Меню
Бесплатно
Главная  /  Пигментные пятна  /  Находить наименьшее значение функции на промежутке. Наибольшее и наименьшее значение функции на отрезке

Находить наименьшее значение функции на промежутке. Наибольшее и наименьшее значение функции на отрезке

Стандартный алгоритм решения таких заданий предполагает после нахождения нулей функции, определение знаков производной на интервалах. Затем вычисление значений в найденных точках максимума (или минимума) и на границе интервала, в зависимости от того какой вопрос стоит в условии.

Советую поступать немного по-другому. Почему? Писал об этом .

Предлагаю решать такие задания следующим образом:

1. Находим производную.
2. Находим нули производной.
3. Определяем какие из них принадлежат данному интервалу.
4. Вычисляем значения функции на границах интервала и точках п.3.
5. Делаем вывод (отвечаем на поставленный вопрос).

В ходе решения представленных примеров подробно не рассмотрено решение квадратных уравнений, это вы должны уметь делать. Так же должны знать .

Рассмотрим примеры:

77422. Найдите наибольшее значение функции у=х 3 –3х+4 на отрезке [–2;0].

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = –1.

Вычисляем значения функции в точках –2, –1 и 0:

Наибольшее значение функции равно 6.

Ответ: 6

77425. Найдите наименьшее значение функции у = х 3 – 3х 2 + 2 на отрезке .

Найдём производную заданной функции:

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = 2.

Вычисляем значения функции в точках 1, 2 и 4:

Наименьшее значение функции равно –2.

Ответ: –2

77426. Найдите наибольшее значение функции у = х 3 – 6х 2 на отрезке [–3;3].

Найдём производную заданной функции:

Найдем нули производной:

Указанному в условии интервалу принадлежит точка х = 0.

Вычисляем значения функции в точках –3, 0 и 3:

Наименьшее значение функции равно 0.

Ответ: 0

77429. Найдите наименьшее значение функции у = х 3 – 2х 2 + х +3 на отрезке .

Найдём производную заданной функции:

3х 2 – 4х + 1 = 0

Получим корни: х 1 = 1 х 1 = 1/3.

Указанному в условии интервалу принадлежит только х = 1.

Найдём значения функции в точках 1 и 4:

Получили, что наименьшее значение функции равно 3.

Ответ: 3

77430. Найдите наибольшее значение функции у = х 3 + 2х 2 + х + 3 на отрезке [– 4; –1].

Найдём производную заданной функции:

Найдем нули производной, решаем квадратное уравнение:

3х 2 + 4х + 1 = 0

Получим корни:

Указанному в условии интервалу принадлежит корень х = –1.

Находим значения функции в точках –4, –1, –1/3 и 1:

Получили, что наибольшее значение функции равно 3.

Ответ: 3

77433. Найдите наименьшее значение функции у = х 3 – х 2 – 40х +3 на отрезке .

Найдём производную заданной функции:

Найдем нули производной, решаем квадратное уравнение:

3х 2 – 2х – 40 = 0

Получим корни:

Указанному в условии интервалу принадлежит корень х = 4.

Находим значения функции в точках 0 и 4:

Получили, что наименьшее значение функции равно –109.

Ответ: –109

Рассмотрим способ определения наибольшего и наименьшего значения функций без производной. Этот подход можно использовать, если с определением производной у вас большие проблемы. Принцип простой – в функцию подставляем все целые значения из интервала (дело в том, что во всех подобных прототипах ответом является целое число).

77437. Найдите наименьшее значение функции у=7+12х–х 3 на отрезке [–2;2].

Подставляем точки от –2 до 2: Посмотреть решение

77434. Найдите наибольшее значение функции у=х 3 + 2х 2 – 4х + 4 на отрезке [–2;0].

На этом всё. Успеха вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Наибольшее и наименьшее значение функции

Наибольшим значением функции называется самое большее, наименьшим значением – самое меньшее из всех ее значений.

Функция может иметь только одно наибольшее и только одно наименьшее значение или может не иметь их совсем. Нахождение наибольшего и наименьшего значений непрерывных функций основывается на следующих свойствах этих функций:

1) Если в некотором интервале (конечном или бесконечном) функция y=f(x) непрерывна и имеет только один экстремум и если это максимум (минимум), то он будет наибольшим (наименьшим) значением функции в этом интервале.

2) Если функция f(x) непрерывна на некотором отрезке , то она обязательно имеет на этом отрезке наибольшее и наименьшее значения. Эти значения достигаются ее или в точках экстремума, лежащих внутри отрезка, или на границах этого отрезка.

Для отыскания наибольшего и наименьшего значений на отрезке рекомендуется пользоваться следующей схемой:

1. Найти производную .

2. Найти критические точки функции, в которых =0 или не существует.

3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее f наиб и наименьшее f наим.

При решении прикладных задач, в частности оптимизационных, важное значение имеют задачи на нахождение наибольшего и наименьшего значений (глобального максимума и глобального минимума) функции на промежутке Х. Для решения таких задач следует, исходя из условия, выбрать независимую переменную и выразить исследуемую величину через эту переменную. Затем найти искомое наибольшее или наименьшее значение полученной функции. При этом интервал изменения независимой переменной, который может быть конечным или бесконечным, также определяется из условия задачи.

Пример. Резервуар, имеющий форму открытого сверху прямоугольного параллелепипеда с квадратным дном, нужно вылудить внутри оловом. Каковы должны быть размеры резервуара при его емкости 108 л. воды, чтобы затраты на его лужение были наименьшими?

Решение. Затраты на покрытие резервуара оловом будут наименьшими, если при данной вместимости его поверхность будет минимальной. Обозначим через а дм – сторону основания, b дм – высоту резервуара. Тогда площадь S его поверхности равна

И

Полученное соотношение устанавливает зависимость между площадью поверхности резервуара S (функция) и стороной основания а (аргумент). Исследуем функцию S на экстремум. Найдем первую производную , приравняем ее к нулю и решим полученное уравнение:

Отсюда а = 6. (а) > 0 при а > 6, (а) < 0 при а < 6. Следовательно, при а = 6 функция S имеет минимум. Если а = 6, то b = 3. Таким образом, затраты на лужение резервуара емкостью 108 литров будут наименьшими, если он имеет размеры 6дм х 6дм х 3дм.

Пример . Найти наибольшее и наименьшее значения функции на промежутке .

Решение : Заданная функция непрерывна на всей числовой оси. Производная функции

Производная при и при . Вычислим значения функции в этих точках:

.

Значения функции на концах заданного промежутка равны . Следовательно, наибольшее значение функции равно при , наименьшее значение функции равно при .

Вопросы для самопроверки

1. Сформулируйте правило Лопиталя для раскрытия неопределенностей вида . Перечислите различные типы неопределенностей, для раскрытия которых может быть использовано правило Лопиталя.

2. Сформулируйте признаки возрастания и убывания функции.

3. Дайте определение максимума и минимума функции.

4. Сформулируйте необходимое условие существования экстремума.

5. Какие значения аргумента (какие точки) называются критическими? Как найти эти точки?

6. Каковы достаточные признаки существования экстремума функции? Изложите схему исследования функции на экстремум с помощью первой производной.

7. Изложите схему исследования функции на экстремум с помощью второй производной.

8. Дайте определение выпуклости, вогнутости кривой.

9. Что называется точкой перегиба графика функции? Укажите способ нахождения этих точек.

10. Сформулируйте необходимый и достаточный признаки выпуклости и вогнутости кривой на заданном отрезке.

11. Дайте определение асимптоты кривой. Как найти вертикальные, горизонтальные и наклонные асимптоты графика функции?

12. Изложите общую схему исследования функции и построения ее графика.

13. Сформулируйте правило нахождения наибольшего и наименьшего значений функции на заданном отрезке.

На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно определить оптимальное значение какого-либо параметра. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.

Yandex.RTB R-A-339285-1

Обычно мы определяем эти значения в рамках некоторого интервала x , который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [ a ; b ] , так и открытый интервал (a ; b) , (a ; b ] , [ a ; b) , бесконечный интервал (a ; b) , (a ; b ] , [ a ; b) либо бесконечный промежуток - ∞ ; a , (- ∞ ; a ] , [ a ; + ∞) , (- ∞ ; + ∞) .

В этом материале мы расскажем, как вычисляется наибольшее и наименьшее значение явно заданной функции с одной переменной y=f(x) y = f (x) .

Основные определения

Начнем, как всегда, с формулировки основных определений.

Определение 1

Наибольшее значение функции y = f (x) на некотором промежутке x – это значение m a x y = f (x 0) x ∈ X , которое при любом значении x x ∈ X , x ≠ x 0 делает справедливым неравенство f (x) ≤ f (x 0) .

Определение 2

Наименьшее значение функции y = f (x) на некотором промежутке x – это значение m i n x ∈ X y = f (x 0) , которое при любом значении x ∈ X , x ≠ x 0 делает справедливым неравенство f(X f (x) ≥ f (x 0) .

Данные определения являются достаточно очевидными. Еще проще можно сказать так: наибольшее значение функции – это ее самое большое значение на известном интервале при абсциссе x 0 , а наименьшее – это самое маленькое принимаемое значение на том же интервале при x 0 .

Определение 3

Стационарными точками называются такие значения аргумента функции, при которых ее производная обращается в 0 .

Зачем нам нужно знать, что такое стационарные точки? Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или наибольшее значение на некотором промежутке именно в одной из стационарных точек.

Еще функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.

Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы может определить наибольшее или наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с границами области определения, или если мы имеем дело с бесконечным интервалом. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения. В этих случаях определить наибольшее и/или наименьшее значение не представляется возможным.

Более понятными эти моменты станут после изображения на графиках:

Первый рисунок показывает нам функцию, которая принимает наибольшее и наименьшее значения (m a x y и m i n y) в стационарных точках, расположенных на отрезке [ - 6 ; 6 ] .

Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [ 1 ; 6 ] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.

На третьем рисунке абсциссы точек представляют собой граничные точки отрезка [ - 3 ; 2 ] . Они соответствуют наибольшему и наименьшему значению заданной функции.

Теперь посмотрим на четвертый рисунок. В нем функция принимает m a x y (наибольшее значение) и m i n y (наименьшее значение) в стационарных точках на открытом интервале (- 6 ; 6) .

Если мы возьмем интервал [ 1 ; 6) , то можно сказать, что наименьшее значение функции на нем будет достигнуто в стационарной точке. Наибольшее значение нам будет неизвестно. Функция могла бы принять наибольшее значение при x , равном 6 , если бы x = 6 принадлежала интервалу. Именно этот случай нарисован на графике 5 .

На графике 6 наименьшее значение данная функция приобретает в правой границе интервала (- 3 ; 2 ] , а о наибольшем значении мы не можем сделать определенных выводов.

На рисунке 7 мы видим, что функция будет иметь m a x y в стационарной точке, имеющей абсциссу, равную 1 . Наименьшего значения функция достигнет на границе интервала с правой стороны. На минус бесконечности значения функции будут асимптотически приближаться к y = 3 .

Если мы возьмем интервал x ∈ 2 ; + ∞ , то увидим, что заданная функция не будет принимать на нем ни наименьшего, ни наибольшего значения. Если x стремится к 2 , то значения функции будут стремиться к минус бесконечности, поскольку прямая x = 2 – это вертикальная асимптота. Если же абсцисса стремится к плюс бесконечности, то значения функции будут асимптотически приближаться к y = 3 . Именно этот случай изображен на рисунке 8 .

В этом пункте мы приведем последовательность действий, которую нужно выполнить для нахождения наибольшего или наименьшего значения функции на некотором отрезке.

