу - белую радугу.

Так как дождевые капли увеличиваются по мере приближения к земле, то дополнительные радуги могут быть хорошо видимы лишь при преломлении и отражении света в высоко расположенных слоях дождевой пелены, т. е. при небольшой высоте солнца и только у верхних частей первой и второй радуги. Полная теория белой радуги дана была Пертнером в 1897 г. Часто возбуждался вопрос о том, видят ли различные наблюдатели одну и ту же радугу и представляет ли радуга, видимая в тихом зеркале большого водного резервуара, отражение непосредственно наблюдаемой радуги.

ВЫВОД: Радуга возникает, когда солнечный испытывает в капельках воды, медленно падающих в . Эти капельки разных , в результате чего свет разлагается в . Нам кажется, что из пространства по концентрическим () исходит разноцветное свечение. При этом источник яркого света всегда находится за спиной наблюдателя. Позже измерили, что отклоняется на 137 30 минут, а на 139°20’)

5.4.Причина радуги – преломление и дисперсия света

Совсем просто: Говоря просто, появление радуги можно вывести в следующую формулу: свет, проходя сквозь капельки дождя, преломляется. А преломляется он потому, что вода имеет плотность более высокую, чем воздух. Белый цвет, как известно, состоит из семи основных цветов. Вполне понятно, что все цвета имеют разную длину волны. И вот тут как раз и кроется весь секрет. Когда солнечный луч проходит сквозь каплю воды, он преломляет каждую волну по-разному.

А теперь подробнее.

5.4.1.ОПЫТЫ НЬЮТОНА

Ньютон при усовершенствовании оптических приборов заметил, что изображение окрашено по краям в радужный цвет. Его заинтересовало это явление. Он начал исследовать его более подробно. Через призму пропускался обычный белый свет, а на экране можно было наблюдать спектр, подобный цветам радуги. Сначала Ньютон думал, что это призма окрашивает белый цвет. В результате многочисленных опытов удалось выяснить, что призма не окрашивает, а раскладывает белый цвет в спектр.

ВЫВОД: лучи разных цветов выходят из призмы под разными углами.

5.4.2.«НЬЮТОН» В КАПЛЯХ

Проходя сквозь капли дождя, свет преломляется (отклоняется в сторону), поскольку вода имеет более высокую плотность, чем воздух. Известно, что белый цвет состоит из семи основных цветов - красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Эти цвета имеют разную длину волны, и капля преломляет каждую волну в разной степени, когда солнечный луч проходит через нее. Таким образом, волны различной длины и, значит, цвета выходят из капли уже в слегка отличающихся направлениях. То, что вначале было единым пучком лучей, теперь рассыпалось на свои естественные цвета, каждый из которых путешествует своим путем.

Цветные лучи, ударившись о внутреннюю стенку капли и еще больше изогнувшись, даже могут выйти наружу через ту же сторону, что и вошли. И в результате вы видите, как радуга рассыпала по небу свои цвета дугой.

Каждая капля отражает все цвета. Но с вашего фиксированного положения на земле вы воспринимаете только определенные цвета от определенных капель. Наиболее четко капли отражают красный и оранжевый цвета, поэтому они доходят до ваших глаз от самых верхних капель. Голубой и фиолетовый отражаются хуже, поэтому их вы видите от капель, расположенных чуть ниже. Желтый и зеленый отражают капли, которые находятся посередине. Сложите все цвета вместе - и вы получите радугу.

5.4.3.СХЕМА ОБРАЗОВАНИЯ РАДУГИ

1) сферическая ,

2) внутреннее ,

3) первичная радуга,

4) ,

5) вторичная радуга,

6) входящий луч света,

7) ход лучей при формировании первичной радуги,

8) ход лучей при формировании вторичной радуги,

9) наблюдатель, 10-12) область формирования радуги.

Чаще всего наблюдается первичная радуга , при которой свет претерпевает одно внутреннее отражение. Ход лучей показан на рисунке справа вверху. В первичной радуге находится снаружи дуги, её угловой составляет 40-42°.

ОБЪЯСНЕНИЕ С ТОЧКИ ЗРЕНИЯ ФИЗИКИ

Наблюдения над радугой показали, что угол, образуемый двумя линиями, мысленно проведенными из глаз наблюдателя к центру дуги радуги и к ее окружности, или угловой радиус радуги, есть величина приблизительно постоянная и равная для первой радуги около 41°, для второй 52°. Элементарное объяснение явления радуги дано было еще в 1611 г. А. де-Домини в его сочинении "De Radiis Visus et Lucis", развито затем Декартом ("Les météores", 1637) и вполне разработано Ньютоном в его "Оптике" (1750). Согласно этому объяснению явление радуги происходит вследствие преломления и полного внутреннего отражения (см. Диоптрика) солнечных лучей в каплях дождя. Если на шаровую каплю жидкости упадет луч SA, то он (фиг. 1), претерпев преломление по направлению АВ, может отразиться от задней поверхности капли по направлению ВС и выйти, снова преломившись, по направлению CD.

