Меню
Бесплатно
Главная  /  Дерматит  /  Происхождение и формирование гидросферы. Земная кора и гидросфера

Происхождение и формирование гидросферы. Земная кора и гидросфера

Исключительно важно для теории и практики, так как жизнь появилась вместе с гидросферой и тесно связана с ней.

Гипотеза «Горячего» и гидросферы господствовала до середины XX в. Она основывалась на теории астронома П. Лапласа (1749 - 1827), считавшего, что все планеты возникли из солнечного вещества, вырванного силой притяжения пролетавшей недалеко от Солнца звезды. Из сгустков солнечного вещества сформировались планеты, которые затем долго остывали. Земля охлаждалась до тех пор, пока на ее поверхности не образовалась кора, а лишь потом из остывшей атмосферы полились дожди. Вода скапливалась в понижениях, образуя разнообразные водоемы. Таким образом, возраст гидросферы значительно уступал возрасту Земли, а образование гидросферы представлялось сравнительно коротким явлением в жизни планеты. Но постепенно накапливались факты, которые противоречили гипотезе «горячего» формирования Земли и гидросферы.

Ученые установили, что горячая плотная при наличии твердой - образование очень устойчивое, о чем свидетельствует планета Венера, температура атмосферы которой составляет примерно 400° С. К тому же в самых древних из обнаруженных на Земле горных породах, возраст которых около 3,8 млрд. лет, были найдены отпечатки одноклеточных организмов, которые могли существовать только при наличии жидкой воды. Все это подтверждало теорию «холодного» образования планет из пылевого , вращавшегося вокруг Солнца. В этом облаке возникали сгустки, ставшие зародышами будущих планет. Мелкие сгустки захватывались более крупными, которые росли и вбирали в себя основную массу пылевого облака, образуя планеты. По расчетам одного из создателей этой теории В. С. Сафронова, процесс формирования планет начался 4,65 млрд. лет назад.

Современного размера планеты, в том числе Земля, достигли через 100 млн. лет. Тогда на молодой Земле господствовали суровые и холодные , над которыми простиралось черное небо. На поверхность падали небесные тела, но грохота взрывов они не вызывали, так как атмосфера еще не существовала или была очень тонкой. От ударов небесных тел в толще планеты накапливалось тепло, а поверхность без защитной атмосферной оболочки охлаждалась. При ударе небесных тел о Землю образовывался толстый слой реголита - смесь обломков и пыли. Из него-то и состояла поверхность нашей планеты. Среди небесных тел были и кометы - ледяные космические образования. Удары небесных тел о Землю «разогревали» ее изнутри. В результате более тяжелые вещества устремились к ее центру, а легкие и летучие поднялись к поверхности. Этот процесс и дал основное тепло для разогрева недр планеты. Дополнительное тепло возникло благодаря радиоактивному распаду. Оно плавило породы в глубине планеты. В результате через жерла и гигантские трещины, образовавшиеся на Земле, на поверхность стала изливаться расплавленная - , а вместе с ней — , горячая юла, водяные пары, которые быстро конденсировались. Этот процесс назван дегазацией. Она началась 4 млрд. лет назад, о чем свидетельствуют самые древние горные породы, найденные на Земле. Атмосфера и обязаны своим образованием дегазации, которая продолжается и сейчас на нашей планете. С момента излияния магмы и дегазации отсчитывается геологическая . Этот период считается началом формирования гидросферы. Недавнее открытие в пылевых космических облаках воды в молекулярном виде, а также частичек льда означает их присутствие в первоначальном веществе Земли, масса которой пополнялась за счет падения комет. Не исключено, что при ударах небесных тел ледяные частички расплавлялись и вода вытеснялась на поверхность планеты еще в догеологический период. При этом она заполняла поры реголита, покрывавшего поверхность Земли. Таким образом, формирование гидросферы могло начаться еще в догеологический период жизни нашей планеты.

