Menü
Ücretsiz
Kayıt
Ev  /  Arpa/ Denklem tarafından verilen bir noktadan bir çizgiye olan mesafe. Düzlemdeki düz bir çizgiyle ilgili en basit problemler. Çizgilerin göreceli konumu. Düz çizgiler arasındaki açı

Bir denklemle verilen bir noktadan bir çizgiye olan mesafe. Düzlemdeki düz bir çizgiyle ilgili en basit problemler. Çizgilerin göreceli konumu. Düz çizgiler arasındaki açı

İlk seviye

Koordinatlar ve vektörler. Kapsamlı rehber (2019)

Bu makalede, birçok geometri problemini basit aritmetiğe indirgemenizi sağlayacak bir "sihirli değnek"i tartışmaya başlayacağız. Bu "çubuk", özellikle de inşa etme konusunda emin olmadığınızda hayatınızı çok daha kolaylaştırabilir. mekansal figürler, bölümler vb. Bütün bunlar belirli bir hayal gücü ve pratik beceriler gerektirir. Burada ele almaya başlayacağımız yöntem, her türlü geometrik yapı ve akıl yürütmeden neredeyse tamamen soyutlanmanıza olanak sağlayacaktır. Yöntem denir "koordinat yöntemi". Bu yazıda aşağıdaki soruları ele alacağız:

  1. Koordinat uçağı
  2. Düzlemdeki noktalar ve vektörler
  3. İki noktadan bir vektör oluşturma
  4. Vektör uzunluğu (iki nokta arasındaki mesafe)​
  5. Segmentin ortasının koordinatları
  6. Vektörlerin nokta çarpımı
  7. İki vektör arasındaki açı

Koordinat yöntemine neden böyle denildiğini zaten tahmin ettiğinizi düşünüyorum. Doğru, geometrik nesnelerle değil, onların sayısal özellikleriyle (koordinatlarıyla) çalıştığı için bu ismi almıştır. Geometriden cebire geçmemizi sağlayan dönüşümün kendisi de bir koordinat sisteminin tanıtılmasından ibarettir. Orijinal şekil düzse koordinatlar iki boyutludur, şekil üç boyutluysa koordinatlar üç boyutludur. Bu yazıda sadece iki boyutlu durumu ele alacağız. Ve makalenin asıl amacı size bazılarının nasıl kullanılacağını öğretmektir. temel teknikler koordinat yöntemi (bazen Birleşik Devlet Sınavının B Bölümündeki planimetri ile ilgili problemleri çözerken yararlı oldukları ortaya çıkar). Bu konuyla ilgili sonraki iki bölüm, C2 problemlerini (stereometri problemi) çözme yöntemlerinin tartışılmasına ayrılmıştır.

Koordinat yöntemini tartışmaya nereden başlamak mantıklı olur? Muhtemelen koordinat sistemi kavramından. Onunla ilk karşılaştığınız zamanı hatırlayın. Bana öyle geliyor ki 7. sınıfta varoluşu öğrendiğinde doğrusal fonksiyon, Örneğin. Bunu nokta nokta inşa ettiğinizi hatırlatmama izin verin. Hatırlıyor musun? Rastgele bir sayı seçtiniz, bunu formülde yerine koydunuz ve bu şekilde hesapladınız. Örneğin, eğer, o zaman, eğer, o zaman vb. Sonunda ne elde ettiniz? Ve koordinatları olan puanlar aldınız: ve. Daha sonra bir “çapraz” (koordinat sistemi) çizdiniz, üzerinde bir ölçek seçtiniz (birim segment olarak kaç hücreye sahip olacağınız) ve elde ettiğiniz noktaları üzerinde işaretleyip bunları düz bir çizgiyle birleştirdiniz; ortaya çıkan sonuç çizgi fonksiyonun grafiğidir.

Burada size biraz daha ayrıntılı olarak anlatılması gereken birkaç nokta var:

1. Kolaylık olması açısından tek bir segment seçersiniz, böylece her şey çizime güzel ve kompakt bir şekilde sığar.

2. Eksenin soldan sağa, eksenin aşağıdan yukarıya doğru gittiği kabul edilir.

3. Dik açılarda kesişirler ve kesiştikleri noktaya orijin denir. Bir harfle belirtilir.

4. Bir noktanın koordinatlarını yazarken, örneğin, parantez içinde solda noktanın eksen boyunca ve sağda eksen boyunca koordinatları vardır. Özellikle, bu şu anlama gelir:

5. Koordinat ekseninde herhangi bir noktayı belirtmek için koordinatlarını belirtmeniz gerekir (2 sayı)

6. Eksen üzerinde yer alan herhangi bir nokta için,

7. Eksen üzerinde yer alan herhangi bir nokta için,

8. Eksene x ekseni denir

9. Eksen y ekseni olarak adlandırılır

Şimdi bir sonraki adıma geçelim: iki noktayı işaretleyin. Bu iki noktayı bir doğru parçasıyla birleştirelim. Ve sanki noktadan noktaya bir doğru parçası çiziyormuşuz gibi oku koyacağız: yani parçamızın yönlendirilmesini sağlayacağız!

Başka bir yönlü segmentin ne dendiğini hatırlıyor musunuz? Doğru, buna vektör deniyor!

Yani noktayı noktaya bağlarsak, ve başlangıç ​​A noktası olacak ve son B noktası olacak, sonra bir vektör elde ederiz. Bu inşaatı 8. sınıfta da yapmıştın, hatırladın mı?

Noktalar gibi vektörlerin de iki sayı ile gösterilebileceği ortaya çıktı: bu sayılara vektör koordinatları denir. Soru: Bir vektörün koordinatlarını bulmak için başlangıç ​​ve bitiş koordinatlarını bilmemiz sizce yeterli midir? Görünüşe göre evet! Ve bu çok basit bir şekilde yapılır:

Böylece, bir vektörde nokta başlangıç ​​ve nokta son olduğundan, vektör aşağıdaki koordinatlara sahiptir:

Örneğin, eğer öyleyse vektörün koordinatları

Şimdi bunun tersini yapalım, vektörün koordinatlarını bulalım. Bunun için neyi değiştirmemiz gerekiyor? Evet, başlangıcı ve bitişi değiştirmeniz gerekiyor: şimdi vektörün başlangıcı noktada olacak ve sonu da noktada olacak. Daha sonra:

Dikkatlice bakın, vektörler arasındaki fark nedir? Tek farkları koordinatlardaki işaretlerdir. Onlar birbirine zıttır. Bu gerçek genellikle şu şekilde yazılır:

Bazen hangi noktanın vektörün başlangıcı, hangisinin sonu olduğu açıkça belirtilmezse, vektörler ikiden fazla sayı ile gösterilir. büyük harflerle ve bir küçük harf, örneğin: , vb.

Şimdi biraz pratik kendiniz ve aşağıdaki vektörlerin koordinatlarını bulun:

Muayene:

Şimdi biraz daha zor bir problemi çözün:

Bir noktada başlangıcı olan bir vektörün co-or-di-na-you'su vardır. Abs-cis-su noktalarını bulun.

Yine de oldukça sıradan: Noktanın koordinatları olsun. Daha sonra

Sistemi vektör koordinatlarının ne olduğunun tanımına göre derledim. O halde noktanın koordinatları vardır. Apsisle ilgileniyoruz. Daha sonra

Cevap:

Vektörlerle başka neler yapabilirsiniz? Evet, hemen hemen her şey sıradan sayılarla aynıdır (bölemeyeceğiniz hariç, ancak iki şekilde çarpabilirsiniz; bunlardan birini biraz sonra burada tartışacağız)

  1. Vektörler birbirine eklenebilir
  2. Vektörler birbirinden çıkarılabilir
  3. Vektörler sıfırdan farklı bir sayıyla çarpılabilir (veya bölünebilir)
  4. Vektörler birbirleriyle çarpılabilir

Tüm bu işlemlerin çok net bir geometrik temsili vardır. Örneğin, toplama ve çıkarma için üçgen (veya paralelkenar) kuralı:

Bir vektör bir sayıyla çarpıldığında veya bölündüğünde uzar, daralır veya yön değiştirir:

Ancak burada koordinatlara ne olacağı sorusuyla ilgileneceğiz.

1. İki vektörü toplarken (çıkarırken), koordinatlarını öğe öğe ekleriz (çıkarırız). Yani:

2. Bir vektörü bir sayıyla çarparken (bölerken), tüm koordinatları bu sayıyla çarpılır (bölülür):

Örneğin:

· Yüzyıldan raya eş-or-di-nat miktarını bulun.

Önce vektörlerin her birinin koordinatlarını bulalım. İkisi de aynı kökene sahiptir; başlangıç ​​noktası. Bunların sonu farklıdır. Daha sonra, . Şimdi vektörün koordinatlarını hesaplayalım, sonra ortaya çıkan vektörün koordinatlarının toplamı eşit olur.

Cevap:

Şimdi aşağıdaki sorunu kendiniz çözün:

· Vektör koordinatlarının toplamını bulun

Kontrol ediyoruz:

Şimdi şu problemi ele alalım: Koordinat düzleminde iki noktamız var. Aralarındaki mesafe nasıl bulunur? Birinci nokta ve ikincisi olsun. Aralarındaki mesafeyi ile gösterelim. Açıklık sağlamak için aşağıdaki çizimi yapalım:

Ne yaptım? Öncelikle bağlandım noktalar ve bir ayrıca bir noktadan eksene paralel bir çizgi çizdim ve bir noktadan da eksene paralel bir çizgi çizdim. Bir noktada kesişerek dikkat çekici bir şekil mi oluşturdular? Onun nesi bu kadar özel? Evet, sen ve ben neredeyse her şeyi biliyoruz dik üçgen. Elbette Pisagor teoremi. Gerekli bölüm bu üçgenin hipotenüsüdür ve bölümler bacaklardır. Noktanın koordinatları nelerdir? Evet, resimden bulmak kolaydır: Parçalar eksenlere paralel olduğundan ve sırasıyla uzunluklarını bulmak kolaydır: Parçaların uzunluklarını sırasıyla ile belirtirsek, o zaman

Şimdi Pisagor teoremini kullanalım. Bacakların uzunluklarını biliyoruz, hipotenüsü bulacağız:

Dolayısıyla iki nokta arasındaki mesafe, koordinatlardan olan farkların karelerinin toplamının köküdür. Veya - iki nokta arasındaki mesafe, onları bağlayan parçanın uzunluğudur. Noktalar arasındaki mesafenin yöne bağlı olmadığını görmek kolaydır. Daha sonra:

Buradan üç sonuç çıkarıyoruz:

İki nokta arasındaki mesafeyi hesaplama konusunda biraz pratik yapalım:

Örneğin, eğer ve arasındaki mesafe şuna eşitse:

Veya başka bir yoldan gidelim: vektörün koordinatlarını bulun

Ve vektörün uzunluğunu bulun:

Gördüğünüz gibi aynı şey!

Şimdi biraz kendiniz pratik yapın:

Görev: Belirtilen noktalar arasındaki mesafeyi bulun:

Kontrol ediyoruz:

Kulağa biraz farklı gelse de, aynı formülü kullanan birkaç problem daha var:

1. Göz kapağı uzunluğunun karesini bulun.

2. Göz kapağı uzunluğunun karesini bulun

Sanırım onlarla zorluk çekmeden başa çıktın? Kontrol ediyoruz:

1. Bu da dikkat içindir) Vektörlerin koordinatlarını daha önce bulmuştuk: . O halde vektörün koordinatları vardır. Uzunluğunun karesi şuna eşit olacaktır:

2. Vektörün koordinatlarını bulun

O zaman uzunluğunun karesi

Karmaşık bir şey yok, değil mi? Basit aritmetik, başka bir şey değil.

Aşağıdaki problemler açık bir şekilde sınıflandırılamaz; bunlar daha çok genel bilgi ve basit resimler çizme yeteneği ile ilgilidir.

1. Noktayı apsis eksenine bağlayan kesimden gelen açının sinüsünü bulun.

Ve

Burada nasıl ilerleyeceğiz? Eksen ile arasındaki açının sinüsünü bulmamız gerekiyor. Sinüs'ü nerede arayabiliriz? Bu doğru, bir dik üçgende. Peki ne yapmamız gerekiyor? Bu üçgeni inşa edin!

Noktanın koordinatları ve olduğundan, segment eşittir ve segmenttir. Açının sinüsünü bulmamız gerekiyor. Size sinüsün bir oran olduğunu hatırlatmama izin verin ters taraf o zaman hipotenüse

Bize yapacak ne kaldı? Hipotenüsü bulun. Bunu iki şekilde yapabilirsiniz: Pisagor teoremini kullanarak (bacaklar bilinir!) veya iki nokta arasındaki mesafe formülünü kullanarak (aslında ilk yöntemle aynı şeydir!). Ben ikinci yola gideceğim:

Cevap:

Bir sonraki görev size daha da kolay görünecek. Noktanın koordinatlarında.

Görev 2. Per-pen-di-ku-lyar'ın ab-ciss eksenine indirildiği noktadan itibaren. Nai-di-te abs-cis-su os-no-va-niya per-pen-di-ku-la-ra.

Bir çizim yapalım:

Bir dikmenin tabanı x eksenini (ekseni) kestiği noktadır, benim için bu bir noktadır. Şekil koordinatlara sahip olduğunu göstermektedir: . Apsisle yani “x” bileşeniyle ilgileniyoruz. O eşittir.

Cevap: .

Görev 3.Önceki problemin koşullarında, noktadan koordinat eksenlerine olan mesafelerin toplamını bulun.

Bir noktadan eksenlere olan mesafenin ne olduğunu biliyorsanız, görev genellikle basittir. Bilirsin? Umarım, ama yine de hatırlatacağım:

Peki, hemen yukarıdaki çizimimde zaten böyle bir dik çizgi çizmiş miydim? Hangi eksendedir? Eksene. Peki uzunluğu ne kadardır? O eşittir. Şimdi eksene kendiniz dik bir çizgi çizin ve uzunluğunu bulun. Eşit olacak değil mi? O zaman toplamları eşittir.

Cevap: .

Görev 4. Problem 2 koşullarında, apsis eksenine göre noktaya simetrik olan bir noktanın koordinatını bulun.

Simetrinin ne olduğu sizin için sezgisel olarak açık sanırım? Pek çok nesnede bu özellik var: pek çok bina, masa, uçak, pek çok geometrik şekiller: top, silindir, kare, eşkenar dörtgen vb. Kabaca söylemek gerekirse simetri şu şekilde anlaşılabilir: bir şekil iki (veya daha fazla) özdeş yarıdan oluşur. Bu simetriye eksenel simetri denir. O halde eksen nedir? Bu tam olarak şeklin göreceli olarak eşit yarıya "kesilebileceği" çizgidir (bu resimde simetri ekseni düzdür):

Şimdi görevimize geri dönelim. Eksene göre simetrik olan bir nokta aradığımızı biliyoruz. O halde bu eksen simetri eksenidir. Bu, eksenin parçayı iki eşit parçaya keseceği bir noktayı işaretlememiz gerektiği anlamına gelir. Böyle bir noktayı kendiniz işaretlemeye çalışın. Şimdi benim çözümümle karşılaştırın:

Sizin için de aynı şekilde mi sonuçlandı? İyi! Bulunan noktanın koordinatıyla ilgileniyoruz. Eşittir

Cevap:

Şimdi söyleyin bana, birkaç saniye düşündükten sonra, A noktasına ordinatına göre simetrik olan bir noktanın apsisi ne olur? Cevabınız nedir? Doğru cevap: .

Genel olarak kural şu ​​şekilde yazılabilir:

Apsis eksenine göre bir noktaya simetrik bir noktanın koordinatları vardır:

Ordinat eksenine göre bir noktaya simetrik bir noktanın koordinatları vardır:

Eh, şimdi tamamen korkutucu görev: orijine göre noktaya simetrik olan bir noktanın koordinatlarını bulun. Önce kendin düşün, sonra çizimime bak!

Cevap:

Şimdi paralelkenar problemi:

Görev 5: Noktalar ver-shi-na-mi pa-ral-le-lo-gram-ma olarak görünür. Bu noktada or-di'yi bulun.

Bu sorunu iki şekilde çözebilirsiniz: mantık ve koordinat yöntemi. Önce koordinat yöntemini kullanacağım, sonra size bunu nasıl farklı şekilde çözebileceğinizi anlatacağım.

Noktanın apsisinin eşit olduğu oldukça açıktır. (noktadan apsis eksenine çizilen dik üzerinde yer alır). Ordinatı bulmamız gerekiyor. Şeklimizin paralelkenar olmasından yararlanalım, bu şu anlama geliyor. İki nokta arasındaki mesafe formülünü kullanarak doğru parçasının uzunluğunu bulalım:

Noktayı eksene bağlayan dikmeyi indiriyoruz. Kesişme noktasını harfle belirteceğim.

Segmentin uzunluğu eşittir. (bu noktayı tartıştığımız yerde sorunu kendiniz bulun), sonra Pisagor teoremini kullanarak parçanın uzunluğunu bulacağız:

Bir parçanın uzunluğu tam olarak ordinatıyla çakışır.

Cevap: .

Başka bir çözüm (Sadece bunu gösteren bir resim vereceğim)

Çözüm ilerlemesi:

1. Davranış

2. Noktanın ve uzunluğun koordinatlarını bulun

3. Bunu kanıtlayın.

Bir diğeri bölüm uzunluğu sorunu:

Noktalar üçgenin üstünde görünür. Orta çizgisinin paralel uzunluğunu bulun.

Bir üçgenin orta çizgisinin ne olduğunu hatırlıyor musunuz? O zaman bu görev sizin için temeldir. Hatırlamıyorsanız hatırlatayım: Üçgenin orta çizgisi, karşılıklı kenarların orta noktalarını birleştiren çizgidir. Tabana paralel ve yarısına eşittir.

Taban bir segmenttir. Uzunluğunu daha önce aramamız gerekiyordu, eşit. Daha sonra orta çizginin uzunluğu yarısı kadar büyük ve eşittir.

Cevap: .

Yorum Yap: Bu sorun, biraz sonra ele alacağımız başka bir şekilde çözülebilir.

Bu arada, işte size birkaç problem; bunlar üzerinde pratik yapın; çok basitler ama koordinat yöntemini kullanma konusunda daha iyi olmanıza yardımcı oluyorlar!

1. Noktalar tra-pe-tion'ların en üst noktasıdır. Orta çizgisinin uzunