Меню
Бесплатно
Главная  /  Папилломы  /  Загрязнение атмосферного воздуха естественными и антропогенными выбросами. Уровни загрязнения атмосферного воздуха. Справка

Загрязнение атмосферного воздуха естественными и антропогенными выбросами. Уровни загрязнения атмосферного воздуха. Справка

Введение

Атмосфера представляет собой среду, в которой происходит распространение атмосферных загрязнителей от их источника; при этом влияние каждого данного источника определяется продолжительностью времени, частотой выпуска загрязнений и той концентрацией, воздействию.которой подвергается какой-либо объект. С другой стороны, метеорологические условия играют лишь незначительную роль в уменьшении или устранении загрязнения воздуха, поскольку, во-первых, они не изменяют абсолютную массу выброса, во-вторых, в настоящее время мы еще не умеем воздействовать на основные протекающие в атмосфере процессы, определяющие степень рассеивания загрязняющих веществ. Проблема атмосферных загрязнений может решаться по трем направлениям: а) путем устранения образования отходов; б) путем установки оборудования для улавливания отходов на месте их образования; в) путем улучшения рассеивания выбросов в атмосфере.

Если допустить, что наилучшим способом устранения атмосферных загрязнений является контроль источников их образования, то практическая задача сводится к тому, чтобы привести расходы по снижению степени загрязнения в соответствие с объемом работ, уменьшающих до приемлемого уровня количество отходов. Величина требуемого для этого уменьшения абсолютной массы выброса загрязнений данным источником, зависит непосредственно от метеорологических условий и их изменения во времени и пространстве над данным районом.

Основные параметры, определяющие распространение и рассеивание загрязняющих веществ в атмосфере, могут быть описаны качественно и полуколичественно. Такие данные позволяют сопоставить различные географические пункты или определить возможную частоту условий, при которых будет происходить быстрая или замедленная диффузия в атмосфере. Наиболее характерным свойством атмосферы является ее непрерывная изменчивость: температура, ветер и осадки широко варьируют в зависимости от широты местности, времени года и топографических условий. Эти условия хорошо изучены и довольно подробно представлены в литературе.

В меньшей мере изучены и описаны в литературе другие важные метеорологические параметры, влияющие на концентрацию атмосферных загрязнений, а именно турбулентная структура ветра, низкие уровни температуры воздуха и градиенты ветра. Эти параметры широко изменяются во времени и пространстве и представляют собой на деле почти единственные метеорологические факторы, которые человек может изменить существенным образом и то лишь локально.

Загрязнение атмосферного воздуха населенных мест рассматривают обычно как результат индустриализации, однако оно включает не только вещества, выделяющиеся в процессе промышленного производства, но и естественные загрязнения, возникающие в результате вулканических извержений (Wexler, 1951), пылевых бурь (Warn, 1953), океанских прибоев (Holzworth, 1957), лесных пожаров (Wexler, 1950), спорообразования растений (Hewson, 1953) и т. д. Оценка физиологического воздействия природных загрязнений атмосферы часто может быть более легкой, чем оценка влияния сложного загрязнения промышленными отходами. Характер природных загрязнений, а часто и их источники, как правило, лучше изучены.

Для того чтобы оценить роль атмосферы в качестве рассеивающей среды, необходимо рассмотреть физические процессы, способствующие рассеиванию различных веществ в атмосфере, а также значение таких неметеорологических факторов, как топография и география местности.

Воздушные течения

Основным параметром, определяющим распространение атмосферных загрязнителей, является ветер, его скорость и направление, которые в свою очередь взаимосвязаны с вертикальным и горизонтальным градиентами температуры воздуха в больших и малых масштабах. Основная закономерность заключается в том что чем больше скорость ветра, тем больше турбулентность и тем быстрее и полнее происходит рассеивание загрязнений с атмосфере. Taк как вертикальный и горизонтальный градиенты температуры зимой увеличиваются, то и скорость, ветра обычно возрастает. Это особенно характерно для умеренных и полярных широт и менее отчетливо проявляется в тропиках, где сезонные колебания невелики. Однако иногда и в зимнее время, особенно в глубине крупных континентов, могут возникать продолжительные периоды слабого движения воздуха или полного штиля. Изучение частоты длительных периодов слабого движения воздуха на североамериканском континенте к востоку от Скалистых гор показало, что такие ситуации возникают наиболее часто поздней весной и ранней осенью. На значительной части европейского континента слабые ветры наблюдаются поздней осенью и ранней зимой (Jalu, 1965). Кроме сезонных колебаний, на многих территориях отмечаются дневные изменения в движении воздуха, которые могут быть даже более заметными. На большинстве континентальных территорий в ночные часы обычно наблюдается устойчивое слабое движение воздуха. В результате ухудшения условий для вертикального распространения атмосферных загрязнений последние рассеиваются медленно и могут концентрироваться в относительно малых объемах воздуха. Содействующий этому слабый, изменчивый ветер может привести даже к обратному распространению загрязнений по направлению к их источнику. В противоположность этому в дневное время ветры характеризуются большей турбулентностью и скоростью; вертикальные токи усиливаются, поэтому в ясный солнечный день происходит максимальное рассеивание загрязняющих веществ.

Местные ветры могут заметно отличаться от общего потока воздуха, характерного для данной области. Разница температур суши и воды вдоль побережья континентов или крупных озер является достаточной для возникновения местных движений воздуха с моря на сушу днем и с суши на море ночью (Pierson, I960); Schmidt, 1957). В умеренных широтах такие закономерности движения морского бриза хорошо заметны лишь летом, в другие времена года они маскируются общими ветрами. Однако в тропических и субтропических районах они могут являться характерными чертами погоды и наблюдаться почти с часовой регулярностью изо дня в день.

