Меню
Бесплатно
Главная  /  Папилломы  /  Фрактальный список. О фракталах и их алгоритмах. Основополагающий вопрос работы

Фрактальный список. О фракталах и их алгоритмах. Основополагающий вопрос работы

Математика,
если на нее правильно посмотреть,
отражает не только истину,
но и несравненную красоту.
Бертранд Рассел .

Вы, конечно же, слышали о фракталах. Вы, конечно же, видели эти захватывающие картинки из Bryce3d более реальные, чем сама реальность. Горы, облака, кора дерева - все это выходит за рамки привычной евклидовой геометрии. Мы не можем описать камень или границы острова с помощью прямых, кружков и треугольников. И здесь нам приходят на помощь фракталы. Что же это за знакомые незнакомцы? Когда они появились?

История появления.

Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Пеано нарисовал особый вид линии (рисунок №1). Для ее рисования Пеано использовал следующий алгоритм.

На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии (Часть 1 и 2 рисунка 1). Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных выше (Броуновское движение, цены на акции).

Отец фракталов

Вплоть до 20 века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт - отец современной фрактальной геометрии и слова фрактал. Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставив факты, он пришел к открытию нового направления в математике - фрактальной геометрии.

Что же такое фрактал. Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый (поделенный на части). И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно).

Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта "The Fractal Geometry of Nature" ("Фрактальная геометрия природы") ставший классическим - "Какова длина берега Британии?". Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра - мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно - длина берега Британии бесконечна.

Немного о размерностях.

В своей повседневной жизни мы постоянно встречаемся с размерностями. Мы прикидываем длину дороги (250 м), узнаем площадь квартиры (78 м2) и ищем на наклейке объем бутылки пива (0.33 дм3). Это понятие вполне интуитивно ясно и, казалось бы, не требует разъяснения. Линия имеет размерность 1. Это означает, что, выбрав точку отсчета, мы можем любую точку на этой линии определить с помощью 1 числа - положительного или отрицательного. Причем это касается всех линий - окружность, квадрат, парабола и т.д.

Размерность 2 означает, что любую точку мы можем однозначно определить двумя числами. Не надо думать, что двумерный - значит плоский. Поверхность сферы тоже двумерна (ее можно определить с помощью двух значений - углов наподобие ширины и долготы).

Если смотреть с математической точки зрения, то размерность определяется следующим образом: для одномерных объектов - увеличение в два раза их линейного размера приводит к увеличению размеров (в данном случае длинны) в два раза (2^1).

Для двумерных объектов увеличение в два раза линейных размеров приводит к увеличению размера (например, площадь прямоугольника) в четыре раза (2^2).

Для 3-х мерных объектов увеличение линейных размеров в два раза приводи к увеличению объема в восемь раз (2^3) и так далее.

Таким образом, размерность D можно рассчитать исходя из зависимости увеличения "размера" объекта S от увеличения линейных размеров L. D=log(S)/log(L). Для линии D=log(2)/log(2)=1. Для плоскости D=log(4)/log(2)=2. Для объема D=log(8)/log(2)=3. Может быть немного запутано, но в общем-то несложно и понятно.

Зачем я это все рассказываю? А для того чтобы понять, как отделять фракталы от, скажем, колбасы. Попробуем посчитать размерность для кривой Пеано. Итак, у нас исходная линия, состоящая из трех отрезков длинны Х, заменяется на 9 отрезков втрое меньшей длинны. Таким образом, при увеличении минимального отрезка в 3 раза длина всей линии увеличивается в 9 раз и D=log(9)/log(3)=2 - двумерный объект!!!

Так вот, когда размерность фигуры получаемой из каких-то простейших объектов (отрезков) больше размерности этих объектов - мы имеем дело с фракталом.

Фракталы делятся на группы. Самые большие группы это:

Геометрические фракталы.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Рассмотренная выше кривая Пеано является геометрическим фракталом. На рисунке ниже приведены другие примеры геометрических фракталов (слева направо Снежинка Коха, Лист, Треугольник Серпинского).



Снежинка Коха


Лист


Треугольник Серпинского

Из этих геометрических фракталов очень интересным и довольно знаменитым является первый - снежинка Коха. Строится она на основе равностороннего треугольника. Каждая линия которого ___ заменяется на 4 линии каждая длинной в 1/3 исходной _/\_. Таким образом, с каждой итерацией длинна кривой увеличивается на треть. И если мы сделаем бесконечное число итераций - получим фрактал - снежинку Коха бесконечной длинны. Получается, что наша бесконечная кривая покрывает ограниченную площадь. Попробуйте сделать то же самое методами и фигурами из евклидовой геометрии.

Размерность снежинки Коха (при увеличении снежинки в 3 раза ее длина возрастает в 4 раза) D=log(4)/log(3)=1.2619...

Для построения геометрических фракталов хорошо приспособлены так называемые L-Systems. Суть этих систем состоит в том, что имеется определенных набор символов системы, каждый из которых обозначает определенное действие и набор правил преобразования символов. Например, описание снежинки Коха с помощью L-Systems в программе Fractint

; Adrian Mariano from The Fractal Geometry of Nature by Mandelbrot Koch1 { ;устанавливаем угол поворота 360/6=60 градусов Angle 6 ; Начальный рисунок для построения Axiom F--F--F ; Правило преобразования символов F=F+F--F+F }

В данном описании геометрические значения символов следующие:

F обозначает прочертить отрезок + поворот по часовой стрелке - поворот против часовой стрелки

Второе свойство фракталов - самоподобие. Возьмем, например, треугольник Серпинского. Для его построения из центра равностороннего треугольника "вырежем" треугольник. Повторим эту же процедуру для трех образовавшихся треугольников (за исключением центрального) и так до бесконечности. Если мы теперь возьмем любой из образовавшихся треугольников и увеличим его - получим точную копию целого. В данном случае мы имеем дело с полным самоподобием.