Луч, иначе упавший на каплю, может, однако, в точке С (фиг. 2) второй раз отразиться по CD и выйти, преломившись, по направлению DE.

Если на каплю упадет не один луч, но целый пучок параллельных лучей, то, как доказывается в оптике, все лучи, претерпевшие одно внутреннее отражение в капле воды, выйдут из капли в виде расходящегося конуса лучей (фиг. 3), ось которого расположена по направлению падающих лучей В действительности пучок выходящих из капли лучей не представляет правильного конуса, и даже все составляющие его лучи не пересекаются в одной точке, только для простоты на следующих чертежах эти пучки приняты за правильные конусы с вершиной в центре капли

Угол отверстия конуса зависит от коэффициента преломления (см. Диоптрика) жидкости, а так как коэффициент преломления для лучей различного цвета (различной длины волны), составляющих белый солнечный луч, неодинаков, то и угол отверстия конуса будет различный для лучей разного цвета, именно для фиолетовых будет меньше, чем для красных. Вследствие этого конус будет окаймлен цветным радужным краем, красным извне, фиолетовым внутри, причем, если капля водяная, то половина углового отверстия конуса SOR для красного цвета будет около 42°, для фиолетового (SOV ) 40,5°. Исследование распределения света внутри конуса показывает, что почти весь свет сосредоточен в этой цветной кайме конуса и чрезвычайно слаб в центральных частях его; таким образом мы можем рассматривать лишь яркую цветную оболочку конуса, так как все внутренние лучи его слишком слабы, чтобы быть восприняты зрением.

Подобное же исследование лучей, дважды отразившихся в капле воды, покажет нам, что они выйдут такой же конической радужной оболочкой V"R" (фиг. 3), но красной с внутреннего края, фиолетовой с внешнего, причем для водяной капли половина углового отверстия второго конуса будет равна 50° для красного (SOR" ) и 54° для фиолетового края (SOV ) .

Представим себе теперь, что наблюдатель, глаз которого находится в точке О (фиг. 4), смотрит на ряд вертикальных дождевых капель А, В , С, D, E... , освещенных параллельными солнечными лучами, идущими по направлению SA, SB, SC и т. д.; пусть все эти капли расположены в плоскости, проходящей через глаз наблюдателя и солнце; каждая такая капля будет, по предыдущему, излучать две конических световых оболочки, общей осью которых будет падающий на каплю солнечный луч.

Пусть капля В расположена так, что один из лучей, образующих внутреннюю оболочку первого (внутреннего) конуса, при продолжении пройдет через глаз наблюдателя; тогда наблюдатель увидит в В фиолетовую точку. Несколько выше капли В будет расположена такая капля С, что луч, идущий от внешней поверхности оболочки первого конуса, попадет в глаз и даст в нем впечатление красной точки в С ; капли, промежуточные между В и С, дадут в глазу впечатление точек синих, зеленых, желтых и оранжевых. В сумме - глаз увидит в этой плоскости вертикальную радужную линию с фиолетовым концом внизу и красным наверху; если проведем через О и солнце линию SO, то угол, образуемый ею с линией ОВ , будет равен полуотверстию первого конуса для фиолетовых лучей, т. е. 40,5°, а угол КОС будет равен полуотверстию первого конуса для красных лучей, т. е. 42°. Если поворачивать угол КОВ вокруг OK, то опишет коническую поверхность и каждая капля, лежащая на круге пересечения этой поверхности с дождевой пеленой, даст впечатление светлой фиолетовой точки, а все точки вместе дадут фиолетовую дугу окружности с центром в К ; точно так же образуется красная и промежуточные дуги, и в сумме глаз получит впечатление светлой радужной дуги, фиолетовой внутри, красной извне - первой радуги.

Приложив те же рассуждения ко второй внешней световой конической оболочке, излучаемой каплями и образованной солнечными лучами, дважды в капле отраженными, получим более широкую вторую концентрическую радугу с углом КОЕ, равным для внутреннего красного края - 50°, а для внешнего фиолетового - 54°. Вследствие двукратного отражения света в каплях, дающих эту вторую радугу, она будет значительно менее яркой, чем первая. Капли D, лежащие между С и Е, совершенно не излучают света в глаз, и потому пространство между двумя радугами будет казаться темным; от капель, лежащих ниже В и выше Е, в глаз попадут белые лучи, исходящие из центральных частей конусов и потому весьма слабые; это объясняет, почему пространство под первой и над второй радугой кажется нам слабо освещенным.

ВЫВОД: Элементарная теория радуги очевидно указывает, что различные наблюдатели видят радуги, образованные различными каплями дождя, т. е. разные радуги, и что кажущееся отражение радуги есть та радуга, которую видел бы наблюдатель, помещенный под отражающей поверхностью на таком расстоянии от нее вниз, на каком он находится над нею. Наблюдавшиеся в редких случаях, в особенности на море, пересекающиеся эксцентричные радуги объясняются отражением света от водной поверхности за спиной наблюдателя и появлением, таким образом, двух источников света (солнца и отражения его), дающих каждый свою радугу. - не воспринимает ). Поэтому лунная радуга выглядит белесой; но чем ярче свет, тем «цветнее» будет радуга, т.к. у человека яркий свет включает восприятие цветовых рецепторов - .

