Меню
Бесплатно
Главная  /  Папилломы  /  Как решить простое уравнение с логарифмами. Решение логарифмичеких уравнений. Полное руководство (2019)

Как решить простое уравнение с логарифмами. Решение логарифмичеких уравнений. Полное руководство (2019)

Логарифмические уравнения. От простого - к сложному.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифмическое уравнение?

Это уравнение с логарифмами. Вот удивил, да?) Тогда уточню. Это уравнение, в котором неизвестные (иксы) и выражения с ними находятся внутри логарифмов. И только там! Это важно.

Вот вам примеры логарифмических уравнений :

log 3 х = log 3 9

log 3 (х 2 -3) = log 3 (2х)

log х+1 (х 2 +3х-7) = 2

lg 2 (x+1)+10 = 11lg(x+1)

Ну, вы поняли... )

Обратите внимание! Самые разнообразные выражения с иксами располагаются исключительно внутри логарифмов. Если, вдруг, в уравнении обнаружится икс где-нибудь снаружи , например:

log 2 х = 3+х,

это будет уже уравнение смешанного типа. Такие уравнения не имеют чётких правил решения. Мы их пока рассматривать не будем. Кстати, попадаются уравнения, где внутри логарифмов только числа . Например:

Что тут сказать? Повезло вам, если попалось такое! Логарифм с числами - это какое-то число. И всё. Достаточно знать свойства логарифмов, чтобы решить такое уравнение. Знания специальных правил, приёмов, приспособленных именно для решения логарифмических уравнений, здесь не требуется.

Итак, что такое логарифмическое уравнение - разобрались.

Как решать логарифмические уравнения?

Решение логарифмических уравнений - штука, вообще-то, не очень простая. Так и раздел у нас - на четвёрку... Требуется приличный запас знаний по всяким смежным темам. Кроме того, существует в этих уравнениях особая фишка. И фишка это настолько важная, что её смело можно назвать главной проблемой в решении логарифмических уравнений. Мы с этой проблемой в следующем уроке детально разберёмся.

А сейчас - не волнуйтесь. Мы пойдём правильным путём, от простого к сложному. На конкретных примерах. Главное, вникайте в простые вещи и не ленитесь ходить по ссылкам, я их не просто так поставил... И всё у вас получится. Обязательно.

Начнём с самых элементарных, простейших уравнений. Для их решения желательно иметь представление о логарифме, но не более того. Просто без понятия логарифма, браться за решение логарифмических уравнений - как-то и неловко даже... Очень смело, я бы сказал).

Простейшие логарифмические уравнения.

Это уравнения вида:

1. log 3 х = log 3 9

2. log 7 (2х-3) = log 7 х

3. log 7 (50х-1) = 2

Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них. В простейших уравнениях этот переход осуществляется в один шаг. Потому и простейшие.)

И решаются такие логарифмические уравнения на удивление просто. Смотрите сами.

Решаем первый пример:

log 3 х = log 3 9

Для решения этого примера почти ничего знать и не надо, да... Чисто интуиция!) Что нам особо не нравится в этом примере? Что-что... Логарифмы не нравятся! Правильно. Вот и избавимся от них. Пристально смотрим на пример, и у нас возникает естественное желание... Прямо-таки непреодолимое! Взять и выкинуть логарифмы вообще. И, что радует, это можно сделать! Математика позволяет. Логарифмы исчезают, получается ответ:

Здорово, правда? Так можно (и нужно) делать всегда. Ликвидация логарифмов подобным образом - один из основных способов решения логарифмических уравнений и неравенств. В математике эта операция называется потенцирование. Есть, конечно, свои правила на такую ликвидацию, но их мало. Запоминаем:

Ликвидировать логарифмы безо всяких опасений можно, если у них:

а) одинаковые числовые основания

в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве.

Поясню последний пункт. В уравнении, скажем,

log 3 х = 2log 3 (3х-1)

убирать логарифмы нельзя. Двойка справа не позволяет. Коэффициент, понимаешь... В примере

log 3 х+log 3 (х+1) = log 3 (3+х)

тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два.

Короче, убирать логарифмы можно, если уравнение выглядит так и только так:

log а (.....) = log а (.....)

В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение. Предполагается, конечно, что решать линейные, квадратные, дробные, показательные и прочие уравнения без логарифмов вы уже умеете.)

Теперь легко можно решить второй пример:

log 7 (2х-3) = log 7 х

Собственно, в уме решается. Потенцируем, получаем:

Ну что, очень сложно?) Как видите, логарифмическая часть решения уравнения заключается только в ликвидации логарифмов... А дальше идёт решение оставшегося уравнения уже без них. Пустяшное дело.

Решаем третий пример:

log 7 (50х-1) = 2

Видим, что слева стоит логарифм:

Вспоминаем, что этот логарифм - какое-то число, в которое надо возвести основание (т.е. семь), чтобы получить подлогарифменное выражение, т.е. (50х-1).

Но это число равно двум! По уравнению. Стало быть:

Вот, в сущности, и всё. Логарифм исчез, осталось безобидное уравнение:

Мы решили это логарифмическое уравнение исходя только из смысла логарифма. Что, ликвидировать логарифмы всё-таки проще?) Согласен. Между прочим, если из двойки логарифм сделать, можно этот пример и через ликвидацию решить. Из любого числа можно логарифм сделать. Причём, такой, какой нам надо. Очень полезный приём в решении логарифмических уравнений и (особо!) неравенств.

Не умеете из числа логарифм делать!? Ничего страшного. В разделе 555 этот приём подробно описан. Можете освоить и применять его на полную катушку! Он здорово уменьшает количество ошибок.

Совершенно аналогично (по определению) решается и четвёртое уравнение:

Вот и все дела.