  1. Для начала найдем область определения функции. Проверим, входит ли в нее заданный в условии отрезок.
  2. Теперь вычислим точки, содержащиеся в данном отрезке, в которых не существует первой производной. Чаще всего их можно встретить у функций, аргумент которых записан под знаком модуля, или у степенных функций, показатель которых является дробно рациональным числом.
  3. Далее выясним, какие стационарные точки попадут в заданный отрезок. Для этого надо вычислить производную функции, потом приравнять ее к 0 и решить получившееся в итоге уравнение, после чего выбрать подходящие корни. Если у нас не получится ни одной стационарной точки или они не будут попадать в заданный отрезок, то мы переходим к следующему шагу.
  4. Определим, какие значения будет принимать функция в заданных стационарных точках (если они есть), или в тех точках, в которых не существует первой производной (если они есть), либо же вычисляем значения для x = a и x = b .
  5. 5. У нас получился ряд значений функции, из которых теперь нужно выбрать самое больше и самое маленькое. Это и будут наибольшее и наименьшее значения функции, которые нам нужно найти.

Посмотрим, как правильно применить этот алгоритм при решении задач.

Пример 1

Условие: задана функция y = x 3 + 4 x 2 . Определите ее наибольшее и наименьшее значение на отрезках [ 1 ; 4 ] и [ - 4 ; - 1 ] .

Решение:

Начнем с нахождения области определения данной функции. В этом случае ей будет множество всех действительных чисел, кроме 0 . Иными словами, D (y) : x ∈ (- ∞ ; 0) ∪ 0 ; + ∞ . Оба отрезка, заданных в условии, будут находиться внутри области определения.

Теперь вычисляем производную функции согласно правилу дифференцирования дроби:

y " = x 3 + 4 x 2 " = x 3 + 4 " · x 2 - x 3 + 4 · x 2 " x 4 = = 3 x 2 · x 2 - (x 3 - 4) · 2 x x 4 = x 3 - 8 x 3

Мы узнали, что производная функции будет существовать во всех точках отрезков [ 1 ; 4 ] и [ - 4 ; - 1 ] .

Теперь нам надо определить стационарные точки функции. Сделаем это с помощью уравнения x 3 - 8 x 3 = 0 . У него есть только один действительный корень, равный 2 . Он будет стационарной точкой функции и попадет в первый отрезок [ 1 ; 4 ] .

Вычислим значения функции на концах первого отрезка и в данной точке, т.е. для x = 1 , x = 2 и x = 4:

y (1) = 1 3 + 4 1 2 = 5 y (2) = 2 3 + 4 2 2 = 3 y (4) = 4 3 + 4 4 2 = 4 1 4

Мы получили, что наибольшее значение функции m a x y x ∈ [ 1 ; 4 ] = y (2) = 3 будет достигнуто при x = 1 , а наименьшее m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 – при x = 2 .

Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:

y (- 1) = (- 1) 3 + 4 (- 1) 2 = 3

Значит, m a x y x ∈ [ - 4 ; - 1 ] = y (- 1) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y (- 4) = - 3 3 4 .

Ответ: Для отрезка [ 1 ; 4 ] - m a x y x ∈ [ 1 ; 4 ] = y (2) = 3 , m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 , для отрезка [ - 4 ; - 1 ] - m a x y x ∈ [ - 4 ; - 1 ] = y (- 1) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y (- 4) = - 3 3 4 .

См. на рисунке:


Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.

  1. Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
  2. Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
  3. Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0 , решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям. Их определяет вид интервала.
  • Если интервал имеет вид [ a ; b) , то нам надо вычислить значение функции в точке x = a и односторонний предел lim x → b - 0 f (x) .
  • Если интервал имеет вид (a ; b ] , то нам надо вычислить значение функции в точке x = b и односторонний предел lim x → a + 0 f (x) .
  • Если интервал имеет вид (a ; b) , то нам надо вычислить односторонние пределы lim x → b - 0 f (x) , lim x → a + 0 f (x) .
  • Если интервал имеет вид [ a ; + ∞) , то надо вычислить значение в точке x = a и предел на плюс бесконечности lim x → + ∞ f (x) .
  • Если интервал выглядит как (- ∞ ; b ] , вычисляем значение в точке x = b и предел на минус бесконечности lim x → - ∞ f (x) .
  • Если - ∞ ; b , то считаем односторонний предел lim x → b - 0 f (x) и предел на минус бесконечности lim x → - ∞ f (x)
  • Если же - ∞ ; + ∞ , то считаем пределы на минус и плюс бесконечности lim x → + ∞ f (x) , lim x → - ∞ f (x) .
  1. В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4 - 8 в первой части материала.
Пример 2

Условие: дана функция y = 3 e 1 x 2 + x - 6 - 4 . Вычислите ее наибольшее и наименьшее значение в интервалах - ∞ ; - 4 , - ∞ ; - 3 , (- 3 ; 1 ] , (- 3 ; 2) , [ 1 ; 2) , 2 ; + ∞ , [ 4 ; + ∞) .

Решение

Первым делом находим область определения функции. В знаменателе дроби стоит квадратный трехчлен, который не должен обращаться в 0:

x 2 + x - 6 = 0 D = 1 2 - 4 · 1 · (- 6) = 25 x 1 = - 1 - 5 2 = - 3 x 2 = - 1 + 5 2 = 2 ⇒ D (y) : x ∈ (- ∞ ; - 3) ∪ (- 3 ; 2) ∪ (2 ; + ∞)

Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.

Теперь выполним дифференцирование функции и получим:

y " = 3 e 1 x 2 + x - 6 - 4 " = 3 · e 1 x 2 + x - 6 " = 3 · e 1 x 2 + x - 6 · 1 x 2 + x - 6 " = = 3 · e 1 x 2 + x - 6 · 1 " · x 2 + x - 6 - 1 · x 2 + x - 6 " (x 2 + x - 6) 2 = - 3 · (2 x + 1) · e 1 x 2 + x - 6 x 2 + x - 6 2

Следовательно, производные функции существуют на всей области ее определения.

Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x = - 1 2 . Это стационарная точка, которая находится в интервалах (- 3 ; 1 ] и (- 3 ; 2) .

Вычислим значение функции при x = - 4 для промежутка (- ∞ ; - 4 ] , а также предел на минус бесконечности:

y (- 4) = 3 e 1 (- 4) 2 + (- 4) - 6 - 4 = 3 e 1 6 - 4 ≈ - 0 . 456 lim x → - ∞ 3 e 1 x 2 + x - 6 = 3 e 0 - 4 = - 1

Поскольку 3 e 1 6 - 4 > - 1 , значит, m a x y x ∈ (- ∞ ; - 4 ] = y (- 4) = 3 e 1 6 - 4 . Это не дает нам возможности однозначно определить наименьшее значение функции. Мы можем только сделать вывод, что внизу есть ограничение - 1 , поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.

Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к - 3 с левой стороны, мы получим только интервал значений:

lim x → - 3 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 - 0 3 e 1 (x + 3) (x - 3) - 4 = 3 e 1 (- 3 - 0 + 3) (- 3 - 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → - ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Значит, значения функции будут расположены в интервале - 1 ; + ∞

Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке x = - 1 2 , если x = 1 . Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к - 3 с правой стороны:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e 4 25 - 4 ≈ - 1 . 444 y (1) = 3 e 1 1 2 + 1 - 6 - 4 ≈ - 1 . 644 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 - 3 + 0 + 3 (- 3 + 0 - 2) - 4 = = 3 e 1 (- 0) - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

У нас получилось, что наибольшее значение функция примет в стационарной точке m a x y x ∈ (3 ; 1 ] = y - 1 2 = 3 e - 4 25 - 4 . Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до - 4 .

Для интервала (- 3 ; 2) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e - 4 25 - 4 ≈ - 1 . 444 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = - 4 lim x → 2 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 - 0 + 3) (2 - 0 - 2) - 4 = = 3 e 1 - 0 - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

Значит, m a x y x ∈ (- 3 ; 2) = y - 1 2 = 3 e - 4 25 - 4 , а наименьшее значение определить невозможно, и значения функции ограничены снизу числом - 4 .

Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [ 1 ; 2) наибольшее значение функция примет при x = 1 , а найти наименьшее невозможно.