Центр окружности, которую описывает радуга, всегда лежит на прямой, проходящей через (Луну) и глаз наблюдателя, то есть одновременно видеть солнце и радугу без использования зеркал невозможно. Для наблюдателя на земле она обычно выглядит, как часть окружности, чем выше точка зрения, тем радуга полнее - с горы или самолёта можно увидеть и целую .

Обычной наблюдается простая радуга-дуга, но при определённых обстоятельствах можно увидеть двойную радугу, а с самолёта - перевёрнутую или даже кольцевую.

Кольцевая радуга 10 июля 2005

радуга в лесу радуга с борта самолёта

радуга в облаках радуга над морем

Мы привыкли наблюдать радугу как дугу. На самом деле эта дуга является лишь частью разноцветной окружности. Целиком же это природное явление можно наблюдать лишь на большой высоте, например, с борта самолета.

Есть такая группа оптических явлений, которая назвается гало. Они вызваны преломлением световых лучей крошечными кристалликами льда в перистых облаках и туманах. Чаще всего гало образуются вокруг Солнца или Луны. Вот пример такого явления - сферическая радуга вокруг Солнца: Ирисовая напоминает сектора радуги

Радуга также фигурирует во многих народных приметах, связанных с предсказанием погоды. Например, радуга высокая и крутая предвещает хорошую погоду, а низкая и пологая - плохую.

8.ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

Радуга - одно из самых удивительных явлений природы. Что такое радуга? Как она появляется? Эти вопросы интересовали людей во все времена. Даже Аристотель пытался разгадать ее тайну. Существует множество поверий и легенд, связанных с ней (дорога на тот свет, связь между небом и землей, символ изобилия и т.п.). Некоторые народы верили, что тот, кто пройдет под радугой, поменяет свой пол.

Ее красота поражает и восхищает. Глядя на этот разноцветный «волшебный мост», хочется верить в чудеса. Появление радуги в небе оповещает, что ненастье закончилось и пришла ясная солнечная пора.

Когда бывает радуга? Ее можно наблюдать во время дождя или после ливня. Но для ее возникновения недостаточно молнии и грома. Она появляется лишь в том случае, если сквозь тучи пробивается солнце. Нужны определенные условия для того, чтобы ее можно было заметить. Необходимо находиться между дождем (он должен быть спереди) и солнцем (оно сзади). Ваши глаза, центр радуги и солнце должны быть на одной линии, иначе этого волшебного моста вам не видать!

Наверняка многие замечали, что бывает, когда лучик падает на мыльный пузырь или на край скошенного зеркала. Он разделяется на разнообразные цвета (зеленый, синий, красный, желтый, фиолетовый и т.д.). Предмет, который разбивает луч на составляющие цвета, называют призмой. А образующуюся разноцветную линию - спектром.

Так что такое и есть изогнутый спектр, цветная полоса, образовавшаяся в результате разделения луча света при прохождении через дождевые капли (они в этом случае являются призмой).

Цвета солнечного спектра располагаются в определенном порядке. С одной стороны - красный, затем оранжевый, рядом - желтый, зеленый, голубой, синий, фиолетовый. Радуга хорошо видна, пока капельки дождя падают равномерно и часто. Чем чаще, тем она ярче. Таким образом, в дождевой капле происходят сразу три процесса: преломление, отражение и разложение света.

Где увидеть радугу? У фонтанов, водопадов, на фоне капель, разбрызгиваемых и т.п. Ее расположение на небе зависит от положения солнца. Можно полюбоваться всем радужным кругом, если оказаться высоко в небе. Чем выше солнце поднимается над горизонтом, тем меньше становится цветной полукруг.

Первая попытка объяснить, что такое радуга, была предпринята в 1611 году Антонио Доминисом. Его объяснение отличалось от библейского, поэтому он был приговорен к смерти. В 1637 году Декарт дал научное явлению на основании преломления и отражения солнечного света. В то время еще не знали о разложении луча на спектр, то есть дисперсии. Поэтому радуга Декарта оказалась белой. Через 30 лет ее «раскрасил» Ньютон, дополнив теорию коллеги объяснениями преломления цветных лучей в каплях дождя. Несмотря на то, что теории уже более 300 лет, она правильно формулирует, что такое радуга,основные ее особенности (расположение цветов, положение дуг, угловые параметры).

Поразительно, как привычныые для нас свет и вода создают вместе совершенно новое, невообразимой красоты, произведение искусства, подаренное нам природой. Радуга всегда вызывает всплеск эмоций и надолго остается в памяти.

Все мы видели, как в небе появляется разноцветная дуга. Но что такое радуга? Как образуется это чудесное явление? Тайна природы радуги всегда завораживала человечество, и люди старались найти объяснение происходящему с помощью легенд и мифов. Сегодня мы поговорим именно об этом. Что такое радуга и как она образуется?