Помимо закономерностей движения морского бриза в приморских районах, очень важными факторами являются также топография местности, расположение на ней источников загрязнений или объектов их воздействия. Следует отметить, однако, что замкнутость пространства не является необходимым условием для создания чрезвычайного уровня атмосферных загрязнении, если в этом пространстве имеется достаточно интенсивный источник загрязнения. Лучшим доказательством этого являются эпизодически наблюдающиеся токсические туманы (smog) в Лондоне, где топографические условия не играют почти, или совершенно никакой роли. Однако, за исключением Лондона, все крупные воздушные катастрофы, вызванные загрязнением атмосферы, о которых мы знаем, возникали там, где движение воздуха значительно ограничивалось рельефом местности, так что движение воздуха происходило лишь в одном направлении или в пределах относительно малой территории (Firket, 1936; US Public Health Service, 1949), движение.воздуха в узких долинах характеризуется тем, что днем нагретые солнцем воздушные потоки направляются по склонам долины вверх, тогда как непосредственно перед или после захода солнца воздушные потоки опрокидываются и стекают по склонам долины.вниз (Defant, 1951). Поэтому в условиях долины атмосферные загрязнения могут подвергаться длительному застою на небольшом пространстве (Hewson a. Gill, 1944). Кроме того, поскольку склоны долин защищают их от влияния общей циркуляции воздуха, ветер здесь отличается меньшей скоростью по сравнению с равнинными территориями. B некоторых районах такие местные восходящие и нисходящие потоки воздуха в долинах могут происходить почти ежедневно, в других они наблюдаются лишь как исключительное явление. Существование местных воздушных течений и их изменения во времени являются одной из основных причин, обусловливающих необходимость детального исследования местности для исчерпывающей характеристики закономерностей загрязнения атмосферы (Holland, 1953). Обычная сеть метеорологических станций не в состоянии обнаружить эти небольшие воздушные течения.

Кроме изменений движения воздуха во времени и по горизонтали, обычно наблюдаются значительные различия в его движении и.по вертикали. Неровности земной поверхности, как естественные, так и созданные человеком, образуют препятствия, обусловливающие механические завихрения, уменьшающиеся с увеличением высоты. Кроме того, в результате нагревания земли солнцем образуются термические завихрения, максимальные у земной поверхности и убывающие с высотой, что приводит к уменьшению порывистости ветра по вертикали и последовательному снижению скорости рассеивания загрязнений с увеличением высоты (Magi 11, Holder) a. Ackley, 1956),

Турбулентность, или вихревое движение, представляет собой механизм, обеспечивающий эффективную диффузию в атмосфере. Поэтому изучение спектра распространения энергии в вихрях, проводящееся значительно более интенсивно в настоящее время (Panofsky a. McCormick, 1954; Van Dcr Hovcn, 1957), теснейшим образом связано с проблемой рассеивания атмосферных загрязнений. Общая турбулентность состоит в основном из двух компонентов - механической и термической турбулентности. Механическая турбулентность возникает при движении ветра над аэродинамически шероховатой поверхностью земли и пропорциональна степени этой шероховатости и скорости ветра. Термическая турбулентность возникает в результате нагревания земли солнцем и зависит от широты местности, величины излучающей поверхности, и стабильности атмосферы. Она достигает максимума в ясные летние дни и снижается до минимума в течение длинных зимних ночей. Обычно влияние солнечной радиации на тепловую турбулентность измеряется не непосредственно, а путем измерения вертикального градиента температуры. Если вертикальный градиент температуры нижних слоев атмосферы превышает адиабатическую скорость падения температуры, то возрастает вертикальное движение воздуха более заметным становится рассеивание загрязнений, особенно по вертикали. С другой стороны, в стабильных атмосферных условиях, когда различные слои атмосферы имеют одинаковую температуру или когда температурный градиент с увеличением высоты становится положительным, необходимо затратить значительную энергию для увеличения вертикального движения. Даже при эквивалентных скоростях ветра стабильные атмосферные условия обычно приводят к концентрации загрязнений в относительно ограниченных слоях воздуха.

Типичный дневной цикл изменения температурного градиента над открытой местностью в безоблачный день начинается с образования неустойчивой скорости падения температуры, усиливающейся днем благодаря интенсивному тепловому излучению солнца, что приводит к возникновению сильной турбулентности. Непосредственно перед или вскоре после захода солнца приземный слой воздуха быстро охлаждается и возникает устойчивая скорость падения температуры (повышение температуры c высотой). В течение ночи интенсивность и глубина этой инверсии возрастают, достигая максимума между полуночью и тем временем суток, когда земная поверхность имеет минимальную температуру. В течение этого периода атмосферные загрязнения эффективно задерживаются внутри слоя инверсии или ниже его благодаря слабому или полном отсутствию рассеивания загрязнений по вертикали. Следует отметить, что в условиях застоя загрязнители, сбрасываемые у поверхности земли, не распространяются в верхние слои воздуха и, наоборот, выбросы из высоких труб в этих условиях большей частью не проникают е ближайшие к земле слои воздуха (Church, 1949). С наступлением дня земля начинает нагреваться и инверсия постепенно ликвидируется. Это может привести к "фумигации" (Hewson a. Gill. 1944) благодаря тому, что загрязнения, попавшие в течение ночи в верхние слои воздуха, начинают быстро перемешиваться и устремляются вниз, поэтому в ранние предполуденные часы, предшествующие полному развитию турбулентности, заканчивающей дневной цикл и обеспечивающей мощное перемешивание, часто возникают высокие концентрации атмосферных загрязнений. Этот цикл может быть нарушен или изменен при наличии облаков или осадков, препятствующих интенсивной конвекции в дневные часы, но могущих также препятствовать и возникновению сильной инверсии в ночное время.

Установлено, что в городских районах, где чаще всего наблюдается загрязнение атмосферного воздуха, типичный для открытых территорий режим падения температуры подвергается изменениям, особенно в ночное время (Duckworth a. Sandberg, 1954). Промышленные процессы, повышенное выделение тепла в городских районах и неровности поверхности, создаваемые зданиями, способствуют термической и механической турбулентности, усиливающей перемешивание воздушных масс и препятствующей образованию поверхностной инверсии. Благодаря этому основание инверсии, которое в условиях открытой местности располагалось бы на уровне земли, находится здесь над слоем интенсивного перемешивания обычно толщиной около 30-150 м. Эти условия могут свести на нет преимущества выброса загрязнений через высокие трубы, поскольку выпускаемые отходы будут концентрироваться в относительно ограниченном пространстве.

При анализе воздушных течений в большинстве случаев для удобства допускается, что ветер сохраняет постоянное направление и скорость на обширной территории в течение значительного периода. В действительности это не так, и при детальном анализе движения воздуха необходимо учитывать эти отклонения. Там где движение ветра вследствие различия градиента атмосферного давления или топографии местности меняется от места к месту или со временем, крайне важно производить анализы метеорологических траекторий при изучении влияния выпускаемых загрязнений или установлении возможного источника их (Nciburgcr, 1956). Вычисление детальных траекторий требует множества точных измерений ветра, однако и вычисление приблизительных траекторий, для чего часто бывает достаточно лишь немногих наблюдений над движением ветра, также может принести пользу.

При краткосрочных исследованиях атмосферных загрязнений, локализованных на небольших территориях, обычные метеорологические данные являются недостаточными. В значительной мере это объясняется затруднениями, возникающими вследствие использования приборов, обладающих различными характеристиками, неодинакового местоположения приборов, различных способов отбора проб и различных периодов наблюдения.

Диффузионные процессы в атмосфере

Мы не будем пытаться перечислять здесь разнообразные теоретические предпосылки к проблеме диффузии в атмосфере или рабочие формулы, которые разработаны в этой области. Исчерпывающие данные по этим вопросам приводятся в литературе (Bat-chelor a. Davies, 3956; iMagill, Bolden a. Ackley, 3956; Sutton, 1053; US Atomic Energy Commision a. US Wacther Bureau, 1955). Кроме того, специальная группа Всемирной метеорологической организации периодически представляет обзоры этой проблемы. Поскольку проблема "Понимается лишь в общих чертах и формулировки имеют приблизительную точность, математические сложности, возникающие при изучении изменений ветра и тепловой структуры нижних слоев атмосферы, еще далеко не преодолены для всего разнообразия метеорологических условий. Точно так же в настоящее время мы располагаем лишь отрывочными сведениями относительно турбулентности, распределения ее энергии в трех измерениях, изменений во времени и пространстве. Несмотря на недостаточное понимание турбулентных процессов, рабочие формулы позволяют вычислить концентрации выбросов из отдельных источников, которые удовлетворительно согласуются с данными инструментальных замеров, если не считать высотных труб в условиях инверсии. Соответствующее применение этих формул дало возможность сделать полезные практические выводы об уровне загрязнений атмосферного воздуха из единичного источника. Очень немногие попытки (Frenkel, 1956; Lettau, 1931) сводились к использованию аналитических методов для расчета концентрации атмосферных загрязнений, выбрасываемых из множественных источников, как это имеет место в крупных городах. Такой подход обладает значительными преимуществами, но он требует выполнения очень сложных расчетов, а также разработки эмпирических приемов для учета топографических и зональных параметров. Несмотря на эти затруднения, точность методов аналитического расчета, по-видимому, в настоящее время соответствует точности наших знаний о распределении источников загрязнений, их мощности и колебаний во времени. Поэтому для получения полезных практических выводов эта точность достаточна. Периодическое выполнение аналитических расчетов этого типа позволило бы определять возможность повторения периодов высоких концентраций атмосферных загрязнений, определять их "хронический" уровень, оценивать роль (различных источников при разных метеорологических условиях и подвести математическую базу под различные меры снижения загрязнения воздуха (зонирование, размещение промышленных предприятий, ограничение выбросов и др.).

Загрязнение атмосферного воздуха- любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем. Загрязнение атмосферного воздуха одна из самых значительных проблем современности

Главные загрязнители (поллютанты) атмосферного воздуха, образующиеся в процессе производственной и иной деятельности человека - диоксид серы, оксиды азота, оксид углерода и твердые частицы . На их долю приходится около 98% в общем объеме выбросов вредных веществ. Помимо главных загрязнителей в атмосфере городов и поселков наблюдается еще более 70 наименований вредных веществ, среди которых -формальдегид, фтористый водород, соединения свинца, аммиак, фенол, бензол, сероуглерод и др . Однако именно концентрации главных загрязнителей (диоксид серы и др.) наиболее часто превышают допустимые уровни.

выброс в атмосферу четырех главных загрязнителей (поллютантов) атмосферы- выбросы в атмосферу диоксида серы, оксидов азота, оксида углерода и углеводородов . Кроме указанных главных загрязнителей в атмосферу попадает много других очень опасных токсичных веществ:свинец, ртуть, кадмий и другие тяжелые металлы (источники выброса: автомобили, плавильные заводы и др.);углеводороды (CnHm), среди них наиболее опасен бенз(а)пирен, обладающий канцерогенным действием (выхлопные газы, топка котлов и др.), альдегиды, и в первую очередьформальдегид, сероводород, токсичные летучие растворители (бензины, спирты, эфиры) и др.

Наиболее опасное загрязнение атмосферы - радиоактивное. В настоящее время оно обусловлено в основном глобально распределенными долгоживущими радиоактивными изотопами - продуктами испытания ядерного оружия, проводившихся в атмосфере и под землей. Приземный слой атмосферы загрязняют также выбросы в атмосферу радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации и другие источники.

Еще одной формой загрязнения атмосферы является локальное избыточное поступление тепла от антропогенных источников. Признаком теплового (термического) загрязнения атмосферы служат так называемые термические зоны, например, «остров тепла» в городах, потепление водоемов и.т. п.

13. Экологические последствия глобального загрязнения атмосферы.

Парниковый эффект – подъем температуры на поверхности планеты в результате тепловой энергии, которая появляется в атмосфере из-за нагревания газов. Основные газы, которые ведут к парниковому эффекту на Земле – это водяные пары и углекислый газ.

Явление парникового эффекта позволяет поддерживать на поверхности Земли температуру, при которой возможно возникновение и развитие жизни. Если бы парниковый эффект отсутствовал, средняя температура поверхности земного шара была бы значительно ниже, чем она есть сейчас. Однако при повышении концентрации парниковых газов увеличивается непроницаемость атмосферы для инфракрасных лучей, что приводит к повышению температуры Земли.

Озоновый слой.

В 20 - 50 километрах над поверхностью Земли в атмосфере находится слой озона. Озон - это особая форма кислорода. Большинство молекул кислорода воздуха состоит из двух атомов. Молекула же озона состоит из трех атомов кислорода. Озон образуется под действием солнечного света. При столкновении фотонов ультрафиолетового света с молекулами кислорода от них отщепляется атом кислорода, который, присоединившись к другой моле куле 02, образует Оз (озон). Озоновый слой атмосферы очень тонок. Если всем имеющимся в наличии озоном атмосферы равномерно покрыть участок площадью в 45 квадратных километров, то получится слой толщиной в 0,3 сантиметра. Немного озона проникает с потоками воздуха в нижние слои атмосферы. Когда лучи света реагируют с веществами, содержащимися в выхлопных газах и промышленных дымах, тоже образуется озон.

Кислотные дожди - это следствие загрязнения воздуха. Дым, образующийся при сжигании угля, нефти и бензина, содержит газы - двуокись серы и двуокись азота. Эти газы попадают в атмосферу, где растворяются в капельках воды, образуя слабые растворы кислот, которые затем выпадают на землю с дождем. Кислотные дожди вызывают гибель рыбы и наносят ущерб лесам в Северной Америке и Европе. Они также портят посевы сельскохозяйственных культур и даже воду, которую мы пьем.

Растениям, животным и зданиям кислотные дожди наносят вред. Воздействие их особенно ощутимо вблизи городов и промышленных зон. Ветер переносит облака с капельками воды, в которых растворены кислоты, на большие расстояния, поэтому кислотные дожди могут выпадать за тысячи километров от того места, где первоначально зародились. Например, большинство кислотных дождей, выпадающих в Канаде, вызвано дымом заводов и электростанций США. Последствия кислотных дождей вполне понятны, однако механизма их возникновения в точности никто не знает.

14 вопрос Изложенные принципы формирования и анализа различных форрм экологического риска окружающей среды для здоровья населения воплощаются в нескольких взаимоувязанных этапах : 1. Идентификация риска по отдельным видам промышленных и агропроизводственных нагрузок с выделением в их структуре химических и физических факторов по уровню экологической безопасности и токсичности. 2. Оценка реального и потенциального воздействия токсических веществ на человека по отдельным территориям, с учетом комплекса загрязняющих веществ и природных факторов. Особое значение придается сложившейся плотности сельского населения и численности городских поселений. 3. Выявление количественных закономерностей реакции человеческой популяции (разных возрастных когорт) на определенный уровень воздействия. 4. Экологический риск рассматривается в качестве одной из важнейших компонент специальных модулей геоинформационной системы. В таких модулях формируются проблемные медико-экологические ситуации. Блоки ГИС включают информацию о существующих, планируемых и предполагаемых изменениях в структуре территориально- производственных комплексов. Информамционная база такого содержания необходима для выполнения соответствующего моделирования. 5. Характеристика риска совокупного воздействия природных и антропогенных факторов на здоровье населения. 6. Выявление пространственных сочетаний природных и антропогенных факторов, что может способствовать более детальному их прогнозированию и анализу возможной динамики локальных и площадных комбинаций риска на региональном уровне. 7. Дифференциация территорий по уровням и формам экологического риска и выделение медико-экологических районов по региональным уровням антропогенного риска. При оценке антропогенного рискка учитывается комплекс приоритетных токсикантов и других антропогенных факторов.