Сразу оговорюсь, что большинство рисунков фракталов в данной статье получены с помощью программы Fractint. Если Вас заинтересовали фракталы, то это программа must have для Вас. С ее помощью можно строить сотни различных фракталов, получить исчерпывающую информацию по ним, и даже послушать как фракталы звучат;).

Сказать, что программа хороша - значит ничего не сказать. Она великолепна, за исключением одного но - последняя версия 20.0 доступна только в варианте для DOS:(. Вы сможете найти эту программу (последняя версия 20.0) на http://spanky.fractint.org/www/fractint/fractint.html .

Оставить комментарий

Комментарии

Ну и на закуску интересный пример Microsoft Excel В ячейки A2 и B2 одинаковые значения между 0 и 1. при значении 0,5 нет эффекта.

Всем сумевшим сделать прогу по картинке фратала привет. Кто может мне сказать какой метот цикла мне лучше использовать чтобы построить поляночку фрактальчиков папортника с подложкой из 3d max при количестdt iteration 100 000 на камне с 2800 mH

Есть исходник с программой отрисовки кривой Дракона, тоже фрактал.

Статья офигенная. А эксель - это наверно ошибка сопроцессора (на последних младших разрядах)

Пример фрактала

«Фрактал» был введен в обиход математиками менее полувека назад, вскоре стал, наряду с синергетикой и аттрактором, одним из «трех китов» молодой Теории Детерминированного Хаоса, и сегодня уже признан, как один из основополагающих элементов устройства мироздания.

С латыни слово fractus переводится как «сломанный», современные латинские языки придали ему значение «рваный». Фрактал — это нечто, что идентично целому/большему, частью чего является, и, одновременно, копирует каждую собственную составную часть. Таким образом, «фрактальность» — это бесконечное подобие «всего» на свои составляющие, то есть, это самоподобие на любом уровне. Каждый уровень фрактальной ветки называется «итерация», чем больше развита описанная или графически изображенная система, тем больше фрактальных итераций видит наблюдатель. При этом точка, в которой происходит разделение (например, ствола на ветки, реки на два потока и т.д.), называют точкой бифуркации.

Термин fractus был выбран математиком Бенуа Мандельбротом в 1975 году для описания научного открытия и стал популярным несколькими годами позже – после того как он развил тему для широкой аудитории в своей книге «Фрактальная геометрия природы».

Сегодня фрактал широко знаменит как фантастические узоры так называемого «фрактального искусства», созданные компьютерными программами. Но с помощью компьютера можно генерировать не только красивые абстрактные картинки, но и весьма правдоподобные природные пейзажи – горы, реки, леса. Тут, собственно, находится точка перехода науки в реальную жизнь, или наоборот, если предположить, что их вообще возможно разделять.

Дело в том, что принцип фрактальности подходит не только для описания открытий в точных науках. Это, в первую очередь, принцип устройства и развития самой природы. Все вокруг нас – фракталы! Самая очевидная группа примеров — реки с притоками, венозная система с капиллярами, молния, морозные узоры, деревья… Совсем недавно ученые, проверяя теорию фрактальности , экспериментально убедились даже в том, что по схеме одного дерева можно делать выводы о лесном массиве, где эти деревья растут. Другие примеры фрактальных групп: атом – молекула — планетарная система — солнечная система – галактики — вселенная… Минута – час – день – неделя – месяц – год — век… Даже сообщество людей самоустраивается по принципам фрактальности: я – семья – род – народность – национальности — рассы… Индивидум – группа – партия — государство. Работник – отдел – департамент – предприятие — концерн… Даже божественные пантеоны разных религий построены по тому же принципу, включая христианство: Бог-Отец – Троица – святые – церковь – верующие, не говоря об организации божественных пантеонов языческих религий.

История заявляет, что впервые самоподобные множества были замечены в 19 веке в трудах ученых — Пуанкаре, Фату, Жюлиа, Кантора, Хаусдорфа, но истина в том, что уже языческие славяне оставили нам доказательство того, что люди понимали индивидуальное бытие, как малую деталь в бесконечности мироздания. Это – изученный искусствоведами Беларуси и Украины объект народной культуры, называемый «паук». Он является своеобразным прототипом скульптуры современного стиля «mobile» (части находятся в постоянном движении относительно друг друга). «Паук» чаще соломенный, состоит из одинаковых по форме маленьких, средних, больших элементов, подвешенных друг к другу так, что каждая меньшая часть точно повторяет в структуре большую и всю конструкцию в целом. Эту конструкцию вешали в главном углу жилья, как бы обозначая свой дом, как элемент всего мира.

Теория фрактальности сегодня работает везде, в том числе в философии, которая говорит, что в течение каждой жизни, а любая и вся жизнь в целом фрактальна, случаются «точки бифуркации», когда на более высокие уровни развитие может пойти разными путями и момент, когда человек «оказывается перед выбором», является самой настоящей «точкой буфуркации» во фракталах его жизни.

Теория Детерминированного Хаоса говорит, что развитие каждого фрактала не бесконечно. Ученые полагают, что в определенный момент наступает предел, за которым рост итераций прекращается и фрактал начинает «сужаться», доходя постепенно до своей изначальной единичной меры, а затем процесс снова идет по кругу — аналогично вдохам и выдохам, сменам утра и ночи, зимы и лета в природе.

