Menu
Gratuitement
Inscription
maison  /  Escarres/ Décomposition d'un vecteur en base, exemples avec solutions. Dépendance linéaire et indépendance linéaire des vecteurs. Base des vecteurs. Système de coordonnées affines

Décomposition d'un vecteur en base, exemples avec solutions. Dépendance linéaire et indépendance linéaire des vecteurs. Base des vecteurs. Système de coordonnées affines

Base(grec ancien βασις, base) - un ensemble de vecteurs dans un espace vectoriel tel que tout vecteur dans cet espace peut être représenté de manière unique comme une combinaison linéaire de vecteurs de cet ensemble - vecteurs de base

Une base dans l’espace Rn est tout système de n-vecteurs linéairement indépendants. Chaque vecteur de R n non inclus dans la base peut être représenté comme une combinaison linéaire de vecteurs de base, c'est-à-dire répartis sur la base.
Soit la base de l'espace R n et . Alors il y a des nombres λ 1, λ 2, …, λ n tels que .
Les coefficients de dilatation λ 1, λ 2, ..., λ n sont appelés coordonnées vectorielles dans la base B. Si la base est donnée, alors les coefficients vectoriels sont déterminés de manière unique.

Commentaire. Dans chaque n-espace vectoriel dimensionnel, vous pouvez choisir un nombre infini de bases différentes. Dans différentes bases, le même vecteur a des coordonnées différentes, mais elles sont uniques dans la base choisie. Exemple. Développez le vecteur dans sa base.
Solution. . Remplaçons les coordonnées de tous les vecteurs et effectuons des actions sur eux :

En égalisant les coordonnées, on obtient un système d'équations :

Résolvons-le : .
On obtient ainsi la décomposition : .
Dans la base, le vecteur a des coordonnées .

Fin du travail -

Ce sujet appartient à la section :

Notion de vecteur. Opérations linéaires sur les vecteurs

Un vecteur est un segment orienté qui a une certaine longueur, c'est-à-dire un segment d'une certaine longueur qui a l'un de ses points limites. La longueur d'un vecteur est appelée son module et est désignée par le symbole module vectoriel. Un vecteur est appelé zéro ; il est désigné si son début et sa fin coïncident ; un vecteur zéro n'a pas de vecteur spécifique.

Si tu as besoin matériels supplémentaires sur ce sujet, ou si vous n'avez pas trouvé ce que vous cherchiez, nous vous recommandons d'utiliser la recherche dans notre base de données d'œuvres :

Que ferons-nous du matériel reçu :

Si ce matériel vous a été utile, vous pouvez l'enregistrer sur votre page dans dans les réseaux sociaux:

Rn,
(MATHÉMATIQUES EN ÉCONOMIE)
  • Décomposition vectorielle
    Décomposition vectorielle UN en composants - opération de remplacement de vecteur UN plusieurs autres vecteurs ab a2, a3, etc., qui une fois ajoutés forment le vecteur initial UN; dans ce cas, les vecteurs db a2, a3, etc. sont appelés composantes du vecteur UN. En d’autres termes, la décomposition de tout...
    (LA PHYSIQUE)
  • Base et rang du système vectoriel
    Considérons le système de vecteurs (1.18) Sous-système maximalement indépendant du système vectoriel(1.I8) est un ensemble partiel de vecteurs de ce système qui satisfait deux conditions : 1) les vecteurs de cet ensemble sont linéairement indépendants ; 2) tout vecteur du système (1.18) est exprimé linéairement à travers les vecteurs de cet ensemble....
    (MATHÉMATIQUES EN ÉCONOMIE)
  • Représentation vectorielle dans différents systèmes coordonnées
    Considérons deux systèmes de coordonnées rectilignes orthogonaux avec des ensembles de vecteurs unitaires (i, j, k) et (i j", k") et représentons le vecteur a en eux. Supposons classiquement que les vecteurs unitaires premiers correspondent à nouveaux systèmes e coordonnées, et sans traits - anciens. Imaginons le vecteur sous la forme d'une expansion le long des axes de l'ancien et du nouveau système...
  • Décomposition d'un vecteur sur une base orthogonale
    Considérez la base de l'espace Rn, dans lequel chaque vecteur est orthogonal aux autres vecteurs de base : Les bases orthogonales sont connues et bien représentables dans le plan et dans l'espace (Fig. 1.6). Les bases de ce type sont pratiques principalement parce que les coordonnées de l'expansion d'un vecteur arbitraire sont déterminées...
    (MATHÉMATIQUES EN ÉCONOMIE)
  • Vecteurs et leurs représentations dans les systèmes de coordonnées
    La notion de vecteur est associée à certains grandeurs physiques, qui se caractérisent par leur intensité (magnitude) et leur direction dans l'espace. De telles grandeurs sont, par exemple, la force agissant sur un corps matériel, la vitesse d'un certain point de ce corps, l'accélération d'une particule matérielle...
    (MÉCANIQUE DU CONTINUUM : THÉORIE DU STRESS ET MODÈLES DE BASE)
  • Les représentations analytiques les plus simples d'une fonction elliptique arbitraire
    Représentation d'une fonction elliptique comme somme des éléments les plus simples. Laisser / (z) est une fonction elliptique d'ordre s à pôles simples jjt, $s, se trouvant dans un parallélogramme de périodes. Désignant par BK en soustrayant la fonction par rapport au pôle, on a que 2 ?l = 0 (§ 1, paragraphe 3, théorème...
    (INTRODUCTION À LA THÉORIE DES FONCTIONS D'UNE VARIABLE COMPLEXE)
  • La base de l'espace ils appellent un tel système de vecteurs dans lequel tous les autres vecteurs de l'espace peuvent être représentés comme une combinaison linéaire de vecteurs inclus dans la base.
    En pratique, tout cela se réalise assez simplement. La base, en règle générale, est vérifiée sur un plan ou dans l'espace, et pour cela, vous devez trouver le déterminant d'une matrice du deuxième et du troisième ordre composée de coordonnées vectorielles. Ci-dessous sont schématiquement écrits conditions dans lesquelles les vecteurs constituent une base

    À développer le vecteur b en vecteurs de base
    e,e...,e[n] il faut trouver les coefficients x, ..., x[n] pour lesquels la combinaison linéaire des vecteurs e,e...,e[n] est égale à la vecteur B :
    x1*e+ ... + x[n]*e[n] = b.

    Pour ce faire, l'équation vectorielle doit être convertie en un système d'équations linéaires et des solutions doivent être trouvées. C’est également assez simple à mettre en œuvre.
    Les coefficients trouvés x, ..., x[n] sont appelés coordonnées du vecteur b dans la base e,e...,e[n].
    Passons au côté pratique du sujet.

    Décomposition d'un vecteur en vecteurs de base

    Tache 1. Vérifiez si les vecteurs a1, a2 forment une base sur le plan

    1) a1 (3 ; 5), a2 (4 ; 2)
    Solution : On compose un déterminant à partir des coordonnées des vecteurs et on le calcule


    Le déterminant n'est pas égal à zéro , ainsi les vecteurs sont linéairement indépendants, ce qui signifie qu'ils forment une base.

    2) a1 (2;-3), a2 (5;-1)
    Solution : On calcule le déterminant constitué de vecteurs

    Le déterminant est égal à 13 (non égal à zéro) - il s'ensuit que les vecteurs a1, a2 sont une base sur le plan.

    ---=================---

    Regardons des exemples typiques du programme MAUP dans la discipline « Mathématiques supérieures ».

    Tâche 2. Montrez que les vecteurs a1, a2, a3 forment la base d’un espace vectoriel tridimensionnel et développez le vecteur b selon cette base (utilisez la méthode de Cramer pour résoudre un système d’équations algébriques linéaires).
    1) a1 (3 ; 1 ; 5), a2 (3 ; 2 ; 8), a3 (0 ; 1 ; 2), b (−3 ; 1 ; 2).
    Solution : Tout d'abord, considérons le système de vecteurs a1, a2, a3 et vérifions le déterminant de la matrice A

    construit sur des vecteurs non nuls. La matrice contient un élément zéro, il est donc plus approprié de calculer le déterminant sous forme de graphique dans la première colonne ou la troisième ligne.

    À la suite des calculs, nous avons constaté que le déterminant est différent de zéro, donc les vecteurs a1, a2, a3 sont linéairement indépendants.
    Par définition, les vecteurs forment une base dans R3. Écrivons le programme du vecteur b basé sur

    Les vecteurs sont égaux lorsque leurs coordonnées correspondantes sont égales.
    Par conséquent, à partir de l’équation vectorielle, nous obtenons un système d’équations linéaires

    Résolvons SLAE La méthode de Cramer. Pour ce faire, on écrit le système d’équations sous la forme

    Le déterminant principal d'un SLAE est toujours égal au déterminant composé de vecteurs de base

    Par conséquent, dans la pratique, cela n’est pas compté deux fois. Pour trouver des déterminants auxiliaires, on met une colonne de termes libres à la place de chaque colonne du déterminant principal. Les déterminants sont calculés à l'aide de la règle du triangle



    Remplaçons les déterminants trouvés dans la formule de Cramer



    Ainsi, le développement du vecteur b en termes de base a la forme b=-4a1+3a2-a3. Les coordonnées du vecteur b dans la base a1, a2, a3 seront (-4,3, 1).

    2)a1 (1 ; -5 ; 2), a2 (2 ; 3 ; 0), a3 (1 ; -1 ; 1), b (3 ; 5 ; 1).
    Solution : Nous vérifions les vecteurs pour une base - nous composons un déterminant à partir des coordonnées des vecteurs et le calculons

    Le déterminant n'est pas égal à zéro, donc les vecteurs forment une base dans l'espace. Reste à trouver le planning du vecteur b à travers cette base. Pour ce faire, on écrit l'équation vectorielle

    et transformer en un système d'équations linéaires

    Nous écrivons l'équation matricielle

    Ensuite, pour les formules de Cramer, nous trouvons des déterminants auxiliaires



    Nous appliquons les formules de Cramer



    Ainsi, un vecteur donné b a un programme passant par deux vecteurs de base b=-2a1+5a3, et ses coordonnées dans la base sont égales à b(-2,0, 5).

    Dépendance linéaire et indépendance linéaire vecteurs.
    Base des vecteurs. Système affine coordonnées

    Il y a un chariot avec des chocolats dans l'auditorium, et chaque visiteur d'aujourd'hui recevra un joli couple : la géométrie analytique et l'algèbre linéaire. Cet article couvrira deux sections à la fois. mathématiques supérieures, et nous verrons comment ils s'entendent dans un seul emballage. Faites une pause, mangez un Twix ! ... putain, quel tas d'absurdités. Même si, d’accord, je ne marquerai pas, en fin de compte, vous devriez avoir une attitude positive à l’égard des études.

    Dépendance linéaire des vecteurs, indépendance du vecteur linéaire, base de vecteurs et d'autres termes ont non seulement une interprétation géométrique, mais surtout une signification algébrique. Le concept même de « vecteur » du point de vue de l'algèbre linéaire n'est pas toujours le vecteur « ordinaire » que l'on peut représenter sur un plan ou dans l'espace. Vous n’avez pas besoin de chercher bien loin pour en trouver la preuve, essayez de dessiner un vecteur d’espace à cinq dimensions . Ou le vecteur météo, que je viens d'aller sur Gismeteo pour : – température et Pression atmosphérique respectivement. L'exemple, bien sûr, est incorrect du point de vue des propriétés de l'espace vectoriel, mais néanmoins personne n'interdit de formaliser ces paramètres comme vecteur. Souffle d'automne...

    Non, je ne vais pas vous ennuyer avec la théorie, les espaces vectoriels linéaires, la tâche est de comprendre définitions et théorèmes. Les nouveaux termes (dépendance linéaire, indépendance, combinaison linéaire, base, etc.) s'appliquent à tous les vecteurs d'un point de vue algébrique, mais des exemples géométriques seront donnés. Ainsi, tout est simple, accessible et clair. En plus des problèmes de géométrie analytique, nous considérerons également quelques problèmes typiques d’algèbre. Pour maîtriser la matière, il est conseillé de se familiariser avec les cours Vecteurs pour les nuls Et Comment calculer le déterminant ?

    Dépendance linéaire et indépendance des vecteurs plans.
    Base plane et système de coordonnées affines

    Considérons le plan de votre bureau d'ordinateur (juste une table, une table de chevet, le sol, le plafond, tout ce que vous voulez). La tâche comprendra les actions suivantes :

    1) Sélectionnez la base du plan. En gros, un plateau de table a une longueur et une largeur, il est donc intuitif que deux vecteurs seront nécessaires pour construire la base. Un vecteur n’est clairement pas suffisant, trois vecteurs c’est trop.

    2) Basé sur la base sélectionnée définir le système de coordonnées(grille de coordonnées) pour attribuer des coordonnées à tous les objets de la table.

    Ne soyez pas surpris, au début les explications seront sur les doigts. De plus, sur le vôtre. Veuillez placer index main gauche sur le bord de la table pour qu'il puisse regarder le moniteur. Ce sera un vecteur. Maintenant place petit doigt main droite sur le bord de la table de la même manière - afin qu'il soit dirigé vers l'écran du moniteur. Ce sera un vecteur. Souriez, vous êtes superbe ! Que dire des vecteurs ? Vecteurs de données colinéaire, ce qui signifie linéaire exprimés les uns par les autres :
    , eh bien, ou vice versa : , où est un nombre différent de zéro.

    Vous pouvez voir une image de cette action en classe. Vecteurs pour les nuls, où j'ai expliqué la règle pour multiplier un vecteur par un nombre.

    Vos doigts poseront-ils la base sur le plan du bureau d'ordinateur ? Évidemment pas. Les vecteurs colinéaires se déplacent d'avant en arrière à travers seul direction, et un plan a une longueur et une largeur.

    De tels vecteurs sont appelés linéairement dépendant.

    Référence: Les mots « linéaire », « linéairement » désignent le fait que dans les équations et expressions mathématiques, il n'y a pas de carrés, cubes, autres puissances, logarithmes, sinus, etc. Il n’existe que des expressions et dépendances linéaires (1er degré).

    Deux vecteurs plans linéairement dépendant si et seulement s'ils sont colinéaires.

    Croisez les doigts sur la table pour qu'il y ait un angle entre eux autre que 0 ou 180 degrés. Deux vecteurs planslinéaire Pas dépendants si et seulement s'ils ne sont pas colinéaires. Ainsi, la base est obtenue. Il n'y a pas lieu d'être gêné par le fait que la base s'est avérée « asymétrique » avec des vecteurs non perpendiculaires de différentes longueurs. Très bientôt, nous verrons que non seulement un angle de 90 degrés convient à sa construction, mais pas seulement des vecteurs unitaires d'égale longueur.

    N'importe lequel vecteur d'avion Le seul moyen est élargi selon la base :
    , où sont les nombres réels. Les numéros sont appelés coordonnées vectorielles dans cette base.

    On dit aussi que vecteurprésenté comme combinaison linéaire vecteurs de base. Autrement dit, l'expression s'appelle décomposition vectoriellepar base ou combinaison linéaire vecteurs de base.

    Par exemple, nous pouvons dire que le vecteur est décomposé le long d’une base orthonormée du plan, ou nous pouvons dire qu’il est représenté comme une combinaison linéaire de vecteurs.

    Formulons définition de base officiellement: La base de l'avion est appelé une paire de vecteurs linéairement indépendants (non colinéaires), , dans lequel n'importe lequel un vecteur plan est une combinaison linéaire de vecteurs de base.

    Un point essentiel de la définition est le fait que les vecteurs sont pris dans un certain ordre. Socles – ce sont deux bases complètement différentes ! Comme on dit, vous ne pouvez pas remplacer le petit doigt de votre main gauche par le petit doigt de votre main droite.

    Nous avons trouvé la base, mais il ne suffit pas de définir une grille de coordonnées et d'attribuer des coordonnées à chaque élément de votre bureau d'ordinateur. Pourquoi n'est-ce pas suffisant ? Les vecteurs sont libres et errent dans tout le plan. Alors, comment attribuer des coordonnées à ces petits endroits sales sur la table, laissés par un week-end endiablé ? Un point de départ est nécessaire. Et un tel point de repère est un point familier à tout le monde : l'origine des coordonnées. Comprenons le système de coordonnées :

    Je vais commencer par le système « scolaire ». Déjà dans la leçon d'introduction Vecteurs pour les nuls J'ai mis en évidence quelques différences entre le système de coordonnées rectangulaires et la base orthonormée. Voici l'image standard :

    Quand ils parlent de système de coordonnées rectangulaires, alors le plus souvent ils désignent l'origine, les axes de coordonnées et l'échelle le long des axes. Essayez de taper « système de coordonnées rectangulaires » dans un moteur de recherche et vous verrez que de nombreuses sources vous parleront des axes de coordonnées familiers de la 5e à la 6e année et comment tracer des points sur un plan.

    D’un autre côté, il semble qu’un système de coordonnées rectangulaires puisse être entièrement défini en termes de base orthonormée. Et c'est presque vrai. La formulation est la suivante :

    origine, Et orthonormé la base est posée Système de coordonnées de plan rectangulaire cartésien . Autrement dit, le système de coordonnées rectangulaires certainement est défini par un seul point et deux vecteurs orthogonaux unitaires. C'est pourquoi vous voyez le dessin que j'ai donné ci-dessus - en problèmes géométriques Souvent (mais pas toujours), les vecteurs et les axes de coordonnées sont dessinés.

    Je pense que tout le monde comprend qu'utiliser un point (origine) et une base orthonormée N'IMPORTE QUEL POINT dans l'avion et N'IMPORTE QUEL VECTEUR dans l'avion des coordonnées peuvent être attribuées. Au sens figuré, « tout ce qui se trouve dans un avion peut être numéroté ».

    Les vecteurs de coordonnées doivent-ils être des unités ? Non, ils peuvent avoir une longueur arbitraire non nulle. Considérons un point et deux vecteurs orthogonaux de longueur arbitraire non nulle :


    Une telle base est appelée orthogonal. L'origine des coordonnées avec des vecteurs est définie par une grille de coordonnées, et tout point du plan, tout vecteur a ses coordonnées dans une base donnée. Par exemple, ou. L'inconvénient évident est que les vecteurs de coordonnées en général ont des longueurs différentes autres que l'unité. Si les longueurs sont égales à l’unité, alors la base orthonormée habituelle est obtenue.

    ! Note : dans la base orthogonale, ainsi qu'en dessous dans les bases affines du plan et de l'espace, les unités le long des axes sont considérées CONDITIONNEL. Par exemple, une unité le long de l'axe des x contient 4 cm, et une unité le long de l'axe des ordonnées contient 2 cm. Cette information est suffisante pour, si nécessaire, convertir des coordonnées « non standards » en « nos centimètres habituels ».

    Et la deuxième question, à laquelle on a déjà répondu, est de savoir si l'angle entre les vecteurs de base doit être égal à 90 degrés ? Non! Comme l'indique la définition, les vecteurs de base doivent être seulement non colinéaire. En conséquence, l'angle peut être n'importe quoi sauf 0 et 180 degrés.

    Un point sur l'avion appelé origine, Et non colinéaire vecteurs, , ensemble système de coordonnées plan affine :


    Parfois, un tel système de coordonnées est appelé oblique système. A titre d'exemples, le dessin montre des points et des vecteurs :

    Comme vous le comprenez, le système de coordonnées affines est encore moins pratique : les formules pour les longueurs de vecteurs et de segments, dont nous avons parlé dans la deuxième partie de la leçon, n'y fonctionnent pas Vecteurs pour les nuls, de nombreuses formules délicieuses liées à produit scalaire de vecteurs. Mais les règles d'addition de vecteurs et de multiplication d'un vecteur par un nombre, les formules de division d'un segment dans cette relation, ainsi que certains autres types de problèmes que nous examinerons bientôt, sont valables.

    Et la conclusion est que le cas particulier le plus pratique d’un système de coordonnées affines est le système rectangulaire cartésien. C’est pourquoi tu dois la voir le plus souvent, ma chérie. ...Cependant, tout dans cette vie est relatif - il existe de nombreuses situations dans lesquelles un angle oblique (ou un autre, par exemple, polaire) système de coordonnées. Et les humanoïdes pourraient aimer de tels systèmes =)

    Passons à la partie pratique. Tous les problèmes de cette leçon sont valables à la fois pour le système de coordonnées rectangulaires et pour le cas affine général. Il n'y a rien de compliqué ici, tout le matériel est accessible même à un écolier.

    Comment déterminer la colinéarité des vecteurs plans ?

    Chose typique. Pour que deux vecteurs plans étaient colinéaires, il est nécessaire et suffisant que leurs coordonnées correspondantes soient proportionnelles Il s’agit essentiellement d’un détail coordonnée par coordonnée de la relation évidente.

    Exemple 1

    a) Vérifiez si les vecteurs sont colinéaires .
    b) Les vecteurs constituent-ils une base ? ?

    Solution:
    a) Voyons s'il existe pour les vecteurs coefficient de proportionnalité, tel que les égalités soient satisfaites :

    Je vais certainement vous parler de la version « farfelue » de l'application de cette règle, qui fonctionne plutôt bien dans la pratique. L’idée est de faire immédiatement la proportion et de voir si elle est correcte :

    Faisons une proportion à partir des rapports des coordonnées correspondantes des vecteurs :

    Raccourcissons :
    , donc les coordonnées correspondantes sont proportionnelles, donc,

    La relation pourrait s’effectuer dans l’autre sens ; c’est une option équivalente :

    Pour l'auto-test, vous pouvez utiliser le fait que les vecteurs colinéaires sont exprimés linéairement les uns par les autres. Dans ce cas, les égalités ont lieu . Leur validité peut être facilement vérifiée par des opérations élémentaires avec des vecteurs :

    b) Deux vecteurs plans forment une base s'ils ne sont pas colinéaires (linéairement indépendants). Nous examinons les vecteurs pour la colinéarité . Créons un système :

    De la première équation il s'ensuit que , de la deuxième équation il s'ensuit que , ce qui signifie le système est incohérent(pas de solutions). Ainsi, les coordonnées correspondantes des vecteurs ne sont pas proportionnelles.

    Conclusion: les vecteurs sont linéairement indépendants et forment une base.

    Une version simplifiée de la solution ressemble à ceci :

    Faisons une proportion à partir des coordonnées correspondantes des vecteurs :
    , ce qui signifie que ces vecteurs sont linéairement indépendants et forment une base.

    Habituellement, cette option n'est pas rejetée par les réviseurs, mais un problème se pose dans les cas où certaines coordonnées sont égales à zéro. Comme ça: . Ou comme ceci : . Ou comme ceci : . Comment travailler les proportions ici ? (en effet, on ne peut pas diviser par zéro). C’est pour cette raison que j’ai qualifié la solution simplifiée de « farfelue ».

    Répondre: a) , b) formulaire.

    Un petit exemple créatif pour décision indépendante:

    Exemple 2

    A quelle valeur du paramètre sont les vecteurs seront-ils colinéaires ?

    Dans la solution échantillon, le paramètre se trouve grâce à la proportion.

    Il y a un gracieux méthode algébrique vérifier la colinéarité des vecteurs. Systématisons nos connaissances et ajoutons ceci comme cinquième point :

    Pour deux vecteurs plans, les déclarations suivantes sont équivalentes:

    2) les vecteurs forment une base ;
    3) les vecteurs ne sont pas colinéaires ;

    + 5) le déterminant composé des coordonnées de ces vecteurs est non nul.

    Respectivement, les affirmations opposées suivantes sont équivalentes:
    1) les vecteurs sont linéairement dépendants ;
    2) les vecteurs ne constituent pas une base ;
    3) les vecteurs sont colinéaires ;
    4) les vecteurs peuvent être exprimés linéairement les uns par les autres ;
    + 5) le déterminant composé des coordonnées de ces vecteurs est égal à zéro.

    J'espère vraiment, vraiment que ce moment vous comprenez déjà tous les termes et déclarations que vous rencontrez.

    Examinons de plus près le nouveau cinquième point : deux vecteurs plans sont colinéaires si et seulement si le déterminant composé des coordonnées des vecteurs donnés est égal à zéro:. Pour appliquer cette fonctionnalité, vous devez bien entendu être capable de trouver des déterminants.

    Décidons Exemple 1 de la deuxième manière :

    a) Calculons le déterminant constitué des coordonnées des vecteurs :
    , ce qui signifie que ces vecteurs sont colinéaires.

    b) Deux vecteurs plans forment une base s'ils ne sont pas colinéaires (linéairement indépendants). Calculons le déterminant constitué de coordonnées vectorielles :
    , ce qui signifie que les vecteurs sont linéairement indépendants et forment une base.

    Répondre: a) , b) formulaire.

    Cela semble beaucoup plus compact et plus joli qu'une solution avec des proportions.

    A l'aide du matériel considéré, il est possible d'établir non seulement la colinéarité des vecteurs, mais aussi de prouver le parallélisme des segments et des droites. Considérons quelques problèmes liés à des formes géométriques spécifiques.

    Exemple 3

    Les sommets d'un quadrilatère sont donnés. Montrer qu'un quadrilatère est un parallélogramme.

    Preuve: Il n'est pas nécessaire de créer un dessin dans le problème, puisque la solution sera purement analytique. Rappelons la définition d'un parallélogramme :
    Parallélogramme On appelle un quadrilatère dont les côtés opposés sont parallèles deux à deux.

    Il faut donc prouver :
    1) parallélisme des côtés opposés et ;
    2) parallélisme des côtés opposés et.

    Nous prouvons :

    1) Trouvez les vecteurs :


    2) Trouvez les vecteurs :

    Le résultat est le même vecteur (« selon l'école » – vecteurs égaux). La colinéarité est assez évidente, mais il vaut mieux formaliser la décision clairement, avec arrangement. Calculons le déterminant constitué de coordonnées vectorielles :
    , ce qui signifie que ces vecteurs sont colinéaires, et .

    Conclusion: Les côtés opposés d'un quadrilatère sont parallèles deux à deux, ce qui signifie qu'il s'agit d'un parallélogramme par définition. QED.

    D'autres chiffres bons et différents :

    Exemple 4

    Les sommets d'un quadrilatère sont donnés. Montrer qu'un quadrilatère est un trapèze.

    Pour une formulation plus rigoureuse de la preuve, il vaut bien sûr mieux se procurer la définition d'un trapèze, mais il suffit simplement de rappeler à quoi il ressemble.

    C'est une tâche que vous devez résoudre vous-même. Solution complèteà la fin de la leçon.

    Et maintenant, il est temps de passer lentement de l’avion à l’espace :

    Comment déterminer la colinéarité des vecteurs spatiaux ?

    La règle est très similaire. Pour que deux vecteurs spatiaux soient colinéaires, il faut et suffisant que leurs coordonnées correspondantes soient proportionnelles.

    Exemple 5

    Découvrez si les vecteurs spatiaux suivants sont colinéaires :

    UN) ;
    b)
    V)

    Solution:
    a) Vérifions s'il existe un coefficient de proportionnalité pour les coordonnées correspondantes des vecteurs :

    Le système n’a pas de solution, ce qui signifie que les vecteurs ne sont pas colinéaires.

    « Simplifié » est formalisé en vérifiant la proportion. Dans ce cas:
    – les coordonnées correspondantes ne sont pas proportionnelles, ce qui signifie que les vecteurs ne sont pas colinéaires.

    Répondre: les vecteurs ne sont pas colinéaires.

    b-c) Ce sont des points pour une décision indépendante. Essayez-le de deux manières.

    Il existe une méthode pour vérifier la colinéarité des vecteurs spatiaux via un déterminant du troisième ordre ; cette méthode est couverte dans l'article Produit vectoriel de vecteurs.

    Semblable au cas plan, les outils considérés peuvent être utilisés pour étudier le parallélisme de segments spatiaux et de lignes droites.

    Bienvenue dans la deuxième section :

    Dépendance linéaire et indépendance des vecteurs dans l'espace tridimensionnel.
    Base spatiale et système de coordonnées affines

    Bon nombre des modèles que nous avons examinés sur l’avion seront valables pour l’espace. J'ai essayé de minimiser les notes théoriques parce que le partage du lion les informations ont déjà été mâchées. Cependant, je vous recommande de lire attentivement la partie introductive, car de nouveaux termes et concepts apparaîtront.

    Désormais, au lieu du plan du bureau d’ordinateur, nous explorons l’espace tridimensionnel. Commençons par créer sa base. Quelqu’un est désormais à l’intérieur, quelqu’un à l’extérieur, mais de toute façon, on ne peut échapper aux trois dimensions : la largeur, la longueur et la hauteur. Par conséquent, pour construire une base, trois vecteurs spatiaux seront nécessaires. Un ou deux vecteurs ne suffisent pas, le quatrième est superflu.

    Et encore une fois on s'échauffe sur nos doigts. S'il vous plaît, levez la main et étendez-la dans différentes directions pouce, index et majeur. Ce seront des vecteurs, ils regardent dans des directions différentes, ont des longueurs différentes et ont des angles différents entre eux. Félicitations, la base de l'espace tridimensionnel est prête ! D'ailleurs, il n'est pas nécessaire de le démontrer aux enseignants, peu importe la force avec laquelle vous vous tordez les doigts, mais il n'y a pas d'échappatoire aux définitions =)

    Ensuite, posons-nous une question importante : est-ce que trois vecteurs quelconques forment la base d'un espace tridimensionnel? Veuillez appuyer fermement trois doigts sur le dessus du bureau de l'ordinateur. Ce qui s'est passé? Trois vecteurs sont situés dans le même plan et, grosso modo, nous avons perdu l'une des dimensions - la hauteur. De tels vecteurs sont coplanaire et il est bien évident que la base de l’espace tridimensionnel n’est pas créée.

    Il convient de noter que les vecteurs coplanaires ne doivent pas nécessairement se trouver dans le même plan ; ils peuvent être dans plans parallèles(ne faites pas ça avec vos doigts, seul Salvador Dali a réussi de cette façon =)).

    Définition: les vecteurs sont appelés coplanaire, s'il existe un plan auquel ils sont parallèles. Il est logique d'ajouter ici que si un tel plan n'existe pas, alors les vecteurs ne seront pas coplanaires.

    Trois vecteurs coplanaires sont toujours linéairement dépendants, c'est-à-dire qu'ils sont exprimés linéairement les uns par les autres. Pour simplifier, imaginons à nouveau qu’ils se trouvent dans le même plan. Premièrement, les vecteurs ne sont pas seulement coplanaires, ils peuvent aussi être colinéaires, alors n'importe quel vecteur peut être exprimé par n'importe quel vecteur. Dans le deuxième cas, si par exemple les vecteurs ne sont pas colinéaires, alors le troisième vecteur s'exprime à travers eux de manière unique : (et pourquoi est facile à deviner à partir des documents de la section précédente).

    L’inverse est également vrai : trois vecteurs non coplanaires sont toujours linéairement indépendants, c'est-à-dire qu'ils ne s'expriment en aucune manière les uns par les autres. Et, évidemment, seuls de tels vecteurs peuvent constituer la base d’un espace tridimensionnel.

    Définition: La base de l'espace tridimensionnel est appelé un triplet de vecteurs linéairement indépendants (non coplanaires), pris dans un certain ordre, et tout vecteur d'espace Le seul moyen est décomposé sur une base donnée, où sont les coordonnées du vecteur dans cette base

    Je vous rappelle qu'on peut aussi dire que le vecteur est représenté sous la forme combinaison linéaire vecteurs de base.

    La notion de système de coordonnées est introduite exactement de la même manière que pour le cas plan ; un point et trois vecteurs linéairement indépendants quelconques suffisent :

    origine, Et non coplanaire vecteurs, pris dans un certain ordre, ensemble système de coordonnées affines d'un espace tridimensionnel :

    Bien sûr, la grille de coordonnées est « oblique » et peu pratique, mais le système de coordonnées construit nous permet néanmoins certainement déterminer les coordonnées de n’importe quel vecteur et les coordonnées de n’importe quel point de l’espace. Semblable à un avion, certaines formules que j'ai déjà mentionnées ne fonctionneront pas dans le système de coordonnées affines de l'espace.

    Le cas particulier le plus familier et le plus pratique d’un système de coordonnées affines, comme tout le monde le devine, est système de coordonnées d'espace rectangulaire:

    Un point dans l'espace appelé origine, Et orthonormé la base est posée Système de coordonnées d'espace rectangulaire cartésien . Image familière :

    Avant de passer aux tâches pratiques, systématisons à nouveau les informations :

    Pour trois vecteurs spatiaux, les déclarations suivantes sont équivalentes:
    1) les vecteurs sont linéairement indépendants ;
    2) les vecteurs forment une base ;
    3) les vecteurs ne sont pas coplanaires ;
    4) les vecteurs ne peuvent pas être exprimés linéairement les uns par les autres ;
    5) le déterminant, composé des coordonnées de ces vecteurs, est différent de zéro.

    Je pense que les déclarations opposées sont compréhensibles.

    La dépendance/indépendance linéaire des vecteurs spatiaux est traditionnellement vérifiée à l'aide d'un déterminant (point 5). Les tâches pratiques restantes seront de nature algébrique prononcée. Il est temps de raccrocher le bâton de géométrie et de manier la batte de baseball de l'algèbre linéaire :

    Trois vecteurs de l'espace sont coplanaires si et seulement si le déterminant composé des coordonnées des vecteurs donnés est égal à zéro : .

    Je voudrais attirer votre attention sur une petite nuance technique : les coordonnées des vecteurs peuvent être écrites non seulement en colonnes, mais aussi en lignes (la valeur du déterminant ne changera pas de ce fait - voir propriétés des déterminants). Mais c'est bien mieux en colonnes, car c'est plus utile pour résoudre certains problèmes pratiques.

    Pour les lecteurs qui ont un peu oublié les méthodes de calcul des déterminants, ou peut-être qui les comprennent peu, je recommande l'une de mes plus anciennes leçons : Comment calculer le déterminant ?

    Exemple 6

    Vérifiez si les vecteurs suivants constituent la base de l'espace tridimensionnel :

    Solution: En fait, toute la solution se résume au calcul du déterminant.

    a) Calculons le déterminant constitué de coordonnées vectorielles (le déterminant est révélé en première ligne) :

    , ce qui signifie que les vecteurs sont linéairement indépendants (non coplanaires) et forment la base de l'espace tridimensionnel.

    Répondre: ces vecteurs forment une base

    b) Il s’agit d’un point pour une décision indépendante. Solution complète et réponse à la fin de la leçon.

    Il existe également des tâches créatives :

    Exemple 7

    A quelle valeur du paramètre les vecteurs seront-ils coplanaires ?

    Solution: Les vecteurs sont coplanaires si et seulement si le déterminant composé des coordonnées de ces vecteurs est égal à zéro :

    Essentiellement, vous devez résoudre une équation avec un déterminant. On fonce sur les zéros comme des cerfs-volants sur des gerboises - il est préférable d'ouvrir le déterminant dans la deuxième ligne et de se débarrasser immédiatement des moins :

    Nous procédons à des simplifications supplémentaires et réduisons la question au plus simple équation linéaire:

    Répondre: à

    C’est facile à vérifier ici ; pour ce faire, vous devez substituer la valeur résultante au déterminant d’origine et vous assurer que , en l'ouvrant à nouveau.

    En conclusion, nous considérerons un autre problème typique, de nature plus algébrique et traditionnellement inclus dans un cours d'algèbre linéaire. C'est tellement courant qu'il mérite son propre sujet :

    Prouver que 3 vecteurs constituent la base de l'espace tridimensionnel
    et trouver les coordonnées du 4ème vecteur dans cette base

    Exemple 8

    Les vecteurs sont donnés. Montrer que les vecteurs forment une base dans un espace tridimensionnel et trouver les coordonnées du vecteur dans cette base.

    Solution: Tout d'abord, parlons de la condition. Par condition, quatre vecteurs sont donnés et, comme vous pouvez le voir, ils ont déjà des coordonnées sur une certaine base. Ce qu'est cette base ne nous intéresse pas. Et la chose suivante est intéressante : trois vecteurs pourraient bien constituer une nouvelle base. Et la première étape coïncide complètement avec la solution de l'exemple 6, il faut vérifier si les vecteurs sont bien linéairement indépendants :

    Calculons le déterminant constitué de coordonnées vectorielles :

    , ce qui signifie que les vecteurs sont linéairement indépendants et constituent la base de l’espace tridimensionnel.

    ! Important : coordonnées vectorielles Nécessairementécrire en colonnes déterminant, pas en chaînes. Sinon, il y aura de la confusion dans l'algorithme de solution ultérieur.

    En calcul vectoriel et ses applications grande importance a une tâche de décomposition consistant à représenter un vecteur donné comme une somme de plusieurs vecteurs appelés composants d'un vecteur donné

    vecteur. Ce problème, qui a en général un nombre infini de solutions, devient complètement défini si l'on précise certains éléments des vecteurs composants.

    2. Exemples de décomposition.

    Considérons quelques cas de décomposition très courants.

    1. Décomposer un vecteur donné c en deux vecteurs composants dont l'un, par exemple a, est donné en amplitude et en direction.

    Le problème revient à déterminer la différence entre deux vecteurs. En effet, si les vecteurs sont des composantes du vecteur c, alors l'égalité doit être satisfaite

    À partir de là, le deuxième vecteur composant est déterminé

    2. Décomposez le vecteur c donné en deux composantes, dont l'une doit se trouver dans avion donné et le second doit se trouver sur une droite donnée a.

    Pour déterminer les vecteurs composants, nous déplaçons le vecteur c de manière à ce que son début coïncide avec le point d'intersection de la droite donnée avec le plan (point O - voir Fig. 18). A partir de la fin du vecteur c (point C), on trace une ligne droite jusqu'à

    intersection avec le plan (B est le point d'intersection), puis à partir du point C on trace une droite parallèle

    Les vecteurs et seront ceux souhaités, c'est-à-dire Naturellement, l'expansion indiquée est possible si la droite a et le plan ne sont pas parallèles.

    3. Étant donné trois vecteurs coplanaires a, b et c, et les vecteurs ne sont pas colinéaires. Il faut décomposer le vecteur c en vecteurs

    Amenons les trois vecteurs donnés à un point O. Ensuite, en raison de leur coplanarité, ils seront situés dans le même plan. En utilisant ce vecteur c comme diagonale, nous construirons un parallélogramme dont les côtés sont parallèles aux lignes d'action des vecteurs (Fig. 19). Cette construction est toujours possible (sauf si les vecteurs sont colinéaires) et unique. De la fig. 19 il est clair que