15вопрос СМОГ Смог (англ. smog, от smoke - дым и fog - туман), сильное загрязнение воздуха в больших городах и промышленных центрах. Смог бывает следующих типов: Влажный смог лондонского типа - сочетание тумана с примесью дыма и газовых отходов производства. Ледяной смог аляскинского типа - смог, образующийся при низких температурах из пара отопительных систем и бытовых газовых выбросов. Радиационный туман - туман, который появляется в результате радиационного охлаждения земной поверхности и массы влажного приземного воздуха до точки росы. Обычно радиационный туман возникает ночью в условиях антициклона при безоблачной погоде и легком бризе. Часто радиационный туман возникает в условиях температурной инверсии, препятствующей подъему воздушной массы. В промышленных районах может возникнуть крайняя форма радиационного тумана - смог. Сухой смог лос-анджелесского типа - смог, возникающий в результате фото- химических реакций, которые происходят в газовых выбросах под действием солнечной радиации; устойчивая синеватая дымка из едких газов без тумана. Фотохимический смог - смог, основной причиной возникновения которого считаются автомобильные выхлопы. Автомобильные выхлопные газы и загрязняющие выбросы предприятий в условиях инверсии температуры вступают в химическую реакцию с солнечным излучением, образуя озон. Фотохимический смог может вызвать поражение дыхательных путей, рвоту, раздражение слизистой оболочки глаз и общую вялость. В ряде случаев в фотохимическом смоге могут присутствовать соединения азота, которые повышают вероятность возникновения раковых заболеваний. Фотохимический смог ПОДРОБНО: Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрие или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне - сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул, и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в результате которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос - Анжелесом, Нью - Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной систем и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем. Смог наблюдается обычно при слабой турбулентности (завихрение воздушных потоков) воздуха, и следовательно, при устойчивом распределении температуры воздуха по высоте, особенно при инверсиях температуры, при слабом ветре или штиле. Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсия температуры встречаются и у земной поверхности (приземные инверсии температуры.), и в свободной атмосфере. Приземные инверсия температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных инверсия температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °С и более. Наиболее мощны зимние приземные инверсия температуры в Восточной Сибири и в Антарктиде. В тропосфере, выше приземного слоя, инверсия температуры чаще образуются в антициклона

16вопрос В атмосферном воздухе измерялись концентрации веществ, определяемые приоритетным списком вредных примесей, установленным согласно "Временных рекомендаций для составления приоритетного списка вредных примесей, подлежащих контролю в атмосфере", Ленинград, 1983 г. Измерялись концентрации 19 загрязняющих веществ: основных (взвешенные вещества, диоксид серы, оксида углерод, диоксид азота), и специфических (формальдегид, фтористые соединения, бенз(а)пирен, металлы, ртуть).

17 вопрос В Казахстане - 7 крупных рек, длина каждой из которых превышает 1000 км. В их числе: река Урал (её верхнее течение располагается на территории России), впадающая в Каспийское море; Сырдарья (её верхнее течение располагается на территории Киргизии, Узбекистана и Таджикистана) - в Аральское море; Иртыш (его верховья в Китае; на территории Казахстана имеет крупные притоки Тобол и Ишим) пересекает республику, и уже на территории России впадает в Обь, текущую в Северный Ледовитый океан; река Или (её верховья располагаются на территории Китая) впадает в озеро Балхаш. В Казахстане много больших и малых озёр. Самые большие среди них - Каспийское море, Аральское море, Балхаш, Алаколь, Зайсан, Тенгиз. К Казахстану относится большая часть северного и половина восточного побережья Каспийского моря. Длина берега Каспийского моря в Казахстане 2340 км. В Казахстане имеется 13 водохранилищ общей площадью 8816 км² и общим объёмом воды 87,326 км³. Страны мира обеспечены водными ресурсами крайне неравномерно. Наиболее обеспечены водными ресурсами следующие страны: Бразилия (8 233 км3), Россия (4 508 км3), США (3 051 км3), Канада (2 902 км3), Индонезия (2 838 км3), Китай (2 830 км3), Колумбия (2 132 км3), Перу (1 913 км3), Индия (1 880 км3), Конго (1 283 км3), Венесуэла (1 233 км3), Бангладеш (1 211 км3), Бирма (1 046 км3).

следующие:

Факторы устойчивого развития: социальный

Социальная составляющая

Социальная составляющая устойчивости развития ориентирована на человека и направлена на сохранение стабильности социальных и культурных систем, в том числе, на сокращение числа разрушительных конфликтов между людьми. Важным аспектом этого подхода является справедливое разделение благ. Желательно также сохранение культурного капитала и многообразия в глобальных масштабах, а также более полное использование практики устойчивого развития, имеющейся в не доминирующих культурах. Для достижения устойчивости развития, современному обществу придется создать более эффективную систему принятия решений, учитывающую исторический опыт и поощряющую плюрализм. Важно достижение не только внутри-, но и межпоколенной справедливости. В рамках концепции человеческого развития человек является не объектом, а субъектом развития. Опираясь на расширение вариантов выбора человека как главную ценность, концепция устойчивого развития подразумевает, что человек должен участвовать в процессах, которые формируют сферу его жизнедеятельности, содействовать принятию и реализации решений, контролировать их исполнение.

Энергетические ресурсы

Если нефть, газ и каменный уголь, извлекаемые из недр Мирового океана, представляют собой в основном энергетическое сырье. То многие природные процессы в океане служат непосредственными носителями тепловой и механической энергии. Начато освоение энергии приливов, сделана попытка применения термальной энергии, разработаны проекты использования энергии волн, прибоя и течений.Под влиянием приливообразующих Луны и Солнца в океанах и морях возбуждаются приливы. Они проявляются в периодических колебаниях уровня воды и в ее горизонтальном перемещении (приливные течения). В соответствии с этим энергия приливов складывается из потенциальной энергии воды, и из кинетической энергии движущейся воды. При расчетах энергетических ресурсов Мирового океана для их использования в конкретных целях, например для производства электроэнергии, вся энергия приливов оценивается в 1 млрд. кВт, тогда как суммарная энергия всех рек земного шара равна 850 млн. кВт. Колоссальные энергетические мощности океанов и морей представляют собой очень большую природную ценность для человека. Ветер возбуждает волновое движение поверхности океанов и морей. Волны и береговой прибой обладают очень большим запасом энергии. Каждый метр гребня волны высотой 3 м несет в себе 100 кВт энергии, а каждый километр- 1 млн. кВт. По оценкам исследователей США, общая мощность волн Мирового океана равна 90 млрд. кВт.С давних времен инженерно-техническую мысль человека привлекла идея практического использования столь колоссальных запасов волновой энергии океана. Однако это очень сложная задача, и в масштабах большой энергетики она еще далека от решения.Пока удалось добиться определенных успехов в области применения энергии морских волн для производства электроэнергии, питающей установки малой мощности. Волноэнергетические установки используются для питания электроэнергией маяков, буев, сигнальных морских огней, стационарных океанологических приборов, расположенных далеко от берега, и т.п. Воды многих районов Мирового океана поглощают большое количество солнечного тепла, большая часть которого аккумулируется в верхних слоях и лишь в небольшой мере распространяется в нижние. Поэтому создаются большие различия температуры поверхностных и глубоколежащих вод. Они особенно хорошо выражены в тропических широтах. В столь значительной разнице температуры колоссальных объемов воды заложены большие энергетические возможности. Их используют в гидротермальных (моретермальных) станциях, по-другому - ПТЭО - системы преобразования тепловой энергии океана. В наше время экономическое освоение океана понимается более широко. Оно включает в себя не только использование его ресурсов, но и заботу об их охране и восстановлении. Не только океан должен отдавать людям свои богатства. Но и люди должны рационально и по-хозяйски их использовать. Все это осуществимо, если в темпах развития морского производства учитывать сохранение и воспроизводство биологических ресурсов океанов и морей и рациональное использование их минералов.

Конференция в Стокгольме

Проведение в 1972 году в Стокгольме Конференции ООН по окружающей человека среде и создание Программы ООН по окружающей среде (ЮНЕП) ознаменовало включение международного сообщества на государственном уровне в решение экологических проблем, которые стали сдерживать социально-экономическое развитие.

Стала развиваться экологическая политика и дипломатия, право окружающей среды, появилась новая институциональная составляющая - министерства и ведомства по окружающей среде. С экологической точки зрения, устойчивое развитие должно обеспечивать целостность биологических и физических природных систем. Особое значение имеет жизнеспособность экосистем, от которых зависит глобальная стабильность всей биосферы. Более того, понятие «природных» систем и ареалов обитания можно понимать широко, включая в них созданную человеком среду, такую как, например, города. Основное внимание уделяется сохранению способностей к самовосстановлению и динамической адаптации таких систем к изменениям, а не сохранение их в некотором «идеальном» статическом состоянии. Деградация природных ресурсов, загрязнение окружающей среды и утрата биологического разнообразия сокращают способность экологических систем к самовосстановлению.

Факторы, влияющие на загрязненность атмосферы

Наиболее неблагоприятное воздействие на природную среду оказывает хозяйственная деятельность человека, связанная с непосредственным загрязнением атмосферы почвы и водных ресурсов. Значительное влияние на организм человека оказывает загрязнение атмосферы.

К основным факторам, влияющим на экологическое состояние атмосферы города можно отнести

следующие:

Интенсивность и объем выбросов загрязняющих веществ;

Размер территории, на которой производятся выбросы;

Уровень техногенного освоения территории;

Климатические факторы (ветровой режим, температурный и др.).

Ограничиваться только этими факторами можно на открытой местности. В городских условиях на рассеивание выбросов влияют следующие показатели: планировка улиц, их ширина, направление, высота зданий, плотность застройки, зеленые насаждения и водные объекты.

Основными источниками загрязнения воздуха жилых территорий являются промышленные предприятия, отопительные котельные и автомобильный транспорт. Среди них наиболее значительную долю загрязнения атмосферного воздуха в пределах жилых территорий вносит автотранспорт. Специфика автотранспорта, как подвижного источника загрязнения, проявляется в низком его расположении и непосредственной близости, к зонам жилой застройки. Все это приводит к, тому, что автотранспорт создает в городах обширные и устойчивые зоны, в. пределах которых предельно-допустимая концентрация загрязняющих веществ в атмосферном воздухе превышена в несколько раз. С каждым годом площадь застройки городов увеличивается за счет расширения площади города или путем застройки свободного внутригородского пространства. При этом составные элементы городских общественных пространств рассматриваются как отдельно взятые градостроительные объекты (общественные центры, городские улицы и площади, озеленение), оторванные от ландшафтной подосновы и общей экологической ситуации, что в свою очередь влечет за собой ухудшение аэрации центральных районов. Как результат образуются застойные области с высокими концентрациями загрязняющих веществ.

Зеленые насаждения в целом оказывают положительное воздействие на микроклимат городов: они вырабатывают кислород, но аккумулируя загрязняющие вещества, при наличии ветра могут быть источником вторичного загрязнения.

3. Факторы загрязнения воздушной среды .

Техногенное и антропогенное загрязнение самое опасное для атмосферы. В воздушный бассейн Новосибирской области с выбросами промышленных предприятий и транспорта поступают тысячи тонн различных вредных веществ. Уровень загрязнения атмосферы зависит:

От количественного и качественного состава промышленных выбросов;

Их периодичности и высоты, на которой осуществляется выброс;

От климатических условий, определяющих их перенос, рассеивание;

От атмосферных осадков, вымывающих вредные вещества;

От интенсивности фотохимических реакций в атмосфере.

Суммарная масса выбросов загрязняющих веществ в атмосферу в 2003 году составила 206,4 тыс.т. (подсчитать количество вагонов). Основными источниками загрязнения воздуха являются предприятия черной и цветной металлургии, тепловой энергетики, химической и цементной промышленности, нефте- и газопереработки, транспорт. Все эти предприятия кроме нефте и газопереработки сконцентрированы в Новосибирске и близь прилегающих к нему территориям. Каждый промышленный источник выделяет свой специфический набор загрязнения веществ:

Теплоэнергетика – оксиды серы, углерода, металлов, азота, пыль;

Транспорт – оксиды углерода и азота, углеводороды, тяжелые металлы;

Производство цемента – оксиды углерода, пыль.

Проанализируем таблицу «Валового выброса загрязняющими веществами атмосферу Новосибирской области»

По данным 2002 г. и 2003 года можно увидеть, что увеличение выбросов происходит год от года. Наибольшее количество выбросов составляют оксиды углерода, диоксид серы и оксиды азота.

Для определения степени загрязнения воздушной среды вводится показатель – индекс загрязнение воздуха (ИЗВ). ИЗВ обозначает количество вредных веществ в определенном объеме воздуха (1м 3 ). Для отслеживания степени загрязнения воздуха используются лазерные спектроскопы, которые обнаруживают присутствие в воздухе загрязняющих веществ на расстоянии 2 км. Установлены показатели ИЗВ:

    до 5 баллов – воздух чистый;

    от 5 – 6 баллов – загрязнение повышенное;

    от 7 до 13 баллов – ИЗВ высокое;

    более 14 баллов – очень высокое.

По индексу загрязнения определяется показатель - предельно допустимая концентрация, которая определена нормативными актами (мг/м 3).

Таблица 1

Индекс загрязнения отдельными ингредиентами атмосферного воздуха в Новосибирской области.

Загрязняющие вещества

Факторы загрязнения

1.Твердые и взвешенные вещества (сажа, пыль)

Неблагоустроенные дороги

В Новосибирске от 9 до 25 – очень высокий;

По области от 7 до 9 (летом пыль, зимой – сажа)

2.Оксид углерода

Выбросы промышленных предприятий;

Транспорт.

Он не вымывается осадками и не выступает в химические соединения с другими примесями. Его содержание регулируется главным образом условиями переноса и рассеивания

ПДК от 0, 7 до 1,6

повышенное и высокое

3.Диоксид азота

Образуется в результате процессов горения, количество выбросов зависит от температуры выходящих газов

1,3 – 1,5 ПДК

4.Формальдегид

Выбрасывается при производстве пластмасс, лаков, красок, деревообработки, автотранспорта

Повышенное 1 – 2,3 ПДК

Выбросы промышленных предприятий, зависит от условий рассеивания

0,003 – 3,9 ПДК

6. Фтористый водород

Металлургические предприятия

Повышенное 1,2 – 5,9 ПДК

7.Бенз(а)пирен

Источником является автотранспорт, котельные, ТЭЦ

Повышенное 1,4 – 4,9 ПДК (ВОЗ – 2,9)

Промышленные выбросы

Предельно допустимый в отдельных случаях 1,4 -9 ПДК

9.Диоксид серы

Сжигание угля и других видов твердого топлива;

Промышленные выбросы

Повышенное 0,9 – 1,4 ПДК

Наиболее повышенное загрязнение воздуха наблюдается в промышленных зонах Новосибирской области (Новосибирск, Искитим, Бердск, Барабинск, Куйбышев). Но в результате подвижности воздуха и его рассеивания загрязнению подвергается вся воздушная среда области, только ПДК будет разная.

Снежный покров позволяет более определенно отследить преобладание загрязнителей на отдельной территории области. Снег лежит 5 месяцев или 168 дней. За этот период в снежном покрове накапливается огромное количество загрязняющих атмосферу веществ.

Проведем анализ таблицы 1.1.2.1.

Таблица 2

Концентрация веществ

SО,сульфаты

Азот аллюминий

1.Барабинский

2.Искитим

4.Карасук

5.Кузедево

6.Кыштовка

7.Маслянино

8.Огурцово

9.Татарск

Из таблицы видно, что даже при отсутствии крупных промышленных предприятий на территории Татарского, Карасукского, Каргатского, Маслянинского районов, степень загрязнения снега повышенная, из-за рассеивания выбросов.

    Меры по охране воздушной среды.

Основными путями снижения и полной ликвидации загрязнений служат: разработка и внедрение очистных сооружений, безотходные технологии производства, борьба с выхлопными газами автомобилей, озеленение. Очистные сооружения являются основным средством борьбы с промышленными загрязнениями атмосферы. Очистка выбросов осуществляется путем пропускания их через различные фильтры (механические, электрические, магнитные, звуковые и др.), воду и химически активные жидкости. Все они предназначены для улавливания пыли, паров и газов.

Безотходная технология аналогична процессам, происходящим в биосфере, где в ее круговороте ненужных отходов не существует и где все они полностью используются различными звеньями экосистемы. Полностью исключаются выбросы в атмосферу, а используются для извлечения из промышленного воздуха ингредиентов, которые можно использовать в производстве (сера, азот, углерод, металлы).

Для защиты воздуха от выхлопных газов автомобилей используются фильтры и устройства, дожигающие топливо, чтобы снизить их выброс. В бензин добавляются вещества, заменяющие содержание бензина. Улучшается дорожное строительство в области, систематически ведется ремонт дорог, исключающие частую смену режима двигателей и уменьшение выбросов выхлопных газов.

Озеленение населенных пунктов и промышленных объектов, имеет важное значение в борьбе с загрязнением атмосферы. Зеленые растения в результате фотосинтеза освобождают воздух от диоксида углерода и обогащают ее кислородом. На деревьях и кустах оседает до 72% взвешенных в воздухе частиц пыли и до 60% диоксида серы. Особенно много пыли и загрязняющих веществ улавливают лиственные породы деревьев.

За качеством состояния воздушной среды ведутся наблюдения на метеостанциях. Наиболее системный мониторинг проводится в Новосибирске. Качественное состояние воздушной среды должно измеряться круглосуточно и население должно получать информацию о загрязнении воздуха.

5. Охрана воздушной среды в Новосибирской области.

Опасность загрязнения атмосферного воздуха несет тяжелые последствия. Воздух – подвижный объект природы, который постоянно перемещается и изменяет свои свойства и состав. В процессе циркуляции атмосферы воздух может оказаться загрязненным в местах, где нет «грязных» производств. Загрязняющие выбросы могут сохраняться в воздухе несколько суток и перемещаться с воздухом, выпадать с осадками в разных местах. Загрязнение воздуха – это мина замедленного действия, которая угрожает всему населению Земли.

Все усилия современного производства должны быть направлены на осуществление мер по снижению и полной ликвидации загрязнения атмосферы. Основным средством борьбы с промышленным загрязнением являются очистные фильтры. Очистные фильтры в зависимости от компонента загрязнения, который надо задерживать бывают механические, электрические, магнитные, звуковые и др. Промышленные выбросы в атмосферу пропускают через один или несколько фильтров, воду, химические активные жидкости и улавливают пыль, копоть, газы, пары. При грубой очистке промышленных выбросов устраняется от 70 до 84% загрязнителей. При средней очистке задерживается до 95 -98%, при тонкой - до 99% и выше.

Решить проблему охраны атмосферы только с помощью очистных фильтров невозможно. Необходимо внедрение в промышленную практику безотходных технологий.

Один из способов предохранения атмосферы от загрязнения – переход на альтернативные источники энергии. По запасам газа России опережает другие страны мира. Газификация хозяйства и экономики России составляет 45%, в нашей области.

Для уменьшения токсических веществ в выхлопных газах автомобилей предполагается замена бензина другими видами топлива – спирт, газ. Установка фильтров для очистки выхлопных газов автомобилей, использование добавок, не содержащих свинец, уменьшает загрязнение воздуха. Содержание дорог в хорошем состоянии, создание расширенного дорожного полотна и развязок на улицах городов исключает частую смену режимов работы двигателей, уменьшает количество выбросов.

Зеленые насаждения за счет фотосинтеза освобождают воздух от диоксида углерода и обогащают его кислородом. На листья деревьев и кустарников оседает до 72% пыли и взвешенных частиц, до 70% диоксида серы. Зеленые насаждения регулируют микроклимат населенных пунктов, гасят шум, приносящий вред здоровью людей.

Для поддержания чистоты большое значение имеет планировка города. Жилые кварталы лучше располагать на возвышенных участках и с подветренной стороны. Промышленные зоны размещать за пределами города.

Одним из направлений деятельности по снижению выбросов в атмосферу является «Закон об охране окружающей природной среды» Конституции РФ. В данном Законе определены меры охраны, утвержденные ГОСТами:

Нормы и методы измерений содержания оксида углерода и углеводородов в отработанных газах автомобилей с бензиновыми двигателями;

Нормы и методы измерения дымности отработанных газов дизелей;

Правила контроля качества воздуха населенных пунктов;

Правила установления допустимых выбросов вредных веществ промышленными предприятиями;

Инструкция о порядке рассмотрения, согласования и экспертизы воздухоохранных мероприятий и выдаче разрешений на выброс загрязняющих веществ в атмосферу.

Кроме общегосударственной нормативной базы, регулирующей глобальные вопросы охраны атмосферы и ее рационального использования в области, создана служба экологического контроля, которая следит за выполнением Федерального закона «Об охране окружающей природной среды».

Контрольные вопросы

    Опишите факторы техногенного загрязнения воздушной среды в нашей области.

    Ингредиенты, загрязняющие воздушную среду в Новосибирской области. Критерии измерения уровня загрязнения воздуха.

    Уровень загрязнения воздуха в г. Татарске зимой и летом. Необходимые меры улучшения качества воздушной среды в нашем городе.

    Воздействие загрязнения воздуха на здоровье людей, растения, животных.

Литература

    Ушаков С.А., Кац Я.Г. Экологическое состояние территории России. М.: Академия, 2002 г.

    Состояние окружающей среды Новосибирской области в 2003 году (Доклад МПР по Новосибирской области)

    Константинов В.М. Экологические основы природопользования. М., АCADEMA. 2006