Атмосфера возникла в начальные периоды формирования земной коры. Существуют две гипотезы ее образования. В первой атмосфера рассматривается как производная первичного материала, оставшегося от упрощенных флюидов, которые когда-то обрамляли расплавленную Землю. По второй гипотезе, атмосфера рассматривается как вторичное образование, возникшее при освобождении свободных химических элементов и соединений из лавы, извергавшейся на земную поверхность. Благодаря этой лаве была создана первичная земная кора. Большинство ученых придерживаются второй гипотезы происхождения атмосферы, считая, что в противном случае любая первичная атмосфера на ранней стадии развития Земли была бы сравнительно быстро ей утеряна.

Таким образом, условно можно считать, что источником веществ, составляющих первичную атмосферу, служили продукты выплавления горных пород земной коры, мантии и ядра. Считается, что она была бескислородной. Крупнейший американский геохимик Г. Юри высказал мнение, что атмосфера могла состоять из смеси водяного пара, водорода, метана, аммиака и сернистого водорода. Английский геохимик П. Клауд считает, что в ранней атмосфере преобладали вода, углекислый газ, окись углерода, азот, хлористый водород, водород и сера. Следовательно, атмосфера состояла только из летучих и легких газообразных веществ, которые в момент формирования Земли входили в состав твердых веществ. Свободной воды не существовало, она была связана в гидроокислах, азот - в нитридах и, возможно, в нитритах, кислород - в окислах металлов, углерод - в карбидах и карбонатитах и т. д.

Увеличение мощности атмосферы и возникновение гидросферы объясняется освобождением из пород верхней мантии при интенсивных вулканических процессах водяного пара и газов. Действительно, газы, выделяющиеся при извержении современных вулканов, содержат большое количество водяного пара. Например, при извержении вулканов гавайского типа * в газах при температуре 1000-1200°С содержится около 80% воды и менее 6% углекислого газа. Встречается также значительное количество хлора (40%), метана (до 3-5%) и аммиак. Из лав при высокой температуре, кроме водяного пара, выделяются такие соединения, как борная, соляная и фтористая кислоты, сероводород и др.

* (Вулканы гавайского типа характеризуются излиянием базальтовой подвижной магмы, бедной газами; застывание происходит медленно. )

Основываясь на химическом анализе газовых пузырьков в кварцитах катархейского и архейского возраста, советский литолог Ю. П. Казанский попытался определить состав древней атмосферы. По его мнению, в архее и катархее атмосфера имела азотно-аммиачно-углекислый состав. В ней кроме преобладающего углекислого газа (до 60%) находились азот, сероводород, аммиак, серный газ, пары соляной и фтористой кислот. Первичная атмосфера была довольно разреженной, ее температура у земной поверхности мало отличалась от температуры так называемого лучистого равновесии * . Сравнительно низкая температура способствовала конденсации водяного пара из вулканических газов. Таким образом водяной пар превращался в жидкость, которая, заняв пониженные участки, дала начало формированию гидросферы.

* (Температура лучистого равновесия определяется отношением величины потока солнечного тепла, поглощенного поверхностью, к величине потока уходящего (отраженного) излучения земной поверхности. Последняя пропорциональна четвертой степени температуры этой поверхности. )

Доказательством наличия гидросферы не только в архее, но и даже в катархее является обнаружение на Земле древнейших осадочных пород в Гренландии и Южной Африке, возраст которых оценивается в 3,8 млрд. лет. Причем надо отметить, что это возраст метаморфизма, а, следовательно, время их образования, должен быть еще более ранним.

При описании состава первичного океана необходимо остановиться на двух источниках привноса растворенных соединений. С одной стороны, это растворенные в воде атмосферные газы, а с другой - соли и соединения, входящие в состав горных пород, обнаженных на земной поверхности в пределах древних первичных континентов. Перешедшие из атмосферы в воды океана угольная и другие кислоты, сера, сероводород и аммиак создавали высокую кислотность древнейших океанических вод. Высокая агрессивность природных вод способствовала интенсивному разложению обнаженных на земной поверхности вулканических горных пород и усиленному извлечению из них щелочей и щелочноземельных элементов и соединений. Со временем доля последних возросла, одновременно с этим снизилась кислотность океанических вод и сравнительно быстро установилось кислотно-щелочное равновесие.