Подведём итоги этого урока. Мы рассмотрели на примерах решение простейших логарифмических уравнений. Это очень важно. И не только потому, что такие уравнения бывают на контрольных-экзаменах. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим!

Собственно, простейшие уравнения - это финишная часть решения любых уравнений. И эту финишную часть надо понимать железно! И ещё. Обязательно дочитайте эту страничку до конца. Есть там сюрприз...)

Решаем теперь самостоятельно. Набиваем руку, так сказать...)

Найти корень (или сумму корней, если их несколько) уравнений:

ln(7х+2) = ln(5х+20)

log 2 (х 2 +32) = log 2 (12x)

log 16 (0,5х-1,5) = 0,25

log 0,2 (3х-1) = -3

ln(е 2 +2х-3) = 2

log 2 (14х) = log 2 7 + 2

Ответы (в беспорядке, разумеется): 42; 12; 9; 25; 7; 1,5; 2; 16.

Что, не всё получается? Бывает. Не горюйте! В разделе 555 решение всех этих примеров расписано понятно и подробно. Там уж точно разберётесь. Да ещё и полезные практические приёмы освоите.

Всё получилось!? Все примеры "одной левой"?) Поздравляю!

Пришло время открыть вам горькую правду. Успешное решение этих примеров вовсе не гарантирует успех в решении всех остальных логарифмических уравнений. Даже простейших, подобных этим. Увы.

Дело в том, что решение любого логарифмического уравнения (даже самого элементарного!) состоит из двух равноценных частей. Решение уравнения, и работа с ОДЗ. Одну часть - решение самого уравнения - мы освоили. Не так уж и трудно, верно?

Для этого урока я специально подобрал такие примеры, в которых ОДЗ никак на ответе не сказывается. Но не все такие добрые, как я, правда?...)

Посему надо обязательно освоить и другую часть. ОДЗ. Это и есть главная проблема в решении логарифмических уравнений. И не потому, что трудная - эта часть ещё проще первой. А потому, что про ОДЗ просто забывают. Или не знают. Или и то, и другое). И падают на ровном месте...

В следующем уроке мы расправимся с этой проблемой. Вот тогда можно будет уверенно решать любые несложные логарифмические уравнения и подбираться к вполне солидным заданиям.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Заключительные видео из длинной серии уроков про решение логарифмических уравнений. В этот раз мы будем работать в первую очередь с ОДЗ логарифма — именно из-за неправильного учета (или вообще игнорирования) области определения возникает большинство ошибок при решении подобных задач.

В этом коротком видеоуроке мы разберем применение формул сложения и вычитания логарифмов, а также разберемся с дробно-рациональными уравнениями, с которыми у многих учеников также возникают проблемы.

О чем пойдет речь? Главная формула, с которой я хотел бы разобраться, выглядит так:

log a (f g ) = log a f + log a g

Это стандартный переход от произведения к сумме логарифмов и обратно. Вы наверняка знаете эту формулу с самого начала изучения логарифмов. Однако тут есть одна заминка.

До тех пор, пока в виде переменных a , f и g выступают обычные числа, никаких проблем не возникает. Данная формула работает прекрасно.

Однако, как только вместоf и g появляются функции, возникает проблема расширения или сужения области определения в зависимости от того, в какую сторону преобразовывать. Судите сами: в логарифме, записанном слева, область определения следующая:

fg > 0

А вот в сумме, записанной справа, область определения уже несколько иная:

f > 0

g > 0

Данный набор требований является более жестким, чем исходный. В первом случае нас устроит вариант f < 0, g < 0 (ведь их произведение положительное, поэтому неравенство fg > 0 выполняется).

Итак, при переходе от левой конструкции к правой возникает сужение области определения. Если же сначала у нас была сумма, а мы переписываем ее в виде произведения, то происходит расширение области определения.

Другими словами, в первом случае мы могли потерять корни, а во втором — получить лишние. Это необходимо учитывать при решении реальных логарифмических уравнений.

Итак, первая задача:

[Подпись к рисунку]

Слева мы видим сумму логарифмов по одному и тому же основанию. Следовательно, эти логарифмы можно сложить:

[Подпись к рисунку]

Как видите, справа мы заменил ноль по формуле:

a = log b b a

Давайте еще немного преобразуем наше уравнение:

log 4 (x − 5) 2 = log 4 1

Перед нами каноническая форма логарифмического уравнения, мы можем зачеркнуть знак log и приравнять аргументы:

(x − 5) 2 = 1

|x − 5| = 1

Обратите внимание: откуда взялся модуль? Напомню, что корень из точного квадрата равен именно модулю:

[Подпись к рисунку]

Затем решаем классическое уравнение с модулем:

|f | = g (g > 0) ⇒f = ±g

x − 5 = ±1 ⇒x 1 = 5 − 1 = 4; x 2 = 5 + 1 = 6

Вот два кандидат на ответ. Являются ли они решением исходного логарифмического уравнения? Нет, ни в коем случае!

Оставить все просто так и записать ответ мы не имеем права. Взгляните на тот шаг, когда мы заменяем сумму логарифмов одним логарифмом от произведения аргументов. Проблема в том, что в исходных выражениях у нас стоят функции. Следовательно, следует потребовать:

х(х − 5) > 0; (х − 5)/х > 0.

Когда же мы преобразовали произведение, получив точный квадрат, требования изменились:

(x − 5) 2 > 0

Когда это требование выполняется? Да практически всегда! За исключением того случая, когда х − 5 = 0. Т.е. неравенство сведется к одной выколотой точке:

х − 5 ≠ 0 ⇒ х ≠ 5

Как видим, произошло расширение области определения, о чем мы и говорили в самом начале урока. Следовательно, могут возникнуть и лишние корни.

Как же не допустить возникновения этих лишних корней? Очень просто: смотрим на наши полученные корни и сравниваем их с областью определения исходного уравнения. Давайте посчитаем:

х (х − 5) > 0

Решать будем с помощью метода интервалов:

х (х − 5) = 0 ⇒ х = 0; х = 5

Отмечаем полученные числа на прямой. Все точки выколотые, потому что неравенство строгое. Берем любое число, больше 5 и подставляем:

[Подпись к рисунку]

На интересуют промежутки (−∞; 0) ∪ (5; ∞). Если мы отметим наши корни на отрезке, то увидим, что х = 4 нас не устраивает, потому что этот корень лежит за пределами области определения исходного логарифмического уравнения.

Возвращаемся к совокупности, вычеркиваем корень х = 4 и записываем ответ: х = 6. Это уже окончательный ответ к исходному логарифмическому уравнению. Все, задача решена.

Переходим ко второму логарифмическому уравнению:

[Подпись к рисунку]

Решаем его. Заметим, что первое слагаемое представляет собой дробь, а второе — ту же самую дробь, но перевернутую. Не пугайтесь выражения lgx — это просто десятичный логарифм, мы можем записать:

lgx = log 10 x

Поскольку перед нами две перевернутые дроби, предлагаю ввести новую переменную:

[Подпись к рисунку]

Следовательно, наше уравнение может быть переписано следующим образом:

t + 1/t = 2;

t + 1/t − 2 = 0;

(t 2 − 2t + 1)/t = 0;

(t − 1) 2 /t = 0.

Как видим, в числителе дроби стоит точный квадрат. Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля:

(t − 1) 2 = 0; t ≠ 0

Решаем первое уравнение:

t − 1 = 0;

t = 1.

Это значение удовлетворяет второму требованию. Следовательно, можно утверждать, что мы полностью решили наше уравнение, но только относительно переменной t . А теперь вспоминаем, что такое t :

[Подпись к рисунку]

Получили пропорцию:

lgx = 2 lgx + 1

2 lgx − lgx = −1

lgx = −1

Приводим это уравнение к канонической форме:

lgx = lg 10 −1

x = 10 −1 = 0,1

В итоге мы получили единственный корень, который, по идее, является решением исходного уравнения. Однако давайте все-таки подстрахуемся и выпишем область определения исходного уравнения:

[Подпись к рисунку]

Следовательно, наш корень удовлетворяет всем требованиям. Мы нашли решение исходного логарифмического уравнения. Ответ: x = 0,1. Задача решена.

Ключевой момент в сегодняшнем уроке один: при использовании формулы перехода от произведения к сумме и обратно обязательно учитывайте, что область определения может сужаться либо расширяться в зависимости от того, в какую сторону выполняется переход.

Как понять, что происходит: сужение или расширение? Очень просто. Если раньше функции были вместе, а теперь стали по отдельности, то произошло сужение области определения (потому что требований стало больше). Если же сначала функции стояли отдельно, а теперь — вместе, то происходит расширение области определения (на произведение накладывается меньше требований, чем на отдельные множители).

С учетом данного замечания хотел бы отметить, что второе логарифмическое уравнение вообще не требует данных преобразований, т. е. мы нигде не складываем и не перемножаем аргументы. Однако здесь я хотел бы обратить ваше внимание на другой замечательный прием, который позволяет существенно упростить решение. Речь идет о замене переменной.

Однако помните, что никакие замены не освобождает нас от области определения. Именно поэтому после того были найдены все корни, мы не поленились и вернулись к исходному уравнению, чтобы найти его ОДЗ.

Часто при замене переменной возникает обидная ошибка, когда ученики находят значение t и думают, что на этом решение закончено. Нет, ни в коем случае!

Когда вы нашли значение t , необходимо вернуться к исходному уравнению и посмотреть, что именно мы обозначали этой буквой. В результате нам предстоит решить еще одно уравнение, которое, впрочем, будет значительно проще исходного.

Именно в этом состоит смысл введения новой переменной. Мы разбиваем исходное уравнение на два промежуточных, каждое из которых решается существенно проще.

Как решать «вложенные» логарифмические уравнения

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого логарифма. Оба уравнения мы будем решать с помощью канонической формы.

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого. Оба уравнения мы будем решать с помощью канонической формы. Напомню, если у нас есть простейшее логарифмическое уравнение вида log a f (x ) = b , то для решения такого уравнения мы выполняем следующие шаги. В первую очередь, нам нужно заменить число b :

b = log a a b

Заметьте: a b — это аргумент. Точно так же в исходном уравнении аргументом является функция f (x ). Затем мы переписываем уравнение и получаем вот такую конструкцию:

log a f (x ) = log a a b

Уже затем мы можем выполнить третий шаг — избавится от знака логарифма и просто записать:

f (x ) = a b

В результате мы получим новое уравнение. При этом никаких ограничений на функцию f (x ) не накладывается. Например, на ее месте также может стоять логарифмическая функция. И тогда мы вновь получим логарифмическое уравнение, которое снова сведем к простейшему и решим через каноническую форму.

Впрочем, хватит лирики. Давайте решим настоящую задачу. Итак, задача № 1:

log 2 (1 + 3 log 2 x ) = 2

Как видим, перед нами простейшее логарифмическое уравнение. В роли f (x ) выступает конструкция 1 + 3 log 2 x , а в роли числа b выступает число 2 (в роли a также выступает двойка). Давайте перепишем эту двойку следующим образом:

Важно понимать, что первые две двойки пришли к нам из основания логарифма, т. е. если бы в исходном уравнении стояла 5, то мы бы получили, что 2 = log 5 5 2 . В общем, основание зависит исключительно от логарифма, который изначально дан в задаче. И в нашем случае это число 2.

Итак, переписываем наше логарифмическое уравнение с учетом того, что двойка, которая стоит справа, на самом деле тоже является логарифмом. Получим:

log 2 (1 + 3 log 2 x ) = log 2 4

Переходим к последнему шагу нашей схемы — избавляемся от канонической формы. Можно сказать, просто зачеркиваем знаки log. Однако с точки зрения математики «зачеркнуть log» невозможно — правильнее сказать, что мы просто просто приравниваем аргументы:

1 + 3 log 2 x = 4

Отсюда легко находится 3 log 2 x :

3 log 2 x = 3

log 2 x = 1

Мы вновь получили простейшее логарифмическое уравнение, давайте снова приведем его к канонической форме. Для этого нам необходимо провести следующие изменения:

1 = log 2 2 1 = log 2 2

Почему в основании именно двойка? Потому что в нашем каноническом уравнении слева стоит логарифм именно по основанию 2. Переписываем задачу с учетом этого факта:

log 2 x = log 2 2

Снова избавляемся от знака логарифма, т. е. просто приравниваем аргументы. Мы вправе это сделать, потому что основания одинаковые, и больше никаких дополнительных действий ни справа, ни слева не выполнялось:

Вот и все! Задача решена. Мы нашли решение логарифмического уравнения.

Обратите внимание! Хотя переменная х и стоит в аргументе (т. е. возникают требования к области определения), мы никаких дополнительных требований предъявлять не будем.

Как я уже говорил выше, данная проверка является избыточной, если переменная встречается лишь в одном аргументе лишь одного логарифма. В нашем случае х действительно стоит лишь в аргументе и лишь под одним знаком log. Следовательно, никаких дополнительных проверок выполнять не требуется.

Тем не менее, если вы не доверяете данному методу, то легко можете убедиться, что х = 2 действительно является корнем. Достаточно подставить это число в исходное уравнение.

Давайте перейдем ко второму уравнению, оно чуть интересней:

log 2 (log 1/2 (2x − 1) + log 2 4) = 1

Если обозначить выражение внутри большого логарифма функцией f (x ), получим простейшее логарифмическое уравнение, с которого мы начинали сегодняшний видеоурок. Следовательно, можно применить каноническую форму, для чего придется представить единицу в виде log 2 2 1 = log 2 2.

Переписываем наше большое уравнение:

log 2 (log 1/2 (2x − 1) + log 2 4) = log 2 2

Изваляемся от знака логарифма, приравнивая аргументы. Мы вправе это сделать, потому что и слева, и справа основания одинаковые. Кроме того, заметим, что log 2 4 = 2:

log 1/2 (2x − 1) + 2 = 2

log 1/2 (2x − 1) = 0

Перед нами снова простейшее логарифмическое уравнение вида log a f (x ) = b . Переходим к канонической форме, т. е. представляем ноль в виде log 1/2 (1/2)0 = log 1/2 1.

Переписываем наше уравнение и избавляемся от знака log, приравнивая аргументы:

log 1/2 (2x − 1) = log 1/2 1

2x − 1 = 1

Опять же мы сразу получили ответ. Никаких дополнительных проверок не требуется, потому что в исходном уравнении лишь один логарифм содержит функцию в аргументе.

Следовательно, никаких дополнительных проверок выполнять не требуется. Мы можем смело утверждать, что х = 1 является единственным корнем данного уравнения.

А вот если бы во втором логарифме вместо четверки стояла бы какая-то функция от х (либо 2х стояло бы не в аргументе, а в основании) — вот тогда потребовалось бы проверять область определения. Иначе велик шанс нарваться на лишние корни.

Откуда возникают такие лишние корни? Этот момент нужно очень четко понимать. Взгляните на исходные уравнения: везде функция х стоит под знаком логарифма. Следовательно, поскольку мы записали log 2 x , то автоматически выставляем требование х > 0. Иначе данная запись просто не имеет смысла.

Однако по мере решения логарифмического уравнения мы избавляемся от всех знаков log и получаем простенькие конструкции. Здесь уже никаких ограничений не выставляется, потому что линейная функция определена при любом значении х.

Именно эта проблема, когда итоговая функция определена везде и всегда, а исходная — отнюдь не везде и не всегда, и является причиной, по которой в решении логарифмических уравнениях очень часто возникают лишние корни.

Но повторю еще раз: такое происходить лишь в ситуации, когда функция стоит либо в нескольких логарифмах, либо в основании одного из них. В тех задачах, которые мы рассматриваем сегодня, проблем с расширением области определения в принципе не существует.

Случаи разного основания

Этот урок посвящен уже более сложным конструкциям. Логарифмы в сегодняшних уравнениях уже не будут решаться «напролом» — сначала потребуется выполнить некоторые преобразования.

Начинаем решение логарифмических уравнений с совершенно разными основаниями, которые не являются точными степенями друг друга. Пусть вас не пугают подобные задачи — решаются они ничуть не сложнее, чем самые простые конструкции, которые мы разбирали выше.

Но прежде, чем переходить непосредственно к задачам, напомню о формуле решения простейших логарифмических уравнений с помощью канонической формы. Рассмотрим задачу вот такого вида:

log a f (x ) = b

Важно, что функция f (x ) является именно функцией, а в роли чисел а и b должны выступать именно числа (без всяких переменных x ). Разумеется, буквально через минуту мы рассмотрим и такие случаи, когда вместо переменных а и b стоят функции, но сейчас не об этом.

Как мы помним, число b нужно заменить логарифмом по тому же самому основанию а, которое стоит слева. Это делается очень просто:

b = log a a b

Разумеется, под словом «любое число b » и «любое число а» подразумеваются такие значения, которые удовлетворяют области определения. В частности, в данном уравнении речь идет лишь основание a > 0 и a ≠ 1.

Однако данное требование выполняется автоматически, потому что в исходной задаче уже присутствует логарифм по основанию а — оно заведомо будет больше 0 и не равно 1. Поэтому продолжаем решение логарифмического уравнения:

log a f (x ) = log a a b

Подобная запись называется канонической формой. Ее удобство состоит в том, что мы сразу можем избавиться от знака log, приравняв аргументы:

f (x ) = a b

Именно этот прием мы сейчас будем использовать для решения логарифмических уравнений с переменным основанием. Итак, поехали!

log 2 (x 2 + 4x + 11) = log 0,5 0,125

Что дальше? Кто-то сейчас скажет, что нужно вычислить правый логарифм, либо свести их к одному основанию, либо что-то еще. И действительно, сейчас нужно привести оба основания к одному виду — либо 2, либо 0,5. Но давайте раз и навсегда усвоим следующее правило:

Если в логарифмическом уравнении присутствуют десятичные дроби, обязательно переведите эти дроби из десятичной записи в обычную. Такое преобразование может существенно упростить решение.

Подобный переход нужно выполнять сразу, еще до выполнения каких-либо действий и преобразований. Давайте посмотрим:

log 2 (x 2 + 4x + 11) = log 1 /2 1/8

Что нам дает такая запись? Мы можем 1/2 и 1/8 представить как степень с отрицательным показателем:


[Подпись к рисунку]

Перед нами каноническая форма. Приравниваем аргументы и получаем классическое квадратное уравнение:

x 2 + 4x + 11 = 8

x 2 + 4x + 3 = 0

Перед нами приведенное квадратное уравнение, которое легко решается с помощью формул Виета. Подобные выкладки в старших классах вы должны видеть буквально устно:

(х + 3)(х + 1) = 0

x 1 = −3

x 2 = −1

Вот и все! Исходное логарифмическое уравнение решено. Мы получили два корня.

Напомню, что определять область определения в данном случае не требуется, поскольку функция с переменной х присутствует лишь в одном аргументе. Поэтому область определения выполняется автоматически.

Итак, первое уравнение решено. Переходим ко второму:

log 0,5 (5x 2 + 9x + 2) = log 3 1/9

log 1/2 (5x 2 + 9x + 2) = log 3 9 −1

А теперь заметим, что аргумент первого логарифма тоже можно записать в виде степени с отрицательным показателем: 1/2 = 2 −1 . Затем можно вынести степени с обеих сторон уравнения и разделить все на −1:

[Подпись к рисунку]

И вот сейчас мы выполнили очень важный шаг в решении логарифмического уравнения. Возможно, кто-то что-то не заметил, поэтому давайте я поясню.

Взгляните на наше уравнение: и слева, и справа стоит знак log, но слева стоит логарифм по основанию 2, а справа стоит логарифм по основанию 3. Тройка не является целой степенью двойки и, наоборот: нельзя записать, что 2 — это 3 в целой степени.

Следовательно, это логарифмы с разными основаниями, которые не сводятся друг к другу простым вынесением степеней. Единственный путь решения таких задач — избавиться от одного из этих логарифмов. В данном случае, поскольку мы пока рассматриваем довольно простые задачи, логарифм справа просто сосчитался, и мы получили простейшее уравнение — именно такое, о котором мы говорили в самом начале сегодняшнего урока.

Давайте представим число 2, которое стоит справа в виде log 2 2 2 = log 2 4. А затем избавимся от знака логарифма, после чего у нас остается просто квадратное уравнение:

log 2 (5x 2 + 9x + 2) = log 2 4

5x 2 + 9x + 2 = 4

5x 2 + 9x − 2 = 0

Перед нами обычное квадратное уравнение, однако оно не является приведенным, потому что коэффициент при x 2 отличен от единицы. Следовательно, решать мы его будем с помощью дискриминанта:

D = 81 − 4 5 (−2) = 81 + 40 = 121

x 1 = (−9 + 11)/10 = 2/10 = 1/5

x 2 = (−9 − 11)/10 = −2

Вот и все! Мы нашли оба корня, а значит, получили решение исходного логарифмического уравнения. Ведь в исходной задачи функция с переменной х присутствует лишь в одном аргументе. Следовательно, никаких дополнительных проверок на область определения не требуется — оба корня, которые мы нашли, заведомо отвечают всем возможным ограничениям.

На этом можно было бы закончить сегодняшний видеоурок, но в заключении я хотел бы сказать еще раз: обязательно переводите все десятичные дроби в обычные при решении логарифмических уравнений. В большинстве случаев это существенно упрощает их решение.

Редко, очень редко попадаются задачи, в которых избавление от десятичных дробей лишь усложняет выкладки. Однако в таких уравнениях, как правило, изначально видно, что избавляться от десятичных дробей не надо.

В большинстве остальных случаев (особенно если вы только начинаете тренироваться в решении логарифмических уравнений) смело избавляйтесь от десятичных дробей и переводите их в обычные. Потому что практика показывает, что таким образом вы значительно упростите последующее решение и выкладки.

Тонкости и хитрости решения

Сегодня мы переходим к более сложным задачам и будем решать логарифмическое уравнение, в основании которого стоит не число, а функция.

И пусть даже эта функция линейна — в схему решения придется внести небольшие изменения, смысл которых сводится к дополнительным требованиям, накладываемым на область определения логарифма.

Сложные задачи

Этот урок будет довольно длинным. В нем мы разберем два довольно серьезных логарифмических уравнения, при решении которых многие ученики допускают ошибки. За свою практику работы репетитором по математике я постоянно сталкивался с двумя видами ошибок:

  1. Возникновение лишних корней из-за расширения области определения логарифмов. Чтобы не допускать такие обидные ошибки, просто внимательно следите за каждым преобразованием;
  2. Потери корней из-за того, что ученик забыл рассмотреть некоторые «тонкие» случаи — именно на таких ситуациях мы сегодня и сосредоточимся.

Это последний урок, посвященный логарифмическим уравнениям. Он будет длинным, мы разберем сложные логарифмические уравнения. Устраивайтесь поудобней, заварите себе чай, и мы начинаем.

Первое уравнение выглядит вполне стандартно:

log x + 1 (x − 0,5) = log x − 0,5 (x + 1)

Сразу заметим, что оба логарифма являются перевернутыми копиями друг друга. Вспоминаем замечательную формулу:

log a b = 1/log b a

Однако у этой формулы есть ряд ограничений, которые возникают в том случае, если вместо чисел а и b стоят функции от переменной х:

b > 0

1 ≠ a > 0

Эти требования накладываются на основание логарифма. С другой стороны, в дроби от нас требуется 1 ≠ a > 0, поскольку не только переменная a стоит в аргументе логарифма (следовательно, a > 0), но и сам логарифм находится в знаменателе дроби. Но log b 1 = 0, а знаменатель должен быть отличным от нуля, поэтому a ≠ 1.

Итак, ограничения на переменную a сохраняется. Но что происходит с переменной b ? С одной стороны, из основания следует b > 0, с другой — переменная b ≠ 1, потому что основание логарифма должно быть отлично от 1. Итого из правой части формулы следует, что 1 ≠ b > 0.

Но вот беда: второе требование (b ≠ 1) отсутствует в первом неравенстве, посвященном левому логарифму. Другими словами, при выполнении данного преобразования мы должны отдельно проверить , что аргумент b отличен от единицы!

Вот давайте и проверим. Применим нашу формулу:

[Подпись к рисунку]

1 ≠ х − 0,5 > 0; 1 ≠ х + 1 > 0

Вот мы и получили, что уже из исходного логарифмического уравнения следует, что и а, и b должны быть больше 0 и не равны 1. Значит, мы спокойно можем переворачивать логарифмическое уравнение:

Предлагаю ввести новую переменную:

log x + 1 (x − 0,5) = t

В этом случае наша конструкция перепишется следующим образом:

(t 2 − 1)/t = 0

Заметим, что в числителе у нас стоит разность квадратов. Раскрываем разность квадратов по формуле сокращенного умножения:

(t − 1)(t + 1)/t = 0

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Но в числителе стоит произведение, поэтому приравниваем к нулю каждый множитель:

t 1 = 1;

t 2 = −1;

t ≠ 0.

Как видим, оба значения переменной t нас устраивают. Однако на этом решение не заканчивается, ведь нам требуется найти не t , а значение x . Возвращаемся к логарифму и получаем:

log x + 1 (x − 0,5) = 1;

log x + 1 (x − 0,5) = −1.

Давайте приведем каждое из этих уравнений к канонической форме:

log x + 1 (x − 0,5) = log x + 1 (x + 1) 1

log x + 1 (x − 0,5) = log x + 1 (x + 1) −1

Избавляемся от знака логарифма в первом случае и приравниваем аргументы:

х − 0,5 = х + 1;

х − х = 1 + 0,5;

Такое уравнение не имеет корней, следовательно, первое логарифмическое уравнение также не имеет корней. А вот со вторым уравнением все намного интересней:

(х − 0,5)/1 = 1/(х + 1)

Решаем пропорцию — получим:

(х − 0,5)(х + 1) = 1

Напоминаю, что при решении логарифмических уравнений гораздо удобней приводить все десятичные дроби обычные, поэтому давайте перепишем наше уравнение следующим образом:

(х − 1/2)(х + 1) = 1;

x 2 + x − 1/2x − 1/2 − 1 = 0;

x 2 + 1/2x − 3/2 = 0.

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

(х + 3/2) (х − 1) = 0;

x 1 = −1,5;

x 2 = 1.

Получили два корня — они являются кандидатами на решение исходного логарифмического уравнения. Для того чтобы понять, какие корни действительно пойдут в ответ, давайте вернемся к исходной задаче. Сейчас мы проверим каждый из наших корней на предмет соответствия области определения:

1,5 ≠ х > 0,5; 0 ≠ х > −1.

Эти требования равносильны двойному неравенству:

1 ≠ х > 0,5

Отсюда сразу видим, что корень х = −1,5 нас не устраивает, а вот х = 1 вполне устраивает. Поэтому х = 1 — окончательное решение логарифмического уравнения.

Переходим ко второй задаче:

log x 25 + log 125 x 5 = log 25 x 625

На первый взгляд может показаться, что у всех логарифмов разные основания и разные аргументы. Что делать с такими конструкциями? В первую очередь заметим, что числа 25, 5 и 625 — это степени 5:

25 = 5 2 ; 625 = 5 4

А теперь воспользуемся замечательным свойством логарифма. Дело в том, что можно выносить степени из аргумента в виде множителей:

log a b n = n ∙ log a b

На данное преобразование также накладываются ограничения в том случае, когда на месте b стоит функция. Но у нас b — это просто число, и никаких дополнительных ограничений не возникает. Перепишем наше уравнение:

2 ∙ log x 5 + log 125 x 5 = 4 ∙ log 25 x 5

Получили уравнение с тремя слагаемыми, содержащими знак log. Причем аргументы всех трех логарифмов равны.

Самое время перевернуть логарифмы, чтобы привести их к одному основанию — 5. Поскольку в роли переменной b выступает константа, никаких изменений области определения не возникает. Просто переписываем:


[Подпись к рисунку]

Как и предполагалось, в знаменателе «вылезли» одни и те же логарифмы. Предлагаю выполнить замену переменной:

log 5 x = t

В этом случае наше уравнение будет переписано следующим образом:

Выпишем числитель и раскроем скобки:

2 (t + 3) (t + 2) + t (t + 2) − 4t (t + 3) = 2 (t 2 + 5t + 6) + t 2 + 2t − 4t 2 − 12t = 2t 2 + 10t + 12 + t 2 + 2t − 4t 2 − 12t = −t 2 + 12

Возвращаемся к нашей дроби. Числитель должен быть равен нулю:

[Подпись к рисунку]

А знаменатель — отличен от нуля:

t ≠ 0; t ≠ −3; t ≠ −2

Последние требования выполняются автоматически, поскольку все они «завязаны» на целые числа, а все ответы — иррациональные.

Итак, дробно-рациональное уравнение решено, значения переменной t найдены. Возвращаемся к решению логарифмического уравнения и вспоминаем, что такое t :

[Подпись к рисунку]

Приводим это уравнение к канонической форме, получим число с иррациональной степенью. Пусть это вас не смущает — даже такие аргументы можно приравнять:

[Подпись к рисунку]

У нас получилось два корня. Точнее, два кандидата в ответы — проверим их на соответствие области определения. Поскольку в основании логарифма стоит переменная х, потребуем следующее:

1 ≠ х > 0;

С тем же успехом утверждаем, что х ≠ 1/125, иначе основание второго логарифма обратится в единицу. Наконец, х ≠ 1/25 для третьего логарифма.

Итого мы получили четыре ограничения:

1 ≠ х > 0; х ≠ 1/125; х ≠ 1/25

А теперь вопрос: удовлетворяют ли наши корни указанным требованиям? Конечно удовлетворяют! Потому что 5 в любой степени будет больше нуля, и требование х > 0 выполняется автоматически.

С другой стороны, 1 = 5 0 , 1/25 = 5 −2 , 1/125 = 5 −3 , а это значит, что данные ограничения для наших корней (у которых, напомню, в показателе стоит иррациональное число) также выполнены, и оба ответа являются решениями задачи.

Итак, мы получили окончательный ответ. Ключевых моментов в данной задаче два:

  1. Будьте внимательны при перевороте логарифма, когда аргумент и основание меняются местами. Подобные преобразования накладывают лишние ограничения на область определения.
  2. Не бойтесь преобразовывать логарифмы: их можно не только переворачивать, но и раскрывать по формуле суммы и вообще менять по любым формулам, которые вы изучали при решении логарифмических выражений. Однако при этом всегда помните: некоторые преобразования расширяют область определения, а некоторые — сужают.

Как известно, при перемножении выражений со степенями их показатели всегда складываются (a b *a c = a b+c). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей. Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение. Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.

Определение в математике

Логарифмом называется выражение следующего вида: log a b=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) "b" по его основанию "a" считается степень "c", в которую необходимо возвести основание "a", чтобы в итоге получить значение "b". Разберем логарифм на примерах, допустим, есть выражение log 2 8. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.

Разновидности логарифмов

Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное - понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:

  1. Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
  2. Десятичный a, где основанием служит число 10.
  3. Логарифм любого числа b по основанию a>1.

Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.

Правила и некоторые ограничения

В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной. Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел. Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:

  • основание "a" всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь "1" и "0" в любой степени всегда равны своим значениям;
  • если а > 0, то и а b >0, получается, что и "с" должно быть больше нуля.

Как решать логарифмы?

К примеру, дано задание найти ответ уравнения 10 х = 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, 10 2 =100.

А теперь давайте представим данное выражение в виде логарифмического. Получим log 10 100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.

Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:

Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах. В левом столбце указаны числа (основание a), верхний ряд чисел - это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (a c =b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек. Все так просто и легко, что поймет даже самый настоящий гуманитарий!

Уравнения и неравенства

Получается, что при определенных условиях показатель степени - это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 3 4 =81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log 3 81 = 4). Для отрицательных степеней правила такие же: 2 -5 = 1/32 запишем в виде логарифма, получим log 2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема "логарифмы". Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств. А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.

Дано выражение следующего вида: log 2 (x-1) > 3 - оно является логарифмическим неравенством, так как неизвестное значение "х" находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.

Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример - логарифм 2 x = √9) подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.

Основные теоремы о логарифмах

При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.

  1. Основное тождество выглядит так: а logaB =B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
  2. Логарифм произведения можно представить в следующей формуле: log d (s 1 *s 2) = log d s 1 + log d s 2. При этом обязательным условием является: d, s 1 и s 2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть log a s 1 = f 1 и log a s 2 = f 2 , тогда a f1 = s 1 , a f2 = s 2. Получаем, что s 1 *s 2 = a f1 *a f2 = a f1+f2 (свойства степеней), а далее по определению: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, что и требовалось доказать.
  3. Логарифм частного выглядит так: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема в виде формулы приобретает следующий вид: log a q b n = n/q log a b.

Называется эта формула "свойством степени логарифма". Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.

Пусть log a b = t, получается a t =b. Если возвести обе части в степень m: a tn = b n ;

но так как a tn = (a q) nt/q = b n , следовательно log a q b n = (n*t)/t, тогда log a q b n = n/q log a b. Теорема доказана.

Примеры задач и неравенств

Самые распространенные типы задач на тему логарифмов - примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.

К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.

При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.

Вот примеры ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.

Как использовать формулы логарифмов: с примерами и решениями

Итак, рассмотрим примеры использования основных теорем о логарифмах.

  1. Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Ответ равен 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.

Задания из ЕГЭ

Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы "Натуральные логарифмы".

Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.

Дано log 2 (2x-1) = 4. Решение:
перепишем выражение, немного его упростив log 2 (2x-1) = 2 2 , по определению логарифма получим, что 2x-1 = 2 4 , следовательно 2x = 17; x = 8,5.

  • Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
  • Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.

Подготовка к итоговому тестированию по математике включает в себя важный раздел - «Логарифмы». Задания из этой темы обязательно содержатся в ЕГЭ. Опыт прошлых лет показывает, что логарифмические уравнения вызвали затруднения у многих школьников. Поэтому понимать, как найти правильный ответ, и оперативно справляться с ними должны учащиеся с различным уровнем подготовки.

Сдайте аттестационное испытание успешно с помощью образовательного портала «Школково»!

При подготовке к единому государственному экзамену выпускникам старших классов требуется достоверный источник, предоставляющий максимально полную и точную информацию для успешного решения тестовых задач. Однако учебник не всегда оказывается под рукой, а поиск необходимых правил и формул в Интернете зачастую требует времени.

Образовательный портал «Школково» позволяет заниматься подготовкой к ЕГЭ в любом месте в любое время. На нашем сайте предлагается наиболее удобный подход к повторению и усвоению большого количества информации по логарифмам, а также по с одним и несколькими неизвестными. Начните с легких уравнений. Если вы справились с ними без труда, переходите к более сложным. Если у вас возникли проблемы с решением определенного неравенства, вы можете добавить его в «Избранное», чтобы вернуться к нему позже.

Найти необходимые формулы для выполнения задачи, повторить частные случаи и способы вычисления корня стандартного логарифмического уравнения вы можете, заглянув в раздел «Теоретическая справка». Преподаватели «Школково» собрали, систематизировали и изложили все необходимые для успешной сдачи материалы в максимально простой и понятной форме.

Чтобы без затруднений справляться с заданиями любой сложности, на нашем портале вы можете ознакомиться с решением некоторых типовых логарифмических уравнений. Для этого перейдите в раздел «Каталоги». У нас представлено большое количество примеров, в том числе с уравнениями профильного уровня ЕГЭ по математике.

Воспользоваться нашим порталом могут учащиеся из школ по всей России. Для начала занятий просто зарегистрируйтесь в системе и приступайте к решению уравнений. Для закрепления результатов советуем возвращаться на сайт «Школково» ежедневно.


Примеры:

\(\log_{2}{⁡x} = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡{(x^2-3)}=\log_3⁡{(2x)}\)
\(\log_{x+1}{(x^2+3x-7)}=2\)
\(\lg^2⁡{(x+1)}+10=11 \lg⁡{(x+1)}\)

Как решать логарифмические уравнения:

При решении логарифмического уравнения нужно стремиться преобразовать его к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), после чего сделать переход к \(f(x)=g(x)\).

\(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) \(⇒\) \(f(x)=g(x)\).


Пример: \(\log_2⁡(x-2)=3\)

Решение:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Проверка: \(10>2\) - подходит по ОДЗ
Ответ: \(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Очень важно! Этот переход можно делать только если:

Вы написали для исходного уравнения, и в конце проверите, входят ли найденные в ОДЗ. Если это не сделать, могут появиться лишние корни, а значит – неверное решение.

Число (или выражение) в слева и справа одинаково;

Логарифмы слева и справа - «чистые», то есть не должно быть никаких , умножений, делений и т.д. – только одинокие логарифмы по обе стороны от знака равно.

Например:

Заметим, что уравнения 3 и 4 можно легко решить, применив нужные свойства логарифмов.

Пример . Решить уравнение \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Решение :

Напишем ОДЗ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Слева перед логарифмом стоит коэффициент, справа сумма логарифмов. Это нам мешает. Перенесем двойку в показатель степени \(x\) по свойству: \(n \log_b{⁡a}=\log_b⁡{a^n}\). Сумму логарифмов представим в виде одного логарифма по свойству: \(\log_a⁡b+\log_a⁡c=\log_a{⁡bc}\)

\(\log_8⁡{x^2}=\log_8⁡25\)

Мы привели уравнение к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) и записали ОДЗ, значит можно выполнить переход к виду \(f(x)=g(x)\).

Получилось . Решаем его и получаем корни.

\(x_1=5\) \(x_2=-5\)

Проверяем подходят ли корни под ОДЗ. Для этого в \(x>0\) вместо \(x\) подставляем \(5\) и \(-5\). Эту операцию можно выполнить устно.

\(5>0\), \(-5>0\)

Первое неравенство верное, второе – нет. Значит \(5\) – корень уравнения, а вот \(-5\) – нет. Записываем ответ.

Ответ : \(5\)


Пример : Решить уравнение \(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\)

Решение :

Напишем ОДЗ: \(x>0\).

\(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\) ОДЗ: \(x>0\)

Типичное уравнение, решаемое с помощью . Заменяем \(\log_2⁡x\) на \(t\).

\(t=\log_2⁡x\)

Получили обычное . Ищем его корни.

\(t_1=2\) \(t_2=1\)

Делаем обратную замену

\(\log_2{⁡x}=2\) \(\log_2{⁡x}=1\)

Преобразовываем правые части, представляя их как логарифмы: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) и \(1=\log_2⁡2\)

\(\log_2{⁡x}=\log_2⁡4\) \(\log_2{⁡x}=\log_2⁡2 \)

Теперь наши уравнения имеют вид \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), и мы можем выполнить переход к \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Проверяем соответствие корней ОДЗ. Для этого в неравенство \(x>0\) вместо \(x\) подставляем \(4\) и \(2\).

\(4>0\) \(2>0\)

Оба неравенства верны. Значит и \(4\) и \(2\) корни уравнения.

Ответ : \(4\); \(2\).