Фрактальные свойства – не блажь и не плод досужей фантазии математиков. Изучая их, мы учимся различать и предсказывать важные особенности окружающих нас предметов и явлений, которые прежде, если и не игнорировались полностью, то оценивались лишь приблизительно, качественно, на глаз. Например, сравнивая фрактальные размерности сложных сигналов, энцефалограмм или шумов в сердце, медики могут диагностировать некоторые тяжелые заболевания на ранней стадии, когда больному еще можно помочь. Также и аналитик, сравнивая предыдущее поведение цен, в начале зарождения модели может предвидеть дальнейшее ее развитие, тем самым, не допуская грубых ошибок в прогнозировании.

Нерегулярность фракталов

Первым свойством фракталов является их нерегулярность. Если фрактал описывать функцией, то свойство нерегулярности в математических терминах будет означать, что такая функция не дифференцируема, то есть не гладкая ни в какой точке. Собственно к рынку это имеет самое прямое отношение. Колебания цен порой так волатильны и изменчивы, что это приводит многих трейдеров в замешательство. Нашей с вами задачей стоит разобрать весь этот хаос и привести его к порядку.

Знаете ли Вы, что: таким широким разнообразием инвестиционных возможностей , какое предоставляет компания Альпари, не может больше похвастаться ни один Форекс-брокер.

Самоподобие фракталов

Второе свойство гласит, что фрактал – это объект обладающий свойством самоподобия. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом и воспроизводится в различных масштабах без видимых изменений. Однако, изменения все же происходят, что в значительной степени может повлиять на восприятие нами объекта.

Самоподобие означает, что у объекта нет характерного масштаба: будь у него такой масштаб, вы сразу бы отличили увеличенную копию фрагмента от исходного снимка. Самоподобные объекты обладают бесконечно многими масштабами на все вкусы. Суть самоподобия можно пояснить на следующем примере. Представьте себе, что перед вами снимок «настоящей» геометрической прямой, «длины без ширины», как определял линию Евклид, и вы забавляетесь с приятелем, пытаясь угадать, предъявляет ли он вам исходный снимок (оригинал) или увеличенный в нужное число раз снимок любого фрагмента прямой. Как бы ни старались, вам ни за что не удастся отличить оригинал от увеличенной копии фрагмента, прямая во всех своих частях устроена одинаково, она подобна самой себе, но это ее замечательное свойство несколько скрадывается незамысловатой структурой самой прямой, ее «прямолинейностью» (рис. 7).

Если вы точно так же не сможете отличить снимок какого-нибудь объекта от надлежащим образом увеличенного снимка любого его фрагмента, то перед вами – самоподобный объект. Все фракталы, обладающие хотя бы какой-нибудь симметрией, самоподобны. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба. Пример самоподобного фрактала:

В финансах эта концепция – не беспочвенная абстракция, а теоретическая переформулировка практичной рыночной поговорки – а именно, что движения акции или валюты внешне похожи, независимо от масштаба времени и цены. Наблюдатель не может сказать по внешнему виду графика, относятся ли данные к недельным, дневным или же часовым изменениям.

Разумеется, далеко не все фракталы обладают столь правильной, бесконечно повторяющейся структурой, как те замечательные экспонаты будущего музея фрактального искусства, которые рождены фантазией математиков и художников. Многие фракталы, встречающиеся в природе (поверхности разлома горных пород и металлов, облака, валютные котировки, турбулентные потоки, пена, гели, контуры частиц сажи и т. д.), лишены геометрического подобия, но упорно воспроизводят в каждом фрагменте статистические свойства целого. Фракталы с нелинейной формой развития были названы Мандельбротом как – мультифракталы. Мультифрактал – это квазифрактальный объект с переменной фрактальной размерностью. Естественно, что реальные объекты и процессы гораздо лучше описываются мультифракталами.

Такое статистическое самоподобие, или самоподобие в среднем, выделяет фракталы среди множества природных объектов.

Рассмотрим пример самоподобия на валютном рынке:

На этих рисунках мы видим, что они похожи, при этом имея разный масштаб времени, на рис. а 15 минутный масштаб, на рис. б недельный масштаб цен. Как видим, данные котировки не обладают свойством идеально повторять друга, однако мы можем считать их подобными.

Даже простейшие из фракталов – геометрически самоподобные фракталы – обладают непривычными свойствами. Например, снежинка фон Коха обладает периметром бесконечной длины, хотя ограничивает конечную площадь (рис. 9). Кроме того, она такая колючая, что ни в одной точке контура к ней нельзя провести касательную (математик сказал бы, что снежинка фон Коха нигде не дифференцируема, то есть не гладкая ни в какой точке).

Мандельброт обнаружил, что результаты фракционного измерения остаются постоянными для различных степеней усиления неправильности объекта. Другими словами, существует регулярность (правильность, упорядоченность) для любой нерегулярности. Когда мы относимся к чему – либо, как к возникающему случайным образом, то это указывает на то, что мы не понимаем природу этой хаотичности. В терминах рынка это означает, что формирование одних и тех же типичных формаций должны происходить в различных временных рамках. Одноминутный график будет описывать фрактальную формацию так же, как и месячный. Такое «само – уподобление», находимое на графиках товарных и финансовых рынков, показывает все признаки того, что действия рынка ближе к парадигме поведения «природы», нежели поведения экономического, фундаментального анализа.