"Все анионы морской воды возникли в результате дегазации мантии, т. е. удаления из нее газов, а катионы - при выветривании горных пород", - таков один из основных тезисов известного геохимика, академика А. П. Виноградова. Действительно, содержание в морской воде таких анионов, как хлор и бром, в десятки и сотни раз превышает их количество в горных породах. Следовательно, они могли возникнуть только в результате дегазации мантии. Исходя из этого можно предположить, что соленость первичного океана должна была быть близкой к современной, хотя содержание катионов могло сильно отличаться и приближалось к современному только по мере возрастающего разрушения и растворения горных пород первичных континентов.

Об отсутствии кислорода в древней атмосфере и океане свидетельствует наличие в большом количестве не только в изверженных, но и в осадочных горных породах элементов и соединений, не подвергшихся окислению. Так, например, в катархейских карбонатных породах имеется много неизмененных зерен пирита и уранинита и отсутствует окисленная сера. Все эти породы характеризуются большой величиной отношения закисного железа к окисному.

Ввиду того, что свободного кислорода в атмосфере длительное время не было, озоновый экран отсутствовал. Атмосфера легко пропускала ультрафиолетовое излучение Солнца. В таких условиях не могло быть и речи о возможном существовании каких-либо живых организмов на суше. Под воздействием ультрафиолетового излучения в водах морей и океанов начали образовываться сложные органические соединения вплоть до аминокислот. Этому, возможно, содействовала и относительно высокая температура земной поверхности, так как насыщенность атмосферы углекислотой способствовала задержке теплового излучения.

Свободный кислород первоначально расходовался на окисление аммиака, и при этом выделялся свободный азот. Метан и окись углерода окислялись до углекислоты, основная часть которой уходила в океан. Сера и сероводород окислялись до сернистого и серного ангидрита. В океане осаждались карбонатные и сульфатно-карбонатные осадки, а морская вода становилась хлоридно-карбонатно-сульфатной.

Появление гидросферы и атмосферы было весьма важным качественным рубежом в истории Земли. Их развитие усложнило и дифференцировало процессы, протекающие в древнейшей географической оболочке. Земная кора, гидросфера и атмосфера вступили в сложные взаимоотношения путем обмена энергии и веществ. Активно происходили процессы преобразования горных пород на земной поверхности. В бескислородной атмосфере процесс выветривания протекал весьма своеобразно в обстановке повышенных температур и высокой кислотности природных вод и атмосферы.

Только в раннем протерозое, по мнению Ю. П. Казанского, атмосфера стала кислородно-азотно-углекислой. Подтверждением этого является наличие не только мощных толщ джеспилитов, т. е. пород, состоящих из кварца и окисного железа - гематита, но и разнообразных красноцветных пород, пигментирующее вещество которых состоит из окисного железа. Эти породы могли образоваться только при наличии в атмосфере свободного кислорода. Однако наряду с окислительными обстановками в протерозое существовали и восстановительные условия.

Главнейшими газами атмосферы были углекислый газ, аммиак, азот, а сопутствующими - кислород, серный ангидрит, сероводород, пары соляной и фтористой кислот, метан. По сравнению с археем общее количество кислот сильно снизилось. Тенденция к снижению паров кислот, метана, соединений серы и аммиака существовала на протяжении всего протерозойского времени. Одновременно общее количество азота в атмосфере продолжало увеличиваться.

Имеется и другая точка зрения по поводу появления свободного кислорода в атмосфере. По расчетам Л. Беркнера и Я. Маршалла, его содержание в атмосфере в одну тысячную долю от современного (так называемая точка Юри) было достигнуто примерно 1,2 млрд. лет назад, т. е. в середине рифея. С этим выводом хорошо согласуются многие палеонтологические и геохимические материалы.

Наличие свободного кислорода, пусть даже в небольших количествах, благоприятствовало появлению организмов, потребляющих кислород, остатки которых найдены в породах протерозоя.

Критическим уровнем содержания свободного кислорода в биологическом отношении является так называемая точка Пастера, когда количество кислорода в атмосфере составляло одну сотую от современной и организмы взамен анаэробного брожения стали пользоваться более эффективным потреблением энергии - окислением при дыхании. По расчетам Л. Беркнера и Л. Маршалла, данный уровень был достигнут около 600 млн. лет назад. В это время произошел экологический взрыв - массовое распространение животных почти всех известных в настоящее время типов.

С изменением содержания кислорода в древней атмосфере тесно связано количество углекислоты. Углекислый газ попал в атмосферу, а затем в гидросферу, являясь продуктом дегазации мантии. Он возник в результате взаимодействия гранита с водой при высоких температурах, разложении карбидов, высокотемпературной диссоциации карбонатитов, а также путем окисления метана и, главное, как продукт, выделяющийся при вулканических извержениях.

Углекислый газ удалялся из атмосферы и гидросферы благодаря химическим реакциям (образование карбонатов) или биологическим путем, когда огромные массы его расходовались на образование скелетов организмов.

Так, в катархее и архее карбонатных пород известно очень мало. Только в раннем протерозое, когда в атмосфере появился кислород, а океаническая вода стала хлоридно-карбонатной, их объем стал увеличиваться. Большое содержание углекислого газа в морской воде и высокий щелочной резерв последней обеспечивали образование мощных известково-доломитовых и доломитовых толщ.

В конце протерозоя количество растворенного в морской воде углекислого газа и его концентрация в атмосфере уменьшились, однако все это связано с усилением поглощения углекислого газа водорослями в процессе фотосинтеза. Морская вода приобрела хлоридно-сульфатный характер, и среда стала нейтральной, что, по-видимому, привело к появлению твердого скелета у организмов.

Образование земной коры и атмосферы

Земная кора, гидросфера и атмосфера образовались в основном в результате высвобождения веществ из верхней мантии молодой Земли. За счет этих процессов сформировалась оболочка из породы толщиной менее 0,0001% объема всей планеты. Состав этой оболочки, образующей континентальную и океаническую кору, эволюционировал во времени прежде всего за счет возгонки элементов из мантии в результате частичного плавления на глубине примерно 100 км. Средний химический состав современной коры (рис.1) показывает, что кислород содержится в ней в наибольшем количестве, сочетаясь в разных видах с кремнием, алюминием и другими элементами с образованием силикатов.

земля атмосфера жизнь фотосинтез гидрологический

Рис. 1.

Можно предположить, что летучие элементы выделились (дегазировались) из мантии в результате извержений вулканов, сопровождавших образование коры. Некоторые из этих газов удержались и образовали атмосферу, когда поверхностные температуры стали достаточно низкими, гравитационное притяжение достаточно сильным.


Рис.2.

Эволюция атмосферы и происхождение жизни

Аккреция вещества Земли привела к временному его разогреву и легких молекул первичной атмосферы, прежде всего водорода и гелия, рассеянных в космическом пространстве. Последующее понижение температуры в результате сильного излучения тепла привело к образованию твердой коры. Активный вулканизм мешал этому процессу, но в то же время поставлял большие количества газов, из которых образовалась вторичная атмосфера. В ней, кроме Н 2 , было много других газов, таких, как СН 4 , NH 3 и Н 2 О (рис.3).


Рис. 3.

Наряду с водяными парами уже существовал и древний океан, состоящий из жидкой воды. Углекислоты Н 2 СО 3 было мало, так как ее восстанавливали соединения Fе 3+ , содержавшиеся в земной коре. Примерно 1 млрд. лет атмосфера была восстановительной, имелись возможности для процессов абиогенного образования и накопления многих соединений.

На восстановительную вторичную атмосферу воздействовали большие потоки энергии: коротковолновое ультрафиолетовое излучение, ионизирующее излучение Солнца (сейчас экранируется озоновым слоем), электрические разряды (грозы, коронные разряды), местные источники тепла вулканического происхождения. В этих условиях мог идти активный химический синтез, при котором из газов вторичной атмосферы через такие промежуточные продукты, как синильная кислота, этилен, этан, формальдегид и мочевина, образовались сначала мономеры, а затем и полимеры. Ввиду того, что окисления не происходило, водоемы обогащались аминокислотами, пуриновыми и пиримидиновыми основаниями, сахарами, карбоновыми кислотами, липидами. Образовался «первичный бульон». Происходили процессы осаждения, разделения и адсорбции, а на поверхностях минералов (глина, горячая лава) -- дальнейшие синтетические процессы (рис.4). Это подтверждается результатами анализа древних земных химических ископаемых и их сравнением с внеземным органическим веществом (метеориты), а также многочисленными модельными экспериментами, показавшими, что в смеси газов, воспроизводящей атмосферу, при достаточном притоке энергии действительно происходят процессы синтеза органических веществ. Среди продуктов этого синтеза найдены основные биологически важные соединения, в том числе 14 аминокислот, пурины и пиримидины, сахара, АМФ, АДФ, АТФ, жирные кислоты и порфирины.

По мере возрастающей потери Н 2 в космическое пространство создавалась третичная атмосфера, содержащая большие количества N 2 (из NH 3), СО 2 (из вулканических газов и из СН 4) и паров воды.


Рис. 4.

Около 3,5 млрд. лет назад появились хлорофиллоносные организмы, способные осуществлять фотосинтез, т. е. использовать экзогенный источник энергии (солнечную радиацию) для синтеза из углекислого газа, воды и минеральных элементов всех органических веществ, необходимых для жизни. Эти организмы преобразовывали солнечную энергию в биохимическую.

CO 2(г) + H 2 O (ж) > CH 2 O (тв) + O 2(г) (1)

«Изобретение» фотосинтеза способствовало повышению содержания кислорода в атмосфере и формированию современной, четвертичной атмосферы.

В атмосфере Земли кислород первоначально накапливался путем разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца. Сначала кислород (O 2) быстро потреблялся в процессе окисления восстановленных веществ и минералов. Однако наступил момент, когда скорость его поступления (уже преимущественно в процессе фотосинтеза) превысила потребление и О 2 начал постепенно накапливаться в атмосфере. Около 500 млн лет назад количество кислорода в атмосфере было много больше, чем сейчас, но впоследствии в результате интенсивной вулканической деятельности снизилось до современного. Биосфера под смертельной угрозой своего собственного отравляющего побочного продукта была вынуждена приспосабливаться к таким изменениям. Она осуществляла это посредством развития новых типов биогеохимического метаболизма, которые поддерживают разнообразие жизни и на современной Земле.

Предполагают, что жизнь на Земле началась в океанах около 4,2--3,8 млрд. лет назад. Древнейшие из известных ископаемых -- бактерии из пород с возрастом около 3,5 млрд. лет. В породах этого возраста имеются свидетельства достаточно развитого обмена веществ, при котором использовалась солнечная энергия для синтеза органического вещества. Самые ранние из этих реакций, вероятно, были основаны на сере (S), поступающей из вулканических выходов:

CO 2(г) + 2H 2 S > CH 2 O (тв) + 2S (тв) + H 2 O (ж) (2)

(органическое вещество)

Постепенно возникла атмосфера современного состава. К тому же кислород в стратосфере претерпел фотохимические реакции, приведшие к образованию озона (О 3), защищающего Землю от ультрафиолетового излучения. Этот экран позволил высшим организмам выйти на сушу.

Итак, происхождение атмосферы неразрывно связано с образованием Земли. Эволюция атмосферы происходила (и происходит) под влиянием следующих факторов:

  • · аккреции вещества межпланетного пространства;
  • · выделения газов при вулканической деятельности;
  • · химического взаимодействия газов атмосферы с компонентами гидросферы и литосферы;
  • · диссоциации молекул газов, составляющих воздух, под влиянием солнечного ультрафиолетового и космического излучения;
  • · биогенных процессов в живом веществе биосферы;
  • · антропогенной деятельности.

