Меню
Бесплатно
Главная  /  Лишай у человека  /  Основные таксономические ранги систематики высших растений и примеры таксонов. Единицы биологической систематики. Таксоны. Ранг таксона Систематические таксоны

Основные таксономические ранги систематики высших растений и примеры таксонов. Единицы биологической систематики. Таксоны. Ранг таксона Систематические таксоны

Реально существующие в природе живые объекты, изучаемые всеми биологами, - индивидуумы (особи, организмы), популяции, расы (виды и подвиды) — классифицируются систематиками, начиная с объектов популяционно-видового уровня организации живого, с уровня расы.

Расы как совокупности индивидуумов, связанных «племенной общностью» (B. Л. Комаров), т. е. воспроизведением себе подобных индивидуумов, родственных и совместимых по генотипу со всеми организмами, составляющим расу (вид или подвид) — это, прежде всего, целостные системы индивидуумов с точки зрения генетики (генотип их общ, и эта общность обеспечивается панмиксией). Но общность генотипа обеспечивается также изоляцией от особей других (у растений, прежде всего, ближайших) рас. Репродуктивная изоляция (неспособность давать при скрещивании жизнеспособное, вполне конкурентное потомство) обеспечивается разными способами — биологически, экологически и географически (образно совокупность этих признаков расы С. И. Коржинский называл бионтом и ареалом, a B. Л. Комаров и определял как «место вида в экономике природы»). Подчеркну еще раз, что у растений именно между отдаленными расами (а не ближайшими) может быть вполне плодотворное скрещивание, и только экологическая, а в еще большей мере географическая изоляция обеспечивает их независимое существование. Совокупность всех этих признаков расы (вида, подвида) свидетельствует нам, что это вполне реальный природный объект.

Природных рас — видов и подвидов растений — очень много (только видов растений без грибов — не менее 450 000, из которых сосудистых растений — не менее 320 000-350 000). Подобное разнообразие невозможно воспринимать иначе, чем в определенной системе. Наиболее легко воспринимаемая (и дающая полную обозримость) система в этом случае — система иерархическая. В иерархической системе виды объединяются в определенном порядке в более крупные единства (по сходству или родству), эти группы, в свою очередь, в еще более крупные (по возможности тоже естественные и, следовательно, связанные и родством). Создается восходящий ряд соподчиненных групп, высшая из которых объединяет все растения на Земле. Подобная иерархическая система очень удобна для запоминания, и, главное, для обозрения всей совокупности объектов (в данном случае — растений).

Группы, составляющие этот иерархически организованный порядок согласно определенной системе (которая может быть в деталях очень различной), называются таксонами (taxon, множественное — taxa). Как совокупность каких-либо реальных рас (или даже отдельная раса или ее часть), таксон, конечно, объективная реальность, но, как совокупность, ограниченная совершенно субъективно, любой таксон — это понятие, идея, образ. Способ отграничения таксонов в иерархической системе — ранжирование, и неотъемлемая часть любого таксона — его ранг (положение в иерархическом ряду соподчинения).

Свод законов ботанической номенклатуры, которому подчиняется вся работа систематиков, — (Интернациональный) Международный Кодекс ботанической номенклатуры — уже во второй своей статье заявляет: «Каждое отдельное растение рассматривается как принадлежащее к ряду таксонов последовательно соподчиненных рангов» То есть экземпляр Pelargonium zonale, стоящий у меня на окне, как минимум принадлежит к виду P. zonale, роду Pelargonium, семейству Geraniaceae, порядку Geraniales, классу Dicotyledonae, отделу (или типу) Angiospermae и, разумеется, к царству растений — Regnum vegetabile. Кодекс специально оговаривает, что основным понятием в иерархии таксонов является ранг вида.

Вид как таксон обязательно и относится в восходящем ряду к роду, семейству, порядку, классу, отделу (или типу). В латинской номенклатуре это ряд таксонов: species — genus — familia — ordo — classis — divisio. Но кодекс разрешает употреблять для целей систематики и иные таксоны (таксоны других рангов). Виды в составе одного рода могут объединяться в восходящем ряду в серии (ряды) — series, подсекции, секции — sectio, подроды; роды в составе одного семейства — в подтрибы, трибы (колена) — tribus, подсемейства; семейства в составе одного класса — в подпорядки, порядки, надпорядки, подклассы. Возможно употреблять и таксон II ранга — подотдел (подтип). Главное, что при этом требует Кодекс номенклатуры — соблюдать единый ряд главных таксонов, порядок которых изменять нельзя (вид, род, семейство, порядок, класс, отдел) и порядок дополнительных таксонов между главными (если они необходимы). Любое подразделение системы, соблюдающее этот ряд (и правильно описанное), таксон. Но Кодекс допускает (при желании систематика) и выделение таксонов в ранге ниже вида. Их нисходящий ряд — подвид, разновидность, форма (возможно и его усложнение — подразновидность и даже подформа). Естественно полагать, что внутривидовые и надвидовые таксоны, по существу, — нечто различное, хотя в Кодексе они равноценны. Внутривидовые таксоны как совокупности особей в генетическом смысле — единое целое (у них общий генотип, обеспечиваемый общей панмиксией, свободным скрещиванием в разных направлениях внутри этой совокупности). Надвидовые таксоны как совокупности особей двух и более видов, как правило, не объединяются в системах свободные скрещивания в единство, поддерживаемое панмиксией, и, следовательно, у них нет общего генотипа. Но и те, и другие таксоны, существенно различные по рангу с точки зрения Кодекса, могут полностью совпадать друг с другом по объему с точки зрения таксономистов, использующих эти таксоны для классификации.