Мифы

Всем известно, что древние люди были склонны обожествлять и мистифицировать большинство природных явлений, будь то гром и молния или землетрясение. Не обошли они стороной и радугу. Что же нам известно от наших предков? Что такое радуга и как она получается?

  • Древние викинги верили, что радуга - это мост Биврёст, соединяющий землю людей Митгард и богов (Асгард).
  • Индийцы считали, что радуга - это лук, принадлежащий богу грома Индре.
  • Греки не ушли далеко от своих современников и также считали радугу дорогой посланницы богов Ириды.
  • Армяне решили, что это не природное явление, а пояс Бога солнца (но так и не определившись, они поменяли "специальность" Богу и "заставили" его отвечать за искусство и науку).
  • Австралийцы пошли дальше и одушевили радугу, сделав её змеем-покровителем воды.
  • По африканским мифам, там, где радуга касается земли, можно найти клад.
  • Интересно, что общего у африканцев и ирландцев, ведь их Лепрекон также прячет горшок с золотом на конце радуги.

Можно еще долго перечислять мифы и легенды народов со всего мира, и у каждого мы бы нашли что-нибудь интересное. Но что такое радуга на самом деле?

История

Первые осознанные и близкие к реальности выводы по рассматриваемому нами атмосферному явлению дал Аристотель. Это было всего лишь предположение, однако он стал первым человеком, который перевёл радугу из раздела мифов в реальный мир. Аристотель вывел гипотезу о том, что радуга - это не предмет или вещество, и даже не реальный объект, а просто визуальный эффект, изображение, сродни миражу в пустыне.

Однако первое научное исследование и обоснование проводил арабский ученый-астроном Кутб ад-Дин аш-Ширази. Одновременно с ним подобные исследования проводили немецкие исследователи.

В 1611 году была создана первая физическая теория обоснования радуги. Марк Антоний де Доминис на основе наблюдений и опытов пришел к выводу, что радуга образуется из-за преломления света в каплях воды, содержащихся в атмосфере в дождливую погоду. Если быть более точным, то он описал полную картину возникновения радуги за счет двойного преломления света на входе и выходе из капли воды.

Физика

Так что такое радуга, определение которой дал еще Аристотель? Как она образуется? Наверное, все слышали о существовании инфракрасного и ультрафиолетового излучения? Это "свет", который исходит от любых материальных объектов в разных диапазонах измерения.

Так вот, солнечный свет состоит из лучей с разной длиной волны и включает в себя все виды излучения от "теплого" красного до "холодного" фиолетового. При прохождении через капли воды свет разделяется на лучи с разной длиной волны (и разным цветом), причем происходит это дважды, при попадании в воду луч разделяется и немного отклоняется от своей траектории, а при выходе отклоняется еще больше, в результате чего радугу можно увидеть невооруженным глазом.

Для детей

Конечно, про радугу вам расскажет любой, кто хоть на тройку закончил школу. Но что делать, если к родителю подойдет ребёнок и спросит: "Мам, а что такое радуга? Откуда она берётся?". Проще всего объяснить так: "Это солнечные лучики, проходя через дождь, переливаются". В младшем возрасте детям не обязательно знать физическую подоплёку явления.

Всем известные цвета радуги имеют строгий порядок и всегда одинаковую последовательность. Как мы уже выяснили, это результат физических процессов. Однако почему-то многие взрослые (родители, воспитатели в детсадах) требуют от детей знать правильный порядок расположения цветов в радуге. Для более быстрого запоминания были придуманы выражения, в которых первые буквы слов символизируют определённый цвет. Вот наиболее известные формы:


Как видите, можно отследить правильный порядок расположения цветов по первой букве (красный-оранжевый-желтый-зелёный-голубой-синий-фиолетовый). Кстати, Исаак Ньютон выделял не голубой и синий цвета, а синий и индиго соответственно. Почему названия цветов были изменены, остаётся загадкой. А вообще, неужели так важно знать, что такое радуга, для того чтобы любоваться ею?

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение 3

Глава 1. Литературный анализ по теме исследования 5

1.1. Исторический аспект изучения темы 5

1.2. Основные понятия изучаемой проблемы 6

1.3. Характеристика видов радуги 9

Глава 2. Экспериментальная часть 11

2.1. Методика экспериментальной работы 11

2.2. Результаты экспериментальной работы 14

Заключение 17

Список литературы 18

Приложение 1. 19

Приложение 2. 21

Приложение 3. 22

Приложение 4. 26

Приложение 5. 28

Введение

Актуальность.

Наверное, нет человека, который не любовался бы радугой. Это великолепное красочное явление на небосводе издавна привлекало всеобщее внимание. Её считали доброй предвестницей, приписывали ей магические свойства. Все знают, что волшебными свойствами радуга может обладать лишь в сказках, а в действительности радуга - это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя. Однако не все знают, как именно образуется радуга. Когда и как её можно увидеть? Можно ли экспериментально исследовать радугу? Как получить искусственную радугу? Ответы на эти и многие другие вопросы даются в этой работе.

Объект исследования: природное явление - радуга.

Предмет исследования: способы получения радуги.

Я выдвинула следующую гипотезу: используя разные лабораторные установки, можно получить искусственную радугу и исследовать ее физические свойства в лабораторных условиях.