На данных рисунках можно найти подтверждение выше сказанному. Слева изображен график с минутным масштабом, справа недельный. Здесь изображены валютные пары Доллар/Йена (рис. 9 (а)) и Евро/Доллар (рис. 9 (б)) с различными масштабами цен. Даже не смотря на то, что валютная пара JPY/USD имеет другую волатильность по отношению к EUR/USD мы можем наблюдать одну и ту же структуру движения цены.

Фрактальная размерность

Третьим свойством фракталов является то, что фрактальные объекты имеют размерность, отличную от евклидовой (иначе говоря топологическая размерность). Фрактальная размерность, является показателем сложности кривой. Анализируя чередование участков с различной фрактальной размерностью и тем, как на систему воздействуют внешние и внутренние факторы, можно научиться предсказывать поведение системы. И что самое главное, диагностировать и предсказывать нестабильные состояния.

В арсенале современной математики Мандельброт нашел удобную количественную меру неидеальности объектов – извилистости контура, морщинистости поверхности, трещиноватости и пористости объема. Ее предложили два математика – Феликс Хаусдорф (1868-1942) и Абрам Самойлович Безикович (1891-1970). Ныне она заслуженно носит славные имена своих создателей (размерность Хаусдорфа – Безиковича) – размерность Хаусдорфа – Безиковича. Что такое размерность и для чего она нам понадобится применительно к анализу финансовых рынков? До этого нам был известен только один вид размерности – топологическая (рис. 11). Само слово размерность показывает, сколько измерений имеет объект. Для отрезка, прямой линии она равна 1, т.е. мы имеем только одно измерение, а именно длину отрезка либо прямой. Для плоскости размерность будет 2, так как мы имеем двухмерное измерение, длина и ширина. Для пространства или объемных объектов, размерность равна 3: длина, ширина и высота.

Давайте рассмотрим пример с компьютерными играми. Если игра сделана в 3D графике, то она пространственна и объемна, если в 2D графике – графика изображается на плоскости (рис. 10).

Самое необычное (правильнее было бы сказать – непривычное) в размерности Хаусдорфа – Безиковича было то, что она могла принимать не только целые, как топологическая размерность, но и дробные значения. Равная единице для прямой (бесконечной, полубесконечной или для конечного отрезка), размерность Хаусдорфа – Безиковича увеличивается по мере возрастания извилистости, тогда как топологическая размерность упорно игнорирует все изменения, происходящие с линией.

Размерность характеризует усложнение множества (например прямой). Если это кривая, с топологической размерностью равной 1 (прямая линия), то кривую можно усложнить путем бесконечного числа изгибаний и ветвлений до такой степени, что ее фрактальная размерность приблизится к двум, т.е. заполнит почти всю плоскость (рис. 12)

Увеличивая свое значение, размерность Хаусдорфа – Безиковича не меняет его скачком, как сделала бы «на ее месте» топологическая размерность, переход с 1 сразу к 2. Размерность Хаусдорфа – Безиковича – и это на первый взгляд может показаться непривычным и удивительным, принимает дробные значения: равная единице для прямой, она становится равной 1,15 для слегка извилистой линии, 1,2 – для более извилистой, 1,5 – для очень извилистой и т. д.

Именно для того чтобы особо подчеркнуть способность размерности Хаусдорфа – Безиковича принимать дробные, нецелые, значения, Мандельброт и придумал свой неологизм, назвав ее фрактальной размерностью. Итак, фрактальная размерность (не только Хаусдорфа – Безиковича, но и любая другая) – это размерность, способная принимать не обязательно целые значения, но и дробные.

Для линейных геометрических фракталов, размерность характеризует их самоподобность. Рассмотрим рис. 17 (А), линия состоит из N=4 отрезков, каждый из которых имеет длину r = 1/3. В итоге получаем соотношение:

D = logN/log(1/r)

Совсем дело обстоит иначе, когда мы говорим мультифракталах (нелинейных). Здесь размерность утрачивает свой смысл как определение подобия объекта и определяется посредством различных обобщений, куда менее естественных, чем уникальная размерность самоподобных объектов.

На валютном рынке размерностью можно охарактеризовать волатильность котировок цены. Для каждой валютной пары характерно свое поведение в масштабе цен. У пары Фунт/Доллар (рис. 13(а)) оно более спокойно, нежели чем у Евро/Доллар (рис. 13(б)). Самое интересное в том, что данные валюты двигаются одинаковой структурой к ценовым уровням, однако, размерность у них разная, что может сказаться на внутридневной торговле и на ускользающих от не опытного взгляда, изменениях моделей.

На рис. 14 показана размерность применительно к математической модели, для того чтобы вы более глубоко прониклись в значение данного термина. Обратите внимание, что на всех трех рисунках изображен один цикл. На рис. а размерность равна 1.2, на рис. б размерность равна 1.5, а на рис. в 1.9. Видно, что с увеличением размерности восприятие объекта усложняется, возрастает амплитуда колебаний.

На финансовых рынках размерность находит свое отражение не только в качестве волатильности цены, но и в качестве детализации циклов (волн). Благодаря ей, мы сможем различать принадлежность волны к определенному масштабу времени. На рис. 15 изображена пара Евро/Доллар в дневном масштабе цен. Обратите внимание, четко видно сформировавшийся цикл и начало нового, большего цикла. Перейдя на часовой масштаб и увеличив один из циклов, мы сможем заметить более мелкие циклы, и часть крупного, расположенного на D1 (рис. 16). Детализация циклов, т.е. их размерность, позволяет нам определить по начальным условиям, как может в дальнейшем развиваться ситуация. Мы можем сказать, что: фрактальная размерность отражает свойство масштабной инвариантности рассматриваемого множества.

Понятие инвариантности было введено Мандельбротом от слова «sealant» – масштабируемый, т.е. когда объект обладает свойством инвариантности, он имеет различные масштабы отображения.

На рис. 16 кругом А выделен мини цикл (детализированная волна), кругом Б – волна большего цикла. Именно из-за размерности, мы не всегда можем определять ВСЕ циклы на одном масштабе цен.

О проблемах определения и свойствах развития непериодических циклов мы поговорим в разделе «Циклы на валютном рынке», сейчас для нас главное было понять, как и где размерность проявляется на финансовых рынках.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной (случайной) природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернативных путей и определенного темпа эволюции, а также необратимость эволюционных процессов. Нелинейность в математическом смысле означает, определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. Простой пример нелинейной динамической системы:

Джонни растет на 2 дюйма в год. Эта система объясняет, как высота Джонни изменяется во времени. Пусть х (n) будет ростом Джонни в этом году. Пусть его рост в следующем году будет записан, как х (n+1). Тогда мы можем написать динамическую систему в форме уравнения:

х(n+1) = х(n) + 2.

Видите? Разве это не простая математика? Если мы введем сегодняшний рост Джонни х (n) = 38 дюймов, то с правой стороны уравнения мы получим рост Джонни в следующем году, х (n+1) = 40 дюймов:

х(n+1) = х(n) + 2 = 38 + 2 = 40.

Движение справа налево в уравнении называется итерацией (повторением). Мы можем повторить уравнение снова, введя новый рост Джонни 40 дюймов в нужную сторону уравнения (то есть х (n) = 40), и мы получим х (n+1) = 42. Если мы итерируем (повторим) уравнение 3 раза, мы получим рост Джонни через 3 года, а именно 44 дюйма, начав с роста 38 дюймов.

Это – детерминированная динамическая система. Если мы хотим сделать ее недетерминированной (стохастической), мы могли бы сделать такую модель: Джонни растет на 2 дюйма в год, больше или меньше и записать уравнение, как:

х(n+1) = х(n) + 2 + е

где е – небольшая ошибка (небольшая относительно 2), представляет некоторое вероятностное распределение.

Давайте вернемся к первоначальному детерминированному уравнению. Первоначальное уравнение, х(n+1) = х(n) + 2, является линейным. Линейное означает, что Вы добавляете переменные или константы или умножаете переменные на константы. Например, уравнение

z(n+l) = z(n) + 5 y(n) -2 x(n)

является линейным. Но если Вы перемножите переменные, или возведете их в степень, большую единицы, уравнение (система) станет нелинейным. Например, уравнение

х(n+1) = х(n) 2

является нелинейным, потому что х (n) – возведено в квадрат. Уравнение

является нелинейным, потому что две переменные, х и у, перемножены.

Когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное, т.е. полностью зависит от начальных условий и поддается четкому прогнозу. Вы самостоятельно можете выполнить одну из таких моделей в Excel. Пример классической модели можно представить в виде постоянно убывающей, либо возрастающей тенденции. И мы можем предсказать ее поведение, зная прошлое объекта(исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие. Именно такой системой и является межбанковский валютный рынок.

Давайте теперь рассмотрим, как из прямой можно получить то, что мы называем фракталом, с присущими ему свойствами.

На рис. 17 (А) изображена кривая Коха. Возьмем отрезок линии, ее длина = 1, т.е. пока еще топологическая размерность. Теперь мы разделим ее на три части (каждая по 1/3 длины), и удалим среднюю треть. Но мы заменим среднюю треть двумя отрезками (каждый по 1/3 длины), которые можно представить, как две стороны равностороннего треугольника. Это стадия два (b) конструкции изображена на рис. 17 (А). В этой точке мы имеем 4 меньших доли, каждая по 1/3 длины, так что вся длина – 4(1/3) = 4/3. Затем мы повторяем этот процесс для каждой из 4 меньших долей линии. Это – стадия три (с). Это даст нам 16 еще меньших долей линии, каждая по 1/9 длины. Так что вся длина теперь 16/9 или (4/3) 2 . В итоге получили дробную размерность. Но не только это отличает образовавшуюся структуру от прямой. Она стала самоподобной и ни в одной ее точке невозможно провести касательную (рис. 17 (Б)).

Содержание

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины;
  • треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости;
  • губка Менгера - аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ;
  • кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано - непрерывная кривая, проходящая через все точки квадрата;
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [ ] .

Рекурсивная процедура получения фрактальных кривых

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости: Ψ : K ↦ ∪ i = 1 n ψ i (K) {\displaystyle \Psi \colon K\mapsto \cup _{i=1}^{n}\psi _{i}(K)}

Можно показать, что отображение Ψ {\displaystyle \Psi } является сжимающим отображением на множестве компактов с метрикой Хаусдорфа . Следовательно, по теореме Банаха , это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения ψ i , i = 1 , … , n {\displaystyle \psi _{i},\,i=1,\dots ,n} - отображения подобия, а n {\displaystyle n} - число звеньев генератора.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления z n {\displaystyle z_{n}} к бесконечности (определяемой, скажем, как наименьший номер n {\displaystyle n} , при котором | z n | {\displaystyle |z_{n}|} превысит фиксированную большую величину A {\displaystyle A} ).

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики , например, в модели Изинга и перколяции .
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

Природные объекты, обладающие фрактальными свойствами

Природные объекты (квазифракталы ) отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур (границы облаков, линия берега, деревья, листья растений, кораллы , …) являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул .

  • В живой природе:
    • Морские звезды и ежи
    • Цветы и растения (брокколи , капуста)
    • Кроны деревьев и листья растений
    • Плоды (ананас)
    • Система кровообращения и бронхи людей и животных
  • В неживой природе:
    • Границы географических объектов (стран, областей, городов)
    • Морозные узоры на оконных стёклах
    • Сталактиты , сталагмиты , геликтиты .

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии -адсорбции , пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.
Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.
Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому".

Существует большое число математических объектов называемых фракталами (треугольник Серпинского, снежинка Коха, кривая Пеано, множество Мандельброта и лоренцевы аттракторы). Фракталы с большой точностью описывают многие физические явления и образования реального мира: горы, облака, турбулентные (вихревые) течения, корни, ветви и листья деревьев, кровеносные сосуды, что далеко не соответствует простым геометрическим фигурам. Впервые о фрактальной природе нашего мира заговорил Бенуа Мандельброт в своей основополагающей работе "Фрактальная геометрия природы" .
Термин фрактал введен Бенуа Мандельбротом в 1977 году в его фундаментальной работе "Фракталы, Форма, Хаос и Размерность" . Согласно Мандельброту, слово фрактал происходит от латинских слов fractus - дробный и frangere - ломать, что отражает суть фрактала, как "изломанного", нерегулярного множества.

Классификация фракталов.

Для того, чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации. Существует три класса фракталов.

1. Геометрические фракталы.

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается геометрический фрактал.

Рассмотрим на примере один из таких фрактальных объектов - триадную кривую Коха.

Построение триадной кривой Коха.

Возьмем прямолинейный отрезок длины 1. Назовем его затравкой . Разобьем затравку на три равные части длиной в 1/3, отбросим среднюю часть и заменим ее ломаной из двух звеньев длиной 1/3.

Мы получим ломаную, состоящую из 4 звеньев с общей длиной 4/3 , - так называем первое поколение .

Для того чтобы перейти к следующему поколению кривой Коха, надо у каждого звена отбросить и заменить среднюю часть. Соответственно длина второго поколения будет 16/9, третьего - 64/27. если продолжить этот процесс до бесконечности, то в результате получится триадная кривая Коха.

Рассмотрим теперь св-ва триадной кривой Коха и выясним, почему же фракталы называли «монстрами».

Во-первых, эта кривая не имеет длины - как мы убедились, с числом поколений ее длина стремится к бесконечности.

Во-вторых, к этой кривой невозможно построить касательную - каждая ее точка является точкой перегиба, в которой производная не существует, - эта кривая не гладкая.

Длина и гладкость - фундаментальные св-ва кривых, которые изучаются как евклидовой геометрией, так и геометрией Лобачевского, Римана. К триадной кривой Коха традиционные методы геометрического анализа оказались неприменимы, поэтому кривая Коха оказалась чудовищем - «монстром» среди гладких обитателей традиционных геометрий.

Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рисунке представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Кривая, при n стремящемуся к бесконечности, называется драконом Хартера-Хейтуэя.
В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

2.Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.
Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта. Алгоритм его построения достаточно прост и основан на простом итеративном выражении: Z = Z[i] * Z[i] + C , где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки с прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z[i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z[i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z[i] оставалась внутри окружности, можно установить цвет точки C (если Z[i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).

3.Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе хаотически менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.
Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

О применении фракталов

Прежде всего, фракталы - область удивительного математического искусства, когда с помощью простейших формул и алгоритмов получаются картины необычайной красоты и сложности! В контурах построенных изображений нередко угадываются листья, деревья и цветы.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. Современная физика и механика только-только начинают изучать поведение фрактальных объектов. И, конечно же, фракталы применяются непосредственно в самой математике.
Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.
Компанией Iterated разработан новый формат изображений "Sting", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.
Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами, например фрактальные облака из 3D studio MAX, фрактальные горы в World Builder. Фрактальные деревья, горы и целые пейзажи задаются простыми формулами, легко программируются и не распадаются на отдельные треугольники и кубики при приближении.
Нельзя обойти стороной и применения фракталов в самой математике. В теории множеств множество Кантора доказывает существование совершенных нигде не плотных множеств, в теории меры самоаффинная функция "Канторова лестница" является хорошим примером функции распределения сингулярной меры.
В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.
При фрактальном подходе хаос перестает быть синимом беспорядка и обретает тонкую структуру. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

О построении фракталов

Метод последовательных приближений

Глядя на эту картинку, нетрудно понять, как можно построить самоподобный фрактал (в данном случае пирамиду Серпинского). Нужно взять обычную пирамиду (тетраэдр), затем вырезать ее середину (октаэдр), в результате чего у нас получается четыре маленьких пирамидки. С каждой из них мы проделываем ту же самую операцию и т.д. Это несколько наивное, но наглядное объяснение.

Рассмотрим суть метода более строго. Пусть имеется некоторая IFS-система, т.е. система сжимающих отображений S ={S 1 ,...,S m } S i:R n ->R n (например, для нашей пирамидки отображения имеют вид S i (x)=1/2*x+o i , где o i - вершины тетраэдра, i=1,..,4). Затем выбираем некоторое компактное множество A 1 в R n (в нашем случае выбираем тетраэдр). И определяем по индукции последовательность множеств A k:A k+1 =S 1 (A k) U...U S m (A k). Известно, что множества A k с ростом k, всё лучше приближают искомый аттрактор системы S .