Достаточно простая операция построения системы любого содержания как иерархии соподчиненных таксонов, располагающихся в соответствии с их рангом, не снимает, однако (для хорошего систематика), обязанности обсудить вопрос — естественны ли принимаемые им таксоны как совокупности особей (живых организмов), связаны ли они также по родству, и, если да, то какие именно таксоны и в какой степени естественны, природны. И до сих пор среди биологов (и в том числе систематиков) есть немало полагающих, что все таксоны — природные, естественные объекты. При этом они с легким сердцем переносят неизбежные в нашей практике факты, когда какой-либо вид (ранее известный им) переносится в другой род, род — в другое семейство, а семейство кочует из порядка в порядок. Они считают, что все это представляет ход развития науки, когда мы субъективно постепенно приближаемся к истине, к естественному природному порядку вещей. Но, пожалуй, большинство систематиков относится к таксонам как к удобным по форме и полезным, но вполне субъективным понятиям, если и имеющим объективное содержание, то только во временных рядах развития, которые мы можем восстанавливать, но, конечно, также достаточно субъективно (и неполно). Все это, однако, относится только к надвидовым таксонам, поскольку основной таксон — вид (раса) — природное явление, доступное для познания и на современном своем срезе, а отчасти и во времени, и даже в эксперименте. Другое дело, что эту объективную природу вида, расы мы можем выразить еще и в рамках системы таксонов ниже вида, допускаемых для применения «Кодексом», выразить достаточно субъективно (и по-разному для разных исследователей). Это обычно связано, в первую очередь, с тем, как разные исследователи понимают собственно вид, допускают ли они его трактовку как системы относительно независимо существующих в природе популяций, имеющих различную эволюционную историю и

Судьбу, а, следовательно, и различный (хотя бы в частностях) генотип, считают вид наименьшей природной единицей, обладающей единым генотипом. Но это может быть связано и с тем, что для трактовки одних и тех же эволюционных явлений на уровне популяций и вида разные исследователи могут произвольно выбрать таксоны разного ранга (формы, разновидности).

Но трактовка одних и тех же групп (как совокупностей особей и видов) в разных системах надвидовых таксонов может быть исключительно резко различной и, при этом все дело только в том, что выбор ранга таксона — сугубо субъективный акт, причем при любых теоретических обоснованиях. Род Ixiolirion, состоящий из 2-3 хороших видов (и, возможно, еще из 2-3 подвидов), — восточно-древнесредиземноморский и даже заходящий на территорию России — в старых системах относился к сем. Amaryllidaceae, составляя там обычно особую трибу. В системе A. Л. Тахтаджяна (1965 г.) он даже не упоминается, по-видимому, из-за традиционного помещения его туда же. В системе Тахтаджяна (1980 г.) он выделен в качестве особого подсемейства в составе Amaryllidaceae. В системе Р. Дальгрена он сначала трактуется также (но в системе 1983 г. выделяется в особое семейство Ixioliriaceae, стоящее вблизи Hypoxidaceae в порядке Asparagales, куда включены и Amaryllidaceae, но все родство Liliaceae составляют особый порядок Liliales). В системе А. Кронквиста он входит в состав сем. Liliaceae (вместе с Amaryllidaceae) и никак здесь не обособлен. В системе Р. Торна (1983 г.) он также входит в состав Liliaceae, но как особое подсемейство, а в самом последнем варианте (90-е годы), видимо, также выделяется как особое семейство. И в системе Тахтаджяна (1987 г.) это — особое семейство, но в порядке Amaryllidales, уже отделенном от Asparagales. Наконец, еще в одной системе Тахтаджяна (1997 г.) Ixioliriaceae входит уже в порядок Tecophilaeales, отдельный от порядка Amaryllidales, и даже очень далекий от него, так как Tecophilaeales сближается с Iridales. Ни в одном из этих случаев объем таксона — рода Ixiolirion — не менялся, как не менялся объем этой группы как особого таксона во всех вариантах системы, кроме систем Тахтаджяна (1965 г.) и А. Кронквиста (1981-1988 гг.), где объем группы, включающей Ixiolirion, особо не был оговорен. Но ранг-то изменялся неоднократно, как неоднократно изменялось и положение его в системе. И это все — разные таксоны… Что касается признаков рода, то они ни на йоту не изменились за эти последние 30 лет! С чем же это связано и имеет ли основание в теории систематики? Как ни странно, но на этот вопрос следует ответить положительно.

Род в систематике всегда был типологическим понятием, обобщающим какие-то черты к нему относящихся видов. Более того, на каком-то этапе развития систематики род как понятие типологическое явно казался понятием более важным, чем вид (а рецидивы этих суждений дошли и до наших дней, особенно у зоологов и палеобиологов). Рода впервые и были описаны, и первые получили тривиальные названия (монономиналы). Потом и в составе родов стали различаться все более многочисленные виды. Более того, роды стали и первыми таксонами, имеющими естественное содержание, и близость признаков видов именно в составе одних родов стало нередко трактоваться как свидетельство родства. И такова уж естественная и типологическая (образная) природа родов, что даже понимая, что происхождение каких-либо современных видов, входящих в какой-либо род, от других современных видов того же рода почти невероятно, систематики все же считают, что уж в составе родов они объединяют заведомо близкородственные виды, более близкие, чем виды, группируемые ими в составе других родов. Насколько этот тезис сомнителен, легко увидеть в современных системах, скажем, трибы Triticeae (Gramineae), для большинства родов i и видов которой достаточно давно уже установлены важнейшие особенности строения генома. При этом оказывается, что один и тот же индивидуальный геном свойственен (в различных сочетаниях с другими геномами) целому ряду родов, содержащих разное число видов.

Мы можем подробнее разобраться в этом, используя очень интересную статью нашего выдающегося систематика (и, прежде всего, агростолога с мировой известностью), Н. Н. Цвелева, «О геномном критерии родов у высших растений» (Ботанический журнал, том 76, № 5, 1991 г.). Она, в общем, никогда не обсуждалась в литературе серьезно (хотя ссылки на нее есть), а, между тем, основная мысль ее такова: «В исследовании геномов — ключ к естественному разделению родов растений». Мысль эта, впрочем, не Николая Николаевича, а автора той концепции родов, которую он разбирает в статье - Аскелла Леве.

А. Леве — один из крупнейших кариотаксономистов конца XX века (сам он считает себя «цитогенетиком»), сторонник в большей части своих работ экстремально узкого понимания родов у растений. Та концепция, которую обсуждает в своей статье Н. Н. Цвелев, касается системы родов в двух наиболее исследованных генетически трибах хлебных злаков — Triticeae и Hordeeae. Сам Леве с этой группой как генетик работал, но воспользовался генетическими разработками В. Дьюи (Dewey), владельца большой коллекции пшениц и их родичей и крупного канадско-американского генетика пшениц (и менее — ячменей), ниже мы разберем подробней основу этой концепции детальней, но пока необходимо сказать несколько слов о самой статье Н. Н. Цвелева, которая, как всегда, интересна и тем, какова позиция самого Цвелева в более общих теоретических вопросах вообще (а Н. Н. никогда их не скрывает, высказывает прямо, он человек очень увлеченный и увлекающийся, и ботанику любит, как саму жизнь).

Статья и начинается собственно кредо Н. Н.: «Все таксоны реально существуют в природе, и задача систематика состоит в их выявлении и придании им определенного таксономического ранга». Далее Н. Н. оговаривается, что это не относится к ошибочно установленным таксонам. В общем, более определенно высказаться трудно. Но так думает такой систематик, как Н. Н. Цвелев, и так высказывался и наш другой маститый систематик, А. К. Скворцов, и мне кажется, что за подобными высказываниями столь выдающихся систематиков не могут не устремиться многие и многие молодые систематики. Правда, Н. Н., в отличие от А. К., человек не осторожный, а предельно открытый, абсолютно смелый! И он тут же для подтверждения своей мысли приводит пример. Шоуген и Фелдкамп (Y. Schouten, I. Veldkamp) сейчас генетически доказывают, что роды Anthoxanthum и Hierocloe — это один род! Самому Н. Н. это не нравится, и он подчеркивает, что у них все же разные основные числа хромосом (Anthoxanthum — х=5, a Hierochloe — х=7). На этом основании он считает, что Anthoxanthum соединять с Hierochloe нельзя, но, в общем, Anthoxanthum сейчас, конечно, по-иному понимается, чем у Линнея. Можно его понимать и уже, и надо в этом случае видеть их (эти ряды) как реальность, данную природой.

Но вот в чем беда. И Anthoxanthum L., и Anthoxanthum в смысле Цвелева, и Anthoxanthum в смысле Шоутена и Фелдкампа — это и есть таксоны (а не естественные роды, поскольку все они разного содержания). Так какой же из них — реальность? Видимый абсурд!

Дело в том, что таксон никогда не тождественен филуму (а тем более — его срезу). Таксон (выше вида) — всегда абстракция (а в ряде случаев он — абстракция и тогда, когда он равен всего одному ныне реально существующему (и познаваемому нами) виду! Мы это далее увидим.,.). Филум же — это отрезок филогенеза, представленный либо стволом, либо сеткой гибридизации, конечно же, реальность, но реальность, нами наблюдаемая не полно (без предшествовавших современным видов). Но только эта, не наблюдаемая нами часть этой реальности, ц определяет таксон выше вида.

Реальным таксон кажется систематикам тогда, когда практически исчерпаны варианты систем, есть устоявшаяся традиция, есть устойчивый образ таксона (но в этом случае всегда произволен выбор ранга!).

Вот такова философия (или гносеология) таксонов, но, увы, она необходима потому, что наши точки зрения на них различны.

Собственно, и Н. Н. обращается к концепции Леве затем, чтобы укрепиться именно в своем мнении, что реальны таксоны (по крайней мере, роды!), если они правильно выделены… И он находит, что работа Леве это, наконец, подтверждает геномным анализом. Ведь пшеницы уже так хорошо изучены…

Поэтому теперь следует обратиться уже к концепции Леве.

По Леве, род — это группа близкородственных видов, имеющих или полностью специфичный (первичный, считающийся неповторимым в этой группе) геном, или неповторимую комбинацию первичных геномов (кратных или в разных сочетаниях кратных). Вот это-то обилие возможных вариантов (а их в определении 4, а на деле — больше) сразу обещает огромные затруднения для систематиков, верующих в реальность рода. Да, нам обещают неповторимость генома, но каковы рамки этой неповторимости, а, значит, сколько вообще возможно комбинаций? Сколь высока должна быть точность выделения первичных (простых) геномов? И хотя у пшениц и их родичей это все уже очень давно исследуется, и генетика их исключительно детальна, но до расшифровки геномов, вообще-то говоря, еще очень далеко.

Что же нам предлагает Леве в системе родичей пшениц? В ней важно знать еще и то, что реально на ней обозначены гапломы (части, составляющие либо одну пару в общем геноме, либо некоторое число пар (у полиплоидов — от двух до шести, но может быты некратно-3,5 пар))… Это еще дополнительная сложность для систематиков (а у Леве как у кариосистематика она частично диктует и распределение этих таксонов, принимаемых им).

Четыре таксона, по Леве, обладают уникальными геномами, не участвующими в комбинациях с другими родами этой группы. (Надо сказать, что род Amblyopyrum был в числе тех, которые в некоторых схемах родства пшениц считались участвовавшими, хотя бы интрогрессивно, в создании геномов культурных пшениц). (Знаем мы даже, что все же Triticale существуют и, следовательно, какие-то части геномов Triticum и Secale вполне совместимы?!).

Но обратимся к основной части таблицы, где, собственно, остаются разные пшеницы и, в широком смысле, разные части большого рода Aegilops (но не все), который, как мы давно знаем, сыграл огромную роль в генезисе культурных тетраплоидных и гексаплоидных пшениц. Еще в 20-е годы это было ясно, и гибридизацией пшениц и эгилопсов занималось несколько ученых, в том числе П. М. Жуковский.

Что же нам демонстрирует Леве? Он показывает нам, что в выделяемых им в системе родах они имеют простые (неповторимые) геномы (которые звучат не как гапломы А, В, а реально — АА, ВВ и т. д.), но, при этом, 8 выделяемых им родов — это роды с комбинированными геномами, которые, кстати, могут представлять не просто АВАВ, но и ААВ ААВ [и ABD ABD/ABD ABD/ABD ABD/, ведь настоящие пшеницы — гексаплоиды].

И вот тут-то и встает вопрос — а почему, собственно, мы должны принимать решение только Леве? И считать реальными именно эти 18 (или 14) родов? У нас здесь есть ряд решений других! Только для первых 4 родов есть еще два решения: либо они — единый род! (Triticum s. I. + Sitopsis, и так было традиционно!), либо А, В, АВ, ААВ — один род, а ABD — культурный род. У нас есть разные решения и по объединению всех типов, окрашенных мною в синий и зеленый, т. е. Aegilops s. sir. и всех, не имеющих этих окрасок, т. е. пшениц и значительной части Aegilops, а не только Sitopsis. Много есть тут вариантов, и они ничем не хуже, коль скоро и в системе Леве допустимы, наряду с простыми, комбинативные по геному таксоны. И таких решений было и раньше немало. Варианте включением в пшеницы sect. Sitopsis рода Aegilops предлагал еще П. М. Жуковский! В 50-х годах видный канадский ботаник-агростолог и генетик В. Боуден (Bowden) предлагал объединить пшеницы и все вообще однолетние Aegilops.

Реальность всех подобных построений ничуть не меньшая, чем у схемы Леве, но — и не большая!!

Дело, во-первых, в том, что мы не знаем, каковы были комбинации геномов у ранее существовавших пшениц и, особенно, эгилопсов! (А их (эгилопсов), должно быть, было не мало и ранее, минимум с плиоцена!).

Во-вторых, вообще не знакомые с генетикой пшениц люди могут, конечно, обольщаться тонкостью анализа Дьюи и Леве, но тот, кто хоть кое-что знает об этом (а знает ли он об этом, скажем, умалчивает и Цвелев), может вспомнить одну историю. Triticum timopheevii Zhuk, р этой схеме рассматривается как полбообразный тип с АВ-комбинацией, но ряд хороших генетиков пшениц считает в этом случае, что это лишь несколько видоизмененный геном ВВ, т. е. геном Sitopsis. Вообще же, в ряде работ обсуждается вопрос о возможности возникновения генома Sitopsis (ВВ) структурной перестройкой генома SS (это части геномов многолетних Triticeae).

В-третьих, ради сколько-нибудь достоверной интерпретации той схемы, что дал Леве, мы можем спросить у генетиков доказательств, что эволюция тритикоидных злаков шла именно (и только) рекомбинационным наращиванием геномов, а не путём, скажем, постгибридизационных выщеплений простых геномов из более сложных первичных. И они нам этих доказательств не дадут. А у Леве все концы спрятаны. Он ведь не рассматривает в этой связи ни Agropyrum, ни Elytrigia, ни Elymusl. А между тем, еще в 1955 году Е. Н. С и некая предложила гипотезу (довольно спорную, но не опровергнутую!), что пшеницы происходят от неизвестных пра-пыреев, боковой ветвью развития которых (с гибридными влияниями) была и группа Elytrigia jurtcea – Е. elongate. Геномы E. juncea и Е. elongata оказались элементарными, простыми (они были отождествлены с частями геномов пшениц (составных — у полб и, собственно, пшениц), а вот геномы большей части Elytrigia (и групп Trichopyrum, Psammopyrum), а также Elymus (Roegneria) — сложными.

А вдруг все же именно гибридизация сложных геномов вела к выщеплениям простых? И этому, отчасти, мы могли бы найти доказательства, если внимательно рассмотреть генетику именно многолетних типов Triticeae (как раз Дьюи с ними и работал больше всего!! А Леве, повторяю, — не генетик, а цитосистематик).

Вот, по вышесказанному (и еще много по чему) я не могу, увы, как Н. Н. Цвелев, радостно воскликнуть, что, наконец, естественный критерий рода, даже только у Triticeae, есть, что нас осветило, как на выходе из туннеля, до которого уже 1/2 шага. Я думаю, что, выйдя, мы тут же опомнимся и осознаем, что все — сложнее, а свет — повсюду (а не только в выходе из туннеля). И тогда еще раз убедимся, что, увы, таксоны — не реальность (а наше создание).

Но еще более показателен совершенно иной факт. Как среди родов в большинстве крупных семейств, так и среди родов, вообще известных в настоящее время, резко преобладают монотипные роды (содержащие один современный вид). Совершенно ясно, что для подобных видов невозможно строго подобрать современный вид из каких-либо других родов, который мог бы рассматриваться в качестве предкового для подобного современного монотипного рода. Значит, мы должны представлять себе, что любой из этих родов происходит только от какого-то ныне исчезнувшего предка, отделенного от современного вида монотипного рода именно во времени (причем, насколько далеко отдаленного — совершенно не ясно).

Вот это-то представление о роде как фрагменте определенного филума, развивавшегося в течение достаточно длительного времени, но явно более длительного, чем время существования только одного современного вида, ныне составляющего монотипный род, и поддерживает представление о том, что род — столь же естественное, природное единство, как и ныне наблюдаемый нами современный вид. Тем более, что, как уже сказано, таких родов значительно больше, чем многовидовых родов, хотя объединяют они существенно меньшую часть видов, чем многовидовые роды.

Но при этом мы все же должны ясно представлять, что этот фрагмент филума можно восстановить очень по-разному. Мы можем восстановить этот филум как ряд последовательно сменявших друг друга видов одного рода, лишь один из которых дошел до нашего времени (здесь возможны два варианта, в зависимости от типа видообразования, принимаемого нами и два варианта, отражающие связь с каким-то ближайшим родом).

Все это только варианты фактически равноценных таксонов — монотипных родов.

Еще один вариант связан с представлением о резком (сальтационном) происхождении единственного вида современного рода от видов другого современного рода, безразлично, насколько глубоко во времени.

Совершенно очевидно, что любой из этих вариантов доказать крайне сложно, причем обычно используются для доказательств только какие-либо морфологические признаки, которые могут нам только дать некоторое представление о масштабе дивергенции современных рас (а в первых двух вариантах — и это неясно). Но этого явно недостаточно.

В случае с политипными родами, содержащими большое число видов, для выяснения их родственных отношений мы можем привлечь некоторые иные признаки (не только морфологические, но и экологические, и географические). В случае же с монотипными родами любое построение филума, в сущности, произвольно. При этом в очень малой степени нам может помочь и наличие разрозненных ископаемых типов, которые мы можем также интерпретировать, в сущности, только по некоторым неполным разрозненным морфологическим признакам, Дающим некоторую тенденцию изменений, да прибавляется еще тенденция изменений общей экологической обстановки (и иногда свидетельства некоторого изменения географии вида, который мы предположительно считаем предковым). Создать какой-либо равноценный с образом современного вида образ ископаемого вида мы обычно не можем.

Что же тогда говорить о таких политипных таксонах, как, скажем, семейство зонтичных вкупе с семейством аралиевых. Или о семействе крестоцветных с его странными взамоотношениями с каперсовыми (особенно с клеомовыми) или с моринговыми. Естественно, что даже эти естественные семейства еще не раз могут быть пересмотрены и в объеме, и в составе таксонов. А в случае таких семейств, как флакуртиевые или, скажем, розоцветные — нечего и говорить.

Таким образом, теория или, вернее, неполнота теории систематики дает нам основания для многочисленных изменений ранга и объема таксонов, хотя ни в одном случае здесь мы объективно не можем достигнуть отражения истинной природы вещей. Ведь еще и еще раз приходится помнить нам и о неполноте геологической летописи, и о том, что темпы эволюции, увы, в разных филумах весьма индивидуальны.

Именно последнее обстоятельство (известное как «закон Симпсона») позволяет нам совершенно категорически отвергать все попытки выравнивания ранга и объема таксонов в системах. В каждом деле (и в каждом разделе науки) всегда есть люди, которые желают формализовать любое явление и любой процесс. Систематика — не исключение, и в ней постоянно раздаются голоса, призывающие либо равномерно разделить все крупные (еще сохранившиеся) роды, либо равномерно же укрупнить какие-либо таксоны. При этом часть подобных призывов основана на превратном представлении, что дивергентная в основе своей эволюция по Дарвину ведет к строгой дихотомии. Это совершенно неверно, поскольку дивергенция (уклонение) чаще всего ведет к гибели исходного вида, а при географическом замещении по классическому типу (образовании подвидов, которые могут в дальнейшем обособиться до вида) — к пучку рас, как правило, видимо, существующих более короткое время и чем подвидовые структуры, и чем исходный вид. Тем более маловероятна дихотомия, обычно рисуемая на схемах в крупных филумах. Природа, конечно же, много более разнообразна, и никаких выравниваний она допустить не может.

В любой классификации имеются более крупные и более мелкие группы растений, которые связаны между собой. Крупные группы подразделяются на более мелкие; а мелкие, наоборот, можно объединить в более крупные группы. Эти систематические группы, или единицы, называются таксоны.

Основной таксономической (систематической) единицей является – вид – Species. Виды возникли в результате длительной эволюции растений и каждый вид имеет на земле определенную область естественного распространения – ареал. Особи одного вида имеют общие морфофизиологические, биохимические признаки, способны к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство (т.е. генетически совместимые).

Каждый вид относится к какому-либо роду. Род - Genus – более крупная таксономическая единица, включает в себя группу близких видов, у которых имеется много общих признаков, например, в строении и расположении цветков, плодов и семян. Но имеются и отличительные признаки: опушение листьев, окраска венчика, форма или расчленение листовой пластинки и т.д.

Следующей более крупной таксономической единицей является семейство - Familia, в которое объединяются близкие и родственные между собой роды. Их сродство заключается как в строении генеративных органов (цветки, плоды), так и в строении вегетативных органов (листьев, стеблей и т.д.). В окончание семейства добавляют суффикс – aceae. Например, семейство лютиковые – Ranunculaceae, розоцветные – Rosaceae.

Сходные семейства объединяются в более крупную группу – порядок – Ordo. Порядки объединяются в классы - Classis, а классы объединяются в отделы - Divisio или типы. Отделы составляют царство - Regnum.

При необходимости могут использоваться и промежуточные таксономические единицы, например, подвид (subspeaes), подрод (subgenus), подсемейство (subfamilia), надпорядок (superordo), надцарство (superreginum).

Таксономическая характеристика растения на примере ромашки

Лекарственной.

Систематика низших и высших растений

Низшие растения

Весь растительный мир делят на две большие группы: низшие растения и высшие растения.

Низшие растения – слоевцовые, или талломные, имеют тело, называемое таллом или слоевище. К ним относятся доядерные и ядерные организмы, тело которых не расчленено на вегетативные органы (корень, стебель, лист), и не имеет дифференцированных тканей. Среди низших растений имеются одноклеточные, колониальные и многоклеточные формы.

Доядерные формы – Procaryota - не имеют ограниченного мембраной ядра, хлоропластов, митохондрий, комплекса Гольджи и центриолей. Рибосомы мелкие, у многих есть жгутики, а клеточная стенка многих прокариот содержит гликопептид муреин. Митоз и мейоз, а также половое размножение отсутствуют, размножение осуществляется путем деления клеток надвое. Иногда встречается почкование (дрожжи). Окислительные процессы у многих представлены брожениями разного типа (спиртовое, уксусно-кислое и др.). Фотосинтез, если он есть, связан с клеточными мембранами. Многие прокариоты способны к фиксации атмосферного азота; среди них есть аэробы и анаэробы. Часть прокариот образует эндоспоры, способствующие перенесению неблагоприятных условий внешней среды.

Прокариоты, по-видимому, первые организмы, появившиеся на Земле. Прокариоты относятся к одному царству Дробянок - Mychota, а оно подразделено на три подцарства: архебактерии, настоящие бактерии, оксифотобактерии. Роль прокариот огромна: они участвуют в накоплении карбонатов, железных руд, сульфидов, кремния, фосфоритов, бокситов. Перерабатывают органические остатки, участвуют в получении многих продуктов питания (кефир, сыр, кумыс), ферментов, спиртов, органических кислот. С помощью биотехнологий получают антибиотики, образуемые бактериями, интерферон, инсулин, ферменты и др. Это положительная роль прокариот.

К низшим растениям относятся Ядерные организмы – Eucaryota, клетки которых имеют ядра, ограниченные мембраной. К ядерным организмам относятся Грибы - Mycota (Fungi) и растения - Plantae (Vegetabilia).

Грибы – Mycota

Грибы разнообразны по внешнему виду, местам обитания, физиологическим функциям, размерам. Вегетативное тело – мицелий, состоит из тонких ветвящихся нитей – гиф. Грибы имеют клеточную оболочку, содержащую хитин, их запасное питательное вещество гликоген, а способ питания способ питания гетеротофный. Грибы неподвижны в вегетативном состоянии и имеют неограниченный рост. В протопласте грибных клеток различимы рибосомы, ядро, митохондрии, Комплекс Гольджи развит слабо. Грибы размножаются вегетативно (частями мицелия), бесполым (спорами) и половым (гаметы) путем.

В жизни человека грибы играют и положительную роль: они широко употребляют в пищу (белый гриб, подосиновики, маслята, грузди и др.); дрожжи используют в процессах брожения (хлебопечение, пивоварение и т.д.); многие грибы образуют ферменты, органические кислоты, витамины, антибиотики. Ряд видов (спорынья, чага) используют для получения лекарственных препаратов

Растения – Plantae

Растения – Plantae – царство эукариотических организмов, для которых характерны фотосинтез и плотные целлюлозные оболочки, запасное питательное вещество – крахмал.

Царство растения делят на три подцарства: багрянки (Rhodobionta), настоящие водоросли (Phycobionta) и высшие растения (Cormobionta).

На первом этапе классификации специалисты разделяют организмы на отдельные группы, которые характеризуются определенным набором признаком, а потом располагают их в правильной последовательности. Каждая из таких групп в систематике называется таксоном (от греческого taxon - (рас)положение, порядок). Таксон - это основной объект исследований систематики, представляющий группу реально существующих в природе зоологических объектов, которые достаточно обособлены, их можно выделить и присвоить им определенный ранг. В качестве примеров таксонов можно привести такие группы как «позвоночные», «млекопитающие», «парнокопытные», «олень благородный» и другие.

Таксо́н (лат. taxon, мн. ч. taxa; от taxare- «ощупывать, определять посредством ощупывания цену, оценивать») - группа в классификации, состоящая из дискретных объектов, объединяемых на основании общих свойств и признаков.

В Международном кодексе ботанической литературы (Венский кодекс, 2006) под термином «таксон» понимается таксономическая группа любого ранга, при этом подразумевается, что каждое растение рассматривается как принадлежащее к неопределённому числу таксонов последовательно соподчинённого ранга, среди которых ранг вида считается основным. Аналогично определяется таксон и в зоологии.

В современных биологических классификациях таксоны формируют иерархическую систему: каждый таксон, с одной стороны, состоит из одного или большего числа таксонов более низкого уровня общности, в то же время каждый таксон является частью другого таксона - группы более высокого уровня общности. Такая иерархическая система именуется таксономической иерархией, а различные её уровни - таксономическими рангами

Три наиболее существенные характеристики таксона в современной биологической систематике суть объём, диагноз и ранг.

В классификации «отца систематики» Карла Линнея таксоны были выстроены в следующую иерархическую структуру

Царство (лат. regnum) Animalia (животные)

Класс (лат. classis) Mammalia (млекопитающие)

Порядок (Отряд) (лат. ordo) Primates (приматы)

Род (лат. genus) Homo (человек)

Вид (лат. species) Homo sapiens (человек разумный)

Разновидность (лат. varietas)

Уровни этой иерархии получили названия рангов . Ранги (универсальные уровни иерархии, имеющие собственные названия) нашли отражение в классификации в конце XVII века и с тех пор, несмотря на критику с теоретических позиций, составляют неотъемлемую часть таксономической практики. В связи с существенно более детальным представлением учёных-систематиков о структуре биологического разнообразия число рангов со времён Линнея значительно возросло.