На промежутке (2 ; + ∞) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка - 1 ; + ∞ .

lim x → 2 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 + 0 + 3) (2 + 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Вычислив, чему будет равно значение функции при x = 4 , выясним, что m a x y x ∈ [ 4 ; + ∞) = y (4) = 3 e 1 14 - 4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y = - 1 .

Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.

Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.

Чтобы найти наибольшее или наименьшее значение функции необходимо:

  1. Проверить, какие стационарные точки входят в заданный отрезок.
  2. Вычислить значение функции на концах отрезка и в стационарных точках из п.3
  3. Выбрать из полученных результатов наибольшее или наименьшее значение.

Чтобы найти точки максимума или минимума необходимо:

  1. Найти производную функции $f"(х)$
  2. Найти стационарные точки, решив уравнение $f"(х)=0$
  3. Разложить производную функции на множители.
  4. Начертить координатную прямую, расставить на ней стационарные точки и определить знаки производной в полученных интервалах, пользуясь записью п.3.
  5. Найти точки максимума или минимума по правилу: если в точке производная меняет знак с плюса на минус, то это будет точка максимума (если с минуса на плюс, то это будет точка минимума). На практике удобно использовать изображение стрелок на промежутках: на промежутке, где производная положительна, стрелка рисуется вверх и наоборот.

Таблица производных некоторых элементарных функций:

Функция Производная
$c$ $0$
$x$ $1$
$x^n, n∈N$ $nx^{n-1}, n∈N$
${1}/{x}$ $-{1}/{x^2}$
${1}/x{^n}, n∈N$ $-{n}/{x^{n+1}}, n∈N$
$√^n{x}, n∈N$ ${1}/{n√^n{x^{n-1}}, n∈N$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$
$cos^2x$ $-sin2x$
$sin^2x$ $sin2x$
$e^x$ $e^x$
$a^x$ $a^xlna$
$lnx$ ${1}/{x}$
$log_{a}x$ ${1}/{xlna}$

Основные правила дифференцирования

1. Производная суммы и разности равна производной каждого слагаемого

$(f(x) ± g(x))′= f′(x)± g′(x)$

Найти производную функции $f(x) = 3x^5 – cosx + {1}/{x}$

Производная суммы и разности равна производной каждого слагаемого

$f′(x)=(3x^5)′–(cosx)′+({1}/{x})"=15x^4+sinx-{1}/{x^2}$

2. Производная произведения.

$(f(x)∙g(x))′=f′(x)∙g(x)+f(x)∙g(x)′$

Найти производную $f(x)=4x∙cosx$

$f′(x)=(4x)′∙cosx+4x∙(cosx)′=4∙cosx-4x∙sinx$

3. Производная частного

$({f(x)}/{g(x)})"={f^"(x)∙g(x)-f(x)∙g(x)"}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f"(x)={(5x^5)"∙e^x-5x^5∙(e^x)"}/{(e^x)^2}={25x^4∙e^x-5x^5∙e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))′=f′(g(x))∙g′(x)$

$f′(x)=cos′(5x)∙(5x)′= - sin(5x)∙5= -5sin(5x)$

Найдите точку минимума функции $y=2x-ln⁡(x+11)+4$

1. Найдем ОДЗ функции: $х+11>0; х>-11$

2. Найдем производную функции $y"=2-{1}/{x+11}={2x+22-1}/{x+11}={2x+21}/{x+11}$

3. Найдем стационарные точки, приравняв производную к нулю

${2x+21}/{x+11}=0$

Дробь равна нулю если числитель равен нулю, а знаменатель не равен нулю

$2x+21=0; x≠-11$

4. Начертим координатную прямую, расставим на ней стационарные точки и определим знаки производной в полученных интервалах. Для этого подставим в производную любое число из крайней правой области, например, нуль.

$y"(0)={2∙0+21}/{0+11}={21}/{11}>0$

5. В точке минимума производная меняет знак с минуса на плюс, следовательно, точка $-10,5$ - это точка минимума.