Гидросфера – это совокупность всех водных объектов Земли (океанов, морей, озер, рек, подземных вод, болот, ледников, снежного покрова).

Большая часть воды сосредоточена в океане, значительно меньше - в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96% объёма гидросферы составляют моря и океаны, около 2% - подземные воды, около 2% - льды и снега, около 0,02% - поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу. Основная масса льда

располагается на

суше -

образом, в Антарктиде и

Гренландии. Общая масса его

около 2,42*1022 г. Если бы этот лед растаял, то уровень Мирового океана повысился бы примерно на 60 м. При этом 10 % суши оказалось бы затопленной морем.

Поверхностные воды занимают сравнительно малую долю в общей массе гидросферы.

История образования гидросферы

Считается, что при разогреве Земли, кора вместе с гидросферой и атмосферой образовались в результате вулканической деятельности – выброса лавы, пара и газов из внутренних частей мантии. Именно в виде пара часть воды поступила в атмосферу.

Значение гидросферы

Гидросфера находится в постоянном взаимодействии с атмосферой, земной корой и биосферой. Циркуляция воды в гидросфере и ее большая теплоемкость уравнивают климатические условия на различных широтах. Гидросфера поставляет водяной пар в атмосферу водяной пар благодаря инфракрасному поглощению создает значительный парниковый эффект, поднимающий среднюю температуру поверхности Земли примерно на 40 °С. Гидросфера влияет на климат и другими путями. Она запасает большие количества тепла летом и постепенно отдает их зимой, смягчая сезонные колебания температуры на континентах. Она переносит, кроме того, тепло из экваториальных районов в умеренные и даже полярные широты.

Поверхностные воды играют важнейшую роль в жизни нашей планеты, являясь основным источником водоснабжения, орошения и обводнения.

Наличие гидросферы сыграло решающую роль в возникно­вении жизни на Земле. Мы знаем сейчас, что жизнь зародилась в океанах, и прошли миллиарды лет, прежде чем стала обитаемой суша.

Статьи и публикации:

Регуляция процесса переключения классов
Процесс переключения классов происходит в перовых бляшках, главным образом в куполах, при участии дендритных клеток и Тh-лимфоцитов. Кажется, что ключевую роль в этом процессе относительно синтеза IgA играет цитокинин TGF-β. Переключ...

Популяция, как элементарная единица эволюционного процесса
Наименьшая эволюционная единица, в которой проходят микроэволюционные процессы, - популяция. Материалом для естественного отбора служат, как правило, очень мелкие, дискретные единицы наследственности мутации. На популяцию оказывают давлени...

Земля была расплавленной около 1 млрд. лет. Дальнейшее развитие в результате дифференциации вещества в жидком состоянии привело к расслоению планеты на оболочки и формированию атмосферы и гидросферы.

Атмосфера Земли раннего этапа имела другой компонентный состав, чем сейчас. В ней преобладали гелий, водород, азот, углекислый газ. В дальнейшем часть газов улетучивалась в космос, другая часть участвовала в окислительных процессах, но происходило и пополнение атмосферы газами, поступающими с недр Земли. Только при извержении вулканов в атмосферу поступило газов в 50 раз больше массы современной атмосферы. Первоначальная атмосфера изменялась под воздействием поступающих из недр газов, солнечной радиации, растительности, окислительных процессов, утечки в космос. На рубеже 2-2,2 млрд. лет назад возникла азотно-кислородная атмосфера, а содержание углекислого газа уменьшилось. Содержание углекислого газа сейчас в атмосфере составляет 0,034%. Оно зависит от скорости обмена с океаном и биосферой, что определяется температурой и влажностью.