Объём таксона может быть объективно задан путём перечисления организмов (или таксонов более низкого ранга). Нередко объём таксона в ходе исторического развития представлений о системе той или иной группы оказывается гораздо более устойчивым, чем его ранг. Так, печёночные мхи в разных системах растений рассматривались то как семейство, то как отдел или класс (при этом менялся лишь ранг группы, но не её объём). Подобные таксоны, в отношении которых устоялись представления об объёме, но не о рангах, часто называют просто «основными группами».

Монофилия (др.-греч. μόνος - один и φυλή - семейный клан) - происхождение таксона от одного общего предка. Согласно современным представлениям, монофилетической в биологической систематике называют группу, включающую всех известных потомков гипотетического ближайшего предка, общего только для членов этой группы и ни для кого другого.В некоторых группах организмов филогенетические отношения окончательно не установлены.

Теперь общепринято, что таксоны должны включать потомков и всех или нескольких предков, хотя аргументированность последнего требования всё более подвергается полемике. Естественный таксон - одна из таких групп, которые порождены в процессе эволюции. Такие группы монофилетичны. Искусственный таксон является результатом старого способа классификации (например, по кажущейся схожести, появившейся в результате эволюции несхожих организмов), то есть такие таксоны полифилетичны или парафилетичны.

Один из принципов систематики - принцип иерархии, или соподчинения. Он реализуется следующим образом: близкородственные виды объединяются в рода, рода объединяются в семейства, семейства в отряды, отряды в классы, классы в типы, а типы в царство. Чем выше ранг таксономической категории, тем меньше таксонов этого уровня. Например, если царство одно, то типов уже более 20. Принцип иерархии позволяет очень точно определить положение зоологического объекта в системе живых организмов. В качестве примера можно привести систематическое положение зайца-беляка:

Царство Животные (Аnimaliа) Тип Хордовые (Chordata)

Класс Млекопитащие (Маmmalia)

Отряд Зайцеобразные (Lagomorpha) Семейство Зайцевые (Leporidae) Род Зайцы (Lepus)

Помимо основных таксономических категорий в зоологической систематике используются и дополнительные таксономические категории, которые образуются прибавкой соответствующих приставок к основным таксономическим категориям (над-, под-, инфра- и других) или вспомогательных таксонов (когорта, секция).

Систематическое положение зайца-беляка с использованием дополнительных таксономических категорий будет иметь следующий вид:

Царство Животные (Аnimaliа)

Подцарство Настоящие многоклеточные (Eumetazoa) Тип Хордовые (Chordata)

Подтип Позвоночные (Invertebrata)

Надкласс Четвероногие (Tetrapoda)

Класс Млекопитащие (Маmmalia)

Подкласс Живородящие (Тheria)

Инфракласс Плацентарные (Еetheria)

Отряд Зайцеобразные (Lagomorpha)

Семейство Зайцевые (Leporidae)

Род Зайцы (Lepus)

Вид Заяц-беляк (Lepus timidus)

Зная положение животного в системе можно охарактеризовать его внешнее и внутреннее строение, особенности биологии. Так, из приведенного выше систематического положения зайца-беляка можно получить следующую информацию, о данном виде: имеет четырехкамерное сердце, диафрагму и шерстный покров (признаки класса Млекопитающие); в верхней челюсти две пары резцов, потовые железы в коже туловища отсутствуют (признаки отряда Зайцеобразные), уши длинные, задние конечности длиннее передних (признаки семейства Зайцевые) и т.д. Это пример одной из основных функций классификации -прогностической (функция прогноза, предсказания). Помимо этого классификация выполняет эвристическую (познавательную) функцию – представляет материал для реконструкции путей эволюции животных и пояснительную – демонстрирует результаты изучения таксонов животных. Для унификации работы специалистов-систематиков существую правила, которые регламентируют процесс описания новых таксонов животных и присвоение им научных названий. Эти правила собраны в Международном кодексе зоологической номенклатуры, который издается Международной комиссией по зоологической номенклатуре, последние 4-е издание кодекса вступило в силу 1 января 2000 года.

История развития зоологии тесно связана с историей формирования основных принципов систематики животных. Разобраться во всем многообразии фауны Земли было бы невозможно без аппарата, позволяющего фиксировать положение изучаемых организмов на филогенетическом древе животного царства. Таким аппаратом является современная систематика, возникшая в результате кропотливой работы многих зоологов на протяжении всей истории развития науки.

Общие принципы:

– присвоение научного названия или понятия.

– описание.

– выделение сходства и различия с близкими понятиями.

– классификация.

– схожесть видов.