Ответ: $-10,5$

Найдите наибольшее значение функции $y=6x^5-90x^3-5$ на отрезке $[-5;1]$

1. Найдем производную функции $y′=30x^4-270x^2$

2. Приравняем производную к нулю и найдем стационарные точки

$30x^4-270x^2=0$

Вынесем общий множитель $30x^2$ за скобки

$30x^2(x^2-9)=0$

$30x^2(х-3)(х+3)=0$

Приравняем каждый множитель к нулю

$x^2=0 ; х-3=0; х+3=0$

$х=0;х=3;х=-3$

3. Выберем стационарные точки, которые принадлежат заданному отрезку $[-5;1]$

Нам подходят стационарные точки $х=0$ и $х=-3$

4. Вычислим значение функции на концах отрезка и в стационарных точках из п.3

В этой статье я расскажу о том, как применять умение находить к исследованию функции: к нахождению ее наибольшего или наименьшего значения. А затем мы решим несколько задач из Задания В15 из Открытого банка заданий для .

Как обычно, сначала вспомним теорию.

В начале любого исследования функции находим ее

Чтобы найти наибольшее или наименьшее значение функции , нужно исследовать, на каких промежутках функция возрастает, и на каких убывает.

Для этого надо найти производную функции и исследовать ее промежутки знакопостоянства, то есть промежутки, на которых производная сохраняет знак.

Промежутки, на которых производная функции положительна, являются промежутками возрастания функции.

Промежутки, на которых производная функции отрицательна, являются промежутками убывания функции.

1 . Решим задание В15 (№ 245184)

Для его решения будем следовать такому алгоритму:

а) Найдем область определения функции

б) Найдем производную функции .

в) Приравняем ее к нулю.

г) Найдем промежутки знакопостоянства функции.

д) Найдем точку, в которой функция принимает наибольшее значение.

е) Найдем значение функции в этой точке.

Подробное решение этого задания я рассказываю в ВИДЕОУРОКЕ:

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр "Час ЕГЭ", попробуйте скачать
Firefox

2 . Решим задание В15 (№282862)

Найдите наибольшее значение функции на отрезке

Очевидно, что наибольшее значение на отрезке функция принимает в точке максимума, при х=2. Найдем значение функции в этой точке:

Ответ: 5

3 . Решим задание В15 (№245180):

Найдите наибольшее значение функции

1. title="ln5>0">, , т.к. title="5>1">, поэтому это число не влияет на знак неравенства.

2. Т.к по область определения исходной функции title="4-2x-x^2>0">, следовательно знаменатель дроби всегда больще нуля и дробь меняет знак только в нуле числителя.

3. Числитель равен нулю при . Проверим, принадлежит ли ОДЗ функции. Для этого проверим, выполняется ли условие title="4-2x-x^2>0"> при .

Title="4-2(-1)-{(-1)}^2>0">,

значит, точка принадлежит ОДЗ функции

Исследуем знак производной справа и слева от точки :

Мы видим, что наибольшее значение функция принимает в точке . Теперь найдем значение функции при :

Замечание 1. Заметим, что в этой задаче мы не находили область определения функции: мы только зафиксировали ограничения и проверили, принадлежит ли точка, в которой производная равна нулю области определения функции. В данной задаче этого оказалось достаточно. Однако, так бывает не всегда. Это зависит от задачи.

Замечание 2. При исследовании поведения сложной функции можно пользоваться таким правилом:

  • если внешняя функция сложной функции возрастающая, то функция принимает наибольшее значение в той же точке, в которой внутренняя функция принимает наибольшее значение. Это следует из определения возрастающей функции: функция возрастает на промежутке I, если большему значению аргумента из этого промежутка соответствует большее значение функции.
  • если внешняя функция сложной функции убывающая, то функция принимает наибольшее значение в той же точке, в которой внутренняя функция принимает наименьшее значение. Это следует из определения убывающей функции: функция убывает на промежутке I, если большему значению аргумента из этого промежутка соответствует меньшее значение функции

В нашем примере внешняя функция - возрастает на всей области определения. Под знаком логарифма стоит выражение - квадратный трехчлен, который при отрицательном старшем коэффициенте принимает наибольшее значение в точке . Далее подставляем это значение х в уравнение функции и находим ее наибольшее значение.