Цель моего исследования: выявить физические свойства радуги и экспериментально апробировать способы её получения в лабораторных условиях.

Поставленную цель я достигала, решая задачи:

    собрать информацию о способах получения, свойствах и видах радуги;

    сконструировать лабораторные установки для получения радуги и апробировать их в домашних условиях;

    проанализировать теоретические и практические результаты своей работы.

Этапы исследования:

    собрать информацию о видах и свойствах радуги (спросить у родителей, прочитать в книге, найти в Интернете);

    подобрать экспериментальные работы по получению искусственной радуги;

    сконструировать лабораторные установки для получения искусственной радуги;

    провести эксперимент;

    сравнить теоретический и практический результат по получению искусственной радуги;

    оформить научно-исследовательскую работу;

    подготовить доклад и презентацию к защите работы.

Методы и приемы: наблюдение, эксперимент, анализ.

Глава 1. Литературный анализ по теме исследования

    1. Исторический аспект изучения темы

В русских летописях радуга называется «райской дугой» или сокращенно «райдуга». В Древней Греции радугу олицетворяла богиня Ирида («Ирида» означает «радуга»). По представлениям древних греков, радуга соединяет небо и землю, и Ирида была посредницей между богами и людьми. Радуга физическое явление. 8

Радуга всегда связывается с дождем. Она может появиться и перед дождем, и во время дождя, и после него, в зависимости от того, как перемещается облако, дающее ливневые осадки.

Первая попытка объяснить радугу как естественное явление природы была сделана в 1611 г. архиепископом Антонио Доминисом. Его объяснение радуги противоречило библейскому, поэтому он был отлучен от церкви и приговорен к смертной казни. Антонио Доминис умер в тюрьме, не дождавшись казни, но его тело и рукописи были сожжены. 8

Научное объяснение радуги впервые дал Рене Декарт в 1637 г. Декарт объяснил радугу на основании законов преломления и отражения солнечного света в каплях выпадающего дождя. В то время еще не была открыта дисперсия — разложение белого света в спектр при преломлении. Поэтому радуга Декарта была белой.

Спустя 30 лет Исаак Ньютон, открывший дисперсию белого света при преломлении, дополнил теорию Декарта, объяснив, как преломляются цветные лучи в каплях дождя. 3

Несмотря на то, что теория радуги Декарта — Ньютона создана более 300 лет назад, она правильно объясняет основные особенности радуги: положение главных дуг, их угловые размеры, расположение цветов в радугах различных порядков.

    1. Основные понятия изучаемой проблемы

Обычная радуга — это цветная дуга угловым радиусом 42°, видимая на фоне завесы ливневого дождя или полос падения дождя, часто не достигающих поверхности Земли. Радуга видна в стороне небосвода, противоположной Солнцу, и обязательно при Солнце, не закрытом облаками. Центром радуги является точка, диаметрально противоположная Солнцу, — антисолярная точка. Внешняя дуга радуги красная, за нею идет оранжевая, желтая, зеленая дуги и т. д., кончая внутренней фиолетовой. 2

Дело в том, что более или менее сферическая капля, освещенная параллельным пучком лучей солнечного света, может образовать радугу только в виде круга.

Сколько же лучей радуги в пучке света, падающего на каплю? Их много, по существу, они образуют целый цилиндр. Геометрическое место точек их падения на каплю это целая окружность.

В результате прохождения через каплю и преломления в ней цилиндр белых лучей преобразуется в серию цветных воронок, вставленных одна в другую. Наружная воронка красная, в нее вставлена оранжевая, желтая, далее идет зеленая и т. д., кончая внутренней фиолетовой. 4

Размер и форма капель и их влияние на вид радуги

Вид радуги — ширина дуг, расположение и яркость цветовых тонов, положение дополнительных дуг очень сильно зависят от размера капель дождя. По виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу. Чем крупнее капли дождя, тем радуга получается уже и ярче. Особенно характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Чем капли мельче, тем радуга становится более широкой и блеклой, с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг. 8

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Вертикальное сечение таких капель приближается к эллипсу.

Можно ли видеть целый круг радуги? С поверхности Земли можно наблюдать радугу в лучшем случае в виде половины круга, когда Солнце находится на горизонте. Когда Солнце поднимается, радуга уходит под горизонт. С самолета или с вертолета можно наблюдать радугу в виде целого круга. 8

Расчеты по формулам дифракционной теории, выполненные для капель разного размера, показали, что весь вид радуги — ширина дуг, наличие, расположение и яркость отдельных цветовых тонов, положение дополнитель-ных дуг очень сильно зависят от размера капель дождя. Приведем основные характеристики внешнего вида радуги для капель разных радиусов. 5

Радиус капель 0,5 —1 мм. Наружный край основной радуги яркий, темно-красный, за ним идет светло-красный и далее чередуются все цвета радуги. Особенно яркими кажутся фиолетовый и зеленый. Дополнительных дуг много (до пяти), в них чередуются фиолетово-розовые тона с зелеными. Дополнительные дуги непосредственно примыкают к основным радугам.

Радиус капель 0,25 мм. Красный край радуги стал слабее. Остальные цвета видны по-прежнему. Несколько фиолетово-розовых дополнительных дуг сменяются зелеными.

Радиус капель 0,10 0,15 мм. Красного цвета в основной радуге больше нет. Наружный край радуги оранжевый. В остальном радуга хорошо развита. Дополнительные дуги становятся все более желтыми. Между ними и между основной радугой и первой дополнительной появились просветы.

Радиус капель 0,04 0,05 мм. Радуга стала заметно шире и бледнее. Наружный край ее бледно-желтый. Самым ярким является фиолетовый цвет. Первая дополнительная дуга отделена от основной радуги довольно широким промежутком, цвет ее белесый, чуть зеленоватый и беловато-фиолетовый.

Радиус капель 0,03 мм. Основная радуга еще более широкая с очень слабо окрашенным чуть желтоватым краем, содержит отдельные белые полосы.

Радиус капель 0,025 мм и менее. Радуга стала совсем белой. Она при-мерно в два раза шире обычной радуги и имеет вид блестящей белой полосы. Внутри нее могут быть дополнительные окрашенные дуги, сначала бледно-голубые или зеленые, затем белесовато-красные. 1

Таким образом, по виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу. В целом, чем крупнее капли дождя, тем радуга получается уже и ярче, особенно характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Многочисленные дополнительные дуги также имеют яркие тона и непо-средственно, без промежутков, примыкают к основным радугам. Чем капли мельче, тем радуга становится более широкой и блеклой с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг.

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Вертикальное сечение таких капель приближается к элипсу. Расчеты показали, что минимальное отклонение красных лучей при прохождении через сплющенные капли радиусом 0,5 мм составляет 140°. Поэтому угловой размер красной дуги будет не 42°, а только 40°. Для более крупных капель, например радиу-сом 1,0 мм, минимальное отклонение красных лучей составит 149°, а крас-ная дуга радуги будет иметь размер 31°, вместо 42°. Таким образом, чем сильнее сплющивание капель, тем меньше радиус образуемой ими радуги. 7

    1. Характеристика видов радуги

Бывают ли радуги без дождя или без полос падения дождя? Бывают — в лаборатории. Искусственные радуги создавались в результате преломления света в одной подвешенной капельке дистиллированной воды, воды с сиропом или прозрачного масла. Размеры капель варьировались от 1,5 до 4,5 мм. Тяжелые капли вытягивались под действием силы тяжести, и их сечение представляло собою эллипс. При освещении капельки лучом гелий-неонового лазера появлялись не только первая и вторая радуги, но и необычайно яркие третья и четвертая, с центром вокруг источника света (в данном случае лазера). Иногда удавалось получать даже пятую и шестую радуги. Эти радуги, как первая и вторая, снова были в стороне, противоположной источнику. Правда, эти радуги были одноцветными, красными, так как образованы не белым источником света, а монохроматическим красным лучом. 8

Туманная радуга

В природе встречаются белые радуги. Они появляются при освещении солнечными лучами слабого тумана, состоящего из капелек радиусом 0,025 мм или менее. Их называют туманными радугами. Кроме основной радуги в виде блестящей белой дуги с едва заметным желтоватым краем наблюдаются иногда окрашенные дополнительные дуги: очень слабая голубая или зеленая дуга, а затем белесовато-красная.

Аналогичного вида белую радугу можно увидеть, когда луч прожектора, расположенного сзади вас, освещает интенсивную дымку или слабый туман перед вами. Даже уличный фонарь может создать, хотя и очень слабую, белую радугу, видимую на темном фоне ночного неба. 6

Лунные радуги

Аналогично солнечным могут возникнуть и лунные радуги. Они более слабые и появляются при полной Луне. Лунные радуги явление более редкое, чем солнечные. Для их возникновения необходимо сочетание двух условий: полная Луна, не закрытая облаками, и выпадение ливневого дождя или полос его падения (не достигающих Земли).

Радуги, образованные лунными лучами, не радужные и выглядят как светлые, совершенно белые дуги. Отсутствие красного цвета у лунных радуг даже при крупных каплях дождя объясняется низким уровнем освещения ночью, при котором полностью теряется чувствительность глаза к лучам красного цвета. Остальные цветные лучи радуги также теряют в значительной степени свой цветовой тон из-за неокрашенности ночного зрения человека. 8

Глава 2. Экспериментальная часть 2.1. Методика экспериментальной работы

Для получения радуги в лабораторных условиях существует множество способов и методик, мы в своей работе использовали следующие:

Опыт 1. Радуга в тазике.

Оборудование и материалы: стеклянная ёмкость; вода; зеркало.

Ход работы:

Солнечным днём наполни большую стеклянную ёмкость водой. Затем опусти в воду зеркало. Подвигай это зеркало и найди такое его положение, при котором на стенках комнаты образуется радуга. Можешь зафиксировать положение зеркала.Дай воде успокоиться для того, чтобы радуга получилась более отчетливой, а потом нарисуй или сфотографируй радугу так, как ты ее увидел.

Оборудование и материалы: стеклянная ёмкость; вода; зеркало; белый лист бумаги; фонарик.

Ход работы:

Солнечным днём наполни большую стеклянную ёмкость водой. Затем опусти в воду зеркало. Подвигай это зеркало и найди такое его положение, при котором на стенках комнаты образуется радуга. Можешь зафиксировать положение зеркала.Дай воде успокоиться для того, чтобы радуга получилась более отчетливо. Дополнительно поставить перед тазиком с водой и зеркалом лист белой бумаги, направите свет фонарика на погруженную в воду часть зеркала, радуга появится на листе бумаги. Потом нарисуй или сфотографируй радугу так, как ты ее увидел.

Опыт 3. Радуга в коробке.

Оборудование и материалы: картонная коробка; канцелярский нож; компакт-диск типа CD-R; пластмассовая трубка; клей; фонарик; свечка; люминесцентная лампа.

Ход работы:

Возьмите большую картонную коробку. В ее боковой стенке прорежьте вертикальную щель высотой в несколько сантиметров и шириной от 3 до 5 миллиметров. Она будет придавать потоку света форму тонкой полоски, простирающейся в вертикальной плоскости. На противоположной стенке коробки поместить чистый компакт-диск типа CD-R.

Теперь в боковой стенке коробки прорежьте отверстие под трубку для наблюдения спектра. Несмотря на то, что трубка имеет круглое сечение, отверстие должно быть овальным, чтобы ее можно было поворачивать в горизонтальной плоскости.

Вставьте трубку в отверстие. Направьте щель на источник света. Загляните в трубку, и, поворачивая ее, найдите спектр и рассмотрите его.

Попробуйте пронаблюдать с помощью спектроскопа спектры различных источников света: солнца, лампы накаливания, люминесцентной лампы, свечи, светодиодов разных цветов.

Спектры, полученные при помощи спектроскопа, можно фотографировать веб-камерой или цифровым фотоаппаратом.

Оборудование и материалы: лист фанеры, нож, фонарь, лист белой бумаги, компакт-диск, карандаши, фотоаппарат.

Ход работы:

Возьмите лист фанеры, пластмассы или другого легкообрабатываемого непрозрачного материала. Его размеры должны быть примерно 300 на 300 миллиметров, толщина не критична. Прорежьте в его середине прямую щель длиной около 100 и шириной порядка 4 миллиметров.

Расположите лист вертикально. Сделайте для него подставку, чтобы его не требовалось держать в руках, ведь вам придется удерживать в них еще два предмета, затемните помещение.

Включите точечный источник света с непрерывным спектром. Это может быть, например, карманный фонарик на основе лампочки накаливания. Расположите его примерно в 500 миллиметрах от щели.

С противоположной стороны щели разместите под углом в 90 градусов лист обычной бумаги. Закрепите его.

Возьмите обычный компакт-диск (темный, например, RW, не подойдет). Расположите его между щелью и листом бумаги так, чтобы на него проецировался спектр.

Удерживая фонарик и диск, попросите помощника сфотографировать получившуюся радугу.

Держите фонарик и диск так, чтобы спектр не сдвигался. Обратите внимание на то, что к сдвигу диска он заметно чувствительнее, чем к сдвигу фонарика.

Затем попросите помощника взять цветные карандаши или фломастера. Пусть помощник обведет спектр карандашами или фломастерами тех цветов, которые соответствуют проецируемым.

Снимите получившийся лист, после чего отключите фонарь и разберите установку. Включите свет в помещении. Сравните получившиеся фотографию и рисунок между собой.

Ответьте на вопрос, почему цвета в любом спектре всегда расположены в одинаковом порядке?

Опыт 5. Радужный фонтан.

Оборудование и материалы: консервная банка, ножницы, электрическая лампочка, вода.

Ход работы:

В высокой консервной банке на высоте 5 см от дна надо просверлить круглое отверстие диаметром 5 - 6 мм. Электрическую лампочку с патроном надо аккуратно обернуть целлофановой бумагой и расположить ее напротив отверстия. В банку надо налить воды. Открыв отверстие, получим струю, которая будет освещена изнутри. В темной комнате она ярко светится и опят выглядит очень эффектно.

2.2. Результаты экспериментальной работы

Мы с мамой и папой дома проделали опыты, описанные в пункте 2.1. Результаты, полученные в ходе экспериментальной части работы можно описать следующим образом:

Опыт 1. Радуга в тазике.

Наполнили стеклянную чашку водой. Затем опустили в воду зеркало и осветили его фонариком. Подвигали зеркало, и нашли такое положение, при котором на стенках комнаты образовалась радуга. Когда вода успокоилась, радуга получилась более отчетливой.

Наблюдения:

Мы получили вид радуги, отражающийся на зеркале (приложение 1). Пучок света, отражённый зеркалом на выходе из воды, преломляется. Цвета, составляющие белый цвет, имеют разные углы преломления, поэтому они падают в разные точки и становятся видимыми.

Опыт 2. Радуга на белом листе.

Все осталось из опыта 1, только дополнительно поставили перед чашкой с водой лист белой бумаги, направили свет фонарика на зеркало, радуга появится на листе бумаги.

Наблюдения:

Нам удалось поймать зеркалом лучик, который подарил нам вот такую радугу... (приложение 2).

Опыт 3. Радуга в коробке.

Мы взяли большую картонную коробку. В ее боковой стенке прорезали вертикальную щель, на противоположной стенке коробки поместили чистый компакт-диск. В боковой стенке коробки прорезали отверстие под трубку для наблюдения спектра.

Вставили трубку в отверстие. Направили источник света на щель. Заглянули в трубку, и, поворачивая ее, нашли спектр.

Мы сфотографировали спектры, полученные при помощи домашнего спектроскопа, и сравнили их.

Наблюдения:

Освещая диск разными источниками света(фонариком, лампой накаливания) мы получили спектры одинакового состава, что видно на фотографиях (приложение 3).

Опыт 4. Изучение расположения цветов в радуге.

Из листа фанеры мы сделали подставку. В середине одной стороны прорезали прямую щель. Расположили лист белой бумаги вертикально. Затемнили помещение. Компакт-диск разместили между щелью и листом бумаги так, чтобы на него падали лучи света. Карманным фонариком осветили щель.

Наблюдения:

На листе бумаги появляется радуга (приложение 4), цвета в любом спектре всегда расположены в одинаковом порядке.

Опыт 5. Радужный фонтан.

В высокой консервной банке папа просверлил круглое отверстие. В банку мы налили воды. Электрическую лампочку с патроном аккуратно расположили напротив отверстия. В темной комнате открыли отверстие.

Наблюдения:

Получили струю, которая освещена изнутри, она ярко светится. На пути струи подставили палец, и вода разбрызгивалась в виде фонтан, у которого выбрасываемые струи освещаются изнутри (приложение 5).

Заключение

Выполнив эту работу, я убедилась, как много удивительного, поучительного, полезного для практики может заключаться, в хорошо знакомом явлении преломлении света.

В ходе своего исследования я сформулировала следующие выводы :

    Для получения радуги в лабораторных условиях существует множество способов и методик.

    В экспериментальной части приведено описание нескольких установок, с помощью которых искусственная радуга была получена в домашних условиях.

    Полученные результаты при исследовании радуги могут быть интересны и полезны как для стороннего наблюдателя, так и для школьников.

В заключении необходимо отметить, что радуга - очень интересное явление, изучение которого требует больших усилий и является очень познавательным, а практическая ценность работы состоит в том, что полученные материалы могут быть использованы учителями начальных классов при проведении уроков и занятий по ознакомлению с окружающим миром.

Список литературы

    «Большая Энциклопедия Кирилла и Мефодия».

    Белкин И.К. Что такое радуга? - «Квант» 1984, № 12, С. 20.

    Булат В.Л. Оптические явления в природе. М.: Просвещение, 1974 г., 143 с.

    Гегузин Я.Е. «Кто творит радугу?» - «Квант» 1988г., № 6, С. 46.

    Зверева С.В. В мире солнечного света. - Л.: Гидрометеоиздат, 1988.

    Майер В.В., Майер Р.В. «Искусственная радуга» - «Квант» 1988 г., № 6, С.48.

    Тарасов Л.В. Физика в природе. - М.: Просвещение, 1988.

    http://www.allbest.ru

Приложение 1.

Фотографии результатов опыта 1

Рисунок 1. Подготовка оборудования к работе.

Рисунок 2. Устанавливаем зеркало в тарелку с водой.

Рисунок 3. Общий вид радуги на стене.

Рисунок 4. Увеличенное отражение радуги.

Приложение 2.

Фотографии результатов опыта 2

Рисунок 5. Отражение радуги на листе бумаги.

Рисунок 6. Вид радуги на листе белой бумаги.

Приложение 3.

Фотографии результатов опыта 3

Рисунок 7. Подготовка спектроскопа из картонной коробки.

Рисунок 8. Подготовка спектроскопа из картонной коробки.

Рисунок 9. Освещение диска с помощью фонарика.

Рисунок 10. Наблюдаем за появлением радуги в коробке.

Рисунок 11. Сектор радуги, который мы получили при освещении фонариком со светодиодными лампами.

Рисунок 12. Сектор радуги, который мы получили при освещении фонариком со светодиодными лампами.

Рисунок 13. Сектор радуги, который мы получили при освещении лампой накаливания.

Рисунок 14. Сектор радуги, который мы получили при освещении лампой накаливания.

Приложение 4.

Фотографии результатов опыта 4

Рисунок 15. Макет из фанеры.

Рисунок 16. Компакт-диск, с помощью которого будет преломляться свет.

Рисунок 17. Радуга на листе бумаги (А и Б).

Приложение 5.

Фотографии результатов опыта 5

Рисунок 18. Установка для получения радужного фонтана.

Рисунок 19. Наливаем воды в установку для получения радужного фонтана.

Рисунок 20. Открываем отверстие и получаем радужную струю.

Рисунок 21. Получение радужного фонтана.