Гидросфера Земли появилась позже начала образования планеты. Но с раннего архея объем воды стал значительно увеличиваться и 2-2,5 млрд. лет назад её объем приблизился к современному. Об этом свидетельствуют породы этого периода, формировавшиеся в водной среде (зеленокаменные офиолитовые пояса, голубые сланцы). Первичные океаны возникли 3,5-4 млрд. лет назад.

Воды Мирового океана и газы атмосферы возникли в результате преобразования материала мантии и образования и развития земной коры. Основной состав атмосферы – азотно-кислородный при незначительном количестве инертных газов и водорода. Этот состав отличается от состава вулканических газов. Причина этого кроется в изменении атмосферы за геологическое время и под влиянием развития жизни на планете. Зарождение жизни относят ко времени 3,6 млрд. лет назад. За это время вся вода Мирового океана прошла более 300 раз через биогенный цикл, а свободный кислород обновился более миллиона раз. В результате фотосинтеза ежегодно образуется 248 млрд. тонн в год кислорода при потреблении 341 т углекислого газа. Кроме этого, кислород образуется за счет фотодиссоциации водяного пара. Приведенные цифры показывают огромную роль живого вещества в формировании и изменении состава атмосферы за геологическое время. Выветривание пород земной коры сопровождается процессами окисления и гидратации. Свободный кислород связывается, погружаясь в глубину. В породах при метаморфизации наблюдаются восстановительные процессы. В этих процессах образуется вода и углекислота, выделение свободного кислорода не наблюдается.

Излияние базальтов на поверхность Земли приносило ювенильные минерализованные воды и газы. В базальтовой магме содержится 7%воды. Таким образом, образование коры сопровождалось и образованием воды и газов атмосферы. Поступали газы: СО, СО 2 , СН 4 , ΝН 3 , S, H 2 S, H 3 BO 3 , HCl, HFe, Ar, He. Ювенильные воды разрушали алюмосиликатные породы, растворяли Na, К, Rb, Cs, Мg, Са, Сг, Fe. При круговороте воды значительная часть солей задерживалась в океане. В настоящее время установился определенный баланс состава атмосферы и солевого состава гидросферы, происходящие изменения медленны и определяются ходом векового химического изменения под действием физико-химических и биологических факторов.

Живое вещество является не только основным поставщиком кислорода и поглощения углекислого газа. Оно так же концентрирует многие другие элементы: кремний, железо, фосфор, марганец и другие. Этапы развития живого вещества соответствуют изменениям в их взаимоотношении к различным элементам таблицы Менделеева. Так, первичные живые организмы развивались за счет окислительных процессов, следующий этап развития живого вещества использовал фотосинтез и усилил концентрацию Al, Si, Са, Ti, Сг, Mn, Fe, Co, Ni, Сu, Zn и др. Таким образом, живое вещество оказало и оказывает огромное влияние на миграцию химических элементов, а значит и на формирование не только состава атмосферы, но и на процесс преобразования земной коры, образования месторождений полезных ископаемых железо-марганцевых руд, нефти и газа, угля, известняков, доломитов и т.д. Общая масса живого вещества сейчас составляет 2420 млрд. тонн.

Об отсутствии кислорода в атмосфере в начальный период существования Земли свидетельствует отсутствие в морских отложениях минералов кислородных солей: сульфатов, карбонатов, минералов окисного железа. В дальнейшем состав отложений изменяется и свидетельствует о появлении свободного кислорода. Это произошло на рубеже 3 млрд. лет назад.

Установлено также, что из земных недр непрерывно поступают в земную кору и на поверхность флюиды (газы и жидкости с растворенными солями и элементами). Это в первую очередь гелий, водород, углеводородные газы, вода. Но не только флюиды поступают в земную кору и изменяют её. Поднимаются в результате процессов дифференциации и более тяжелые элементы и вещества, также как и опускаются. Но этот процесс идет со скоростями в сотни и тысячи раз медленнее, чем для флюидов. Такие процессы обуславливают метаморфизацию пород, гранитизацию, превращение океанической коры в континентальную и наоборот.