Заметим, что каждая из этих итераций является аттрактором рекуррентной системы итерированных функций (английский термин Digraph IFS , RIFS и также Graph-directed IFS ) и поэтому их легко построить с помощью нашей программы.

Построение по точкам или вероятностный метод

Это наиболее лёгкий для реализации на компьютере метод. Для простоты рассмотрим случай плоского самоаффинного множества. Итак, пусть {S

} - некоторая система аффинных сжатий. Отображения S

представимые в виде: S

Фиксированная матрица размера 2x2 и o

Двумерный вектор столбец.

  • Возьмем неподвижную точку первого отображения S 1 в качестве начальной точки:
    x:= o1;
    Здесь мы пользуемся тем, что все неподвижные точки сжатий S 1 ,..,S m принадлежат фракталу. В качестве начальной точки можно выбрать произвольную точку и порожденная ею последовательность точек стянется к фракталу, но тогда на экране появятся несколько лишних точек.
  • Отметим текущую точку x=(x 1 ,x 2) на экране:
    putpixel(x 1 ,x 2 ,15);
  • Выберем случайным образом число j от 1 до m и пересчитаем координаты точки x:
    j:=Random(m)+1;
    x:=S j (x);
  • Переходим на шаг 2, либо, если сделали достаточно большое число итераций, то останавливаемся.

Примечание. Если коэффициенты сжатия отображений S i разные, то фрактал будет заполняться точками неравномерно. В случае, если отображения S i являются подобиями, этого можно избежать небольшим усложнением алгоритма. Для этого на 3-ем шаге алгоритма число j от 1 до m надо выбирать с вероятностями p 1 =r 1 s ,..,p m =r m s , где r i обозначают коэффициенты сжатия отображений S i , а число s (называемое размерностью подобия) находится из уравнения r 1 s +...+r m s =1. Решение этого уравнения можно найти, например, методом Ньютона.

О фракталах и их алгоритмах

Фрактал происходит от латинского прилагательного "fractus", и в переводе означает состоящий из фрагментов, а соответствующий латинский глагол "frangere" означает разбивать, то есть создавать неправильные фрагменты. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Термин был предложен Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта «The Fractal Geometry of Nature» - «Фрактальная геометрия природы». В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф).

Коррективы

Позволю себе внести некоторые коррективы в алгоритмы предложенные в книге Х.-О. Пайтгена и П.Х.Рихтера "Красота фракталов" М. 1993 сугубо для искоренения опечаток иоблегчения понимания процессов поскольку после их изучения многое осталось для меня загадкой. К сожалению эти "понятные" и "простые" алгоритмы ведут качующий образ жизни.

В основе построения фракталов лежит некая нелинейная функция комплексного процесса с обратной связью z=> z 2 +c поскольку z и с -комплексные числа, то z=x+iy, c=p+iq необходимо разложить его на х и у чтобы перейти в более реальную для простого человека плоскость:

x(k+1)=x(k) 2 -y(k) 2 + p,
y(k+1)=2*x(k)*y(k) + q.

Плоскость, состоящая из всех пар (x,y), может рассматриваться, как при фиксированных значениях р и q , так и при динамических. В первом случае перебирая по закону все точки (х,у) плоскости и окрашивая их в зависимости от количества повторений функции необходимых для выхода из итерационного процесса или не окрашивая (черный цвет) при привышении допустимого максимума повторений мы получим отображение множества Жюлиа. Если, напротив, определить начальнуюя пару значений (x,y) и проследить ее колористическую судьбу при динамически изменяющихся значениях параметров p и q, то получаим изображения, называемые множествами Мандельброта.

К вопросу об алгоритмах раскраски фракталов.

Обычно тело множества представляют в виде черного поля, хотя очевидно, что черный цвет может быть заменен на любой другой, но это тоже мало интересный результат. Получить изображение множества раскрашенного во все цвета - задача которая не может решаться при помощи циклических операций т.к. количество итерации формирующих тело множества равно максимально возможному и всегда одно и тоже. Раскрасить множество в разные цвета возможно применив в качестве номера цвета результат проверки условия выхода из цикла (z_magnitude) или подобный ему, но с другими математическими действиями.

Применение "фрактального микроскопа"

для демонстрации пограничных явлений.

Аттракторы - центры ведущие борьбу за доминирование на плоскости. Между аттракторами возникает граница представляющая витееватый узор. Увеличивая масштаб рассмотрения в пределах границ множества можно получать нетривиальные узоры отражаюшие состояние детерминированного хаоса - обычного явления в мире природы.

Исследуемые географами объекты образуют систему с весьма сложно организованными границами, в связи с чем их проведение становится не простой практической задачей. Природные комплексы имеют ядра типичности выступающие в качестве аттракторов теряющих силу влияния на территорию по мере ее удаления.

Используя фрактальный микроскоп для множеств Мандельброта и Жюлиа можно сформировать представление о пограничных процессах и явлениях, одинаково сложных не зависимо от масштаба рассмотрения и таким образом подготовить восприятие специалиста к встрече с динамичным и на первый взгляд хаотичным в пространстве и времени природным объектом, к пониманию фрактальной геометрии природы. Многоцветие красок и фрактальная музыка определенно оставят глубокий след в сознании учащихся.

Фракталам посвящены тысячи публикаций и огромные ресурсы интернет, однако для многих специалистов далеких от информатики данный термин представляется абсолютно новым. Фракталы, как объекты представляющие интерес для специалистов различных отраслей знания, должны получить надлежащее место в курсе информатики.

Примеры

РЕШЕТКА СЕРПИНСКОГО

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Чтобы получить ковер Серпинского , возьмем квадрат, разделим его на девять квадратов, а средний вырежем. То же сделаем и с остальными, меньшими квадратами. В конце концов образуется плоская фрактальная сетка, не имеющая площади, но с бесконечными связями. В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения.

КРИВАЯ КОХА

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в девятнадцатом веке немецким математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

ФРАКТАЛ МАНДЕЛЬБРОТА

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5.

ПЯТИУГОЛЬНИК ДАРЕРА

Фрактал выглядит как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Вариант этого фрактала можно получить при использовании в качестве инициатора шестиугольника. Этот фрактал называется Звезда Давида и он довольно похож на шестиугольную версию Снежинки Коха. Фрактальная размерность пятиугольника Дарера ln6/ln(1+g), где g - отношение длины большей стороны треугольника к длине меньшей. В данном случае, g - это Золотая Пропорция, так что фрактальная размерность приблизительно равна 1.86171596. Фрактальное измерение Звезды Давида ln6/ln3 или 1.630929754.

Сложные фракталы

Фактически, если вы увеличите маленькую область любого сложного фрактала а затем проделаете то же самое с маленькой областью этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

Рис 1. Приближение множества Мандельброта

Сравните, например приведенные здесь картинки множества Мандельброта, одна из которых получена при увеличении некоторой области другой. Как видно, они абсолютно не являются идентичными, хотя на обоих мы видим черный круг, от которого в разные стороны идут пылающие щупальца. Эти элементы повторяются бесконечно долго во множестве Мандельброта в уменьшающейся пропорции.

Детерминистские фракталы являются линейными, тогда как сложные фракталы таковыми не являются. Будучи нелинейными, эти фракталы генерируются тем, что Мандельброт назвал нелинейными алгебраическими уравнениями. Хороший пример - это процесс Zn+1=ZnІ + C, что является уравнением, используемым для построения множества Мандельброта и Жулии второй степени. Решение этих математических уравнений вовлекает комплексные и мнимые числа. Когда уравнение интерпретируется графически на комплексной плоскости, результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. При этом вся картина в целом является непредсказуемой и очень хаотичной.

Как можно увидеть, смотря на картинки, сложные фракталы действительно очень сложны и их невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. В отличии от детерминистских фракталов, сложные фракталы не вычисляются за 5-10 итераций. Практически каждая точка на экране компьютера как отдельный фрактал. Во время математической обработки, каждая точка рассматривается как отдельный рисунок. Каждой точке соответствует определенное значение. Уравнение встраивается, применительно к каждой точке и производится, к примеру 1000 итераций. Для получения сравнительно неискаженного изображения за приемлемый для домашних компьютеров промежуток времени, для одной точки возможно проводить 250 итерации.

Большинство фракталов, которые мы видим сегодня, красиво раскрашены. Возможно фрактальные изображения получили такое большое эстетическое значение именно благодаря своим цветовым схемам. После того, как уравнение посчитано, компьютер анализирует результаты. Если результаты остаются стабильными, или колеблются вокруг определенного значения, точка обычно принимает черный цвет. Если значение на том или ином шаге стремится к бесконечности, точку закрашивают в другой цвет, может быть в синий или красный. Во время этого процесса, компьютер назначает цвета для всех скоростей движения.

Обычно, быстро движущиеся точки закрашивают в красный цвет, тогда как более медленные в желтый и так далее. Темные точки, вероятно, самые стабильные.

Сложные фракталы отличаются от детерминистских в том смысле, что они бесконечно сложные, но, при этом, могут быть сгенерированы очень простой формулой. Детерминистским фракталам не нужны формулы или уравнения. Просто возьмите чертежную бумагу и вы можете построить решето Серпинского до 3 или 4 итерации без каких-либо затруднений. Попробуйте сделать это с множеством Жулиа! Легче пойти мерить длину береговой линии Англии!

МНОЖЕСТВО МАНДЕЛЬБРОТА

Рис 2. Множество Мандельброта

Множества Мандельброта и Жулиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.
Рис 3. Появление пузырьков при a=3.5

Также популярен процесс Z=Z*tg(Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

МНОЖЕСТВО ЖУЛИА

Удивительно, но множества Жулиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жулиа было изобретено французским математиком Гастоном Жулиа, по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жулиа это "если оба фрактала сгенерированы по одной формуле, почему они такие разные?" Сначала посмотрите на картинки множества Жулиа. Достаточно странно, но существуют разные типы множеств Жулиа. При рисовании фрактала с использованием различных начальных точек (чтобы начать процесс итераций), генерируются различные изображения. Это применимо только ко множеству Жулиа.

Рис 4. Множество Жулиа

Хотя это нельзя увидеть на картинке, фрактал Мандельброта - это, на самом деле, множество фракталов Жулиа, соединенных вместе. Каждая точка (или координата) множества Мандельброта соответствует фракталу Жулиа. Множества Жулиа можно сгенерировать используя эти точки в качестве начальных значений в уравнении Z=ZІ+C. Но это не значит, что если выбрать точку на фрактале Мандельброта и увеличить ее, можно получить фрактал Жулиа. Эти две точки идентичны, но только в математическом смысле. Если взять эту точку и просчитать ее по данной формуле, можно получить фрактал Жулиа, соответствующий определенной точке фрактала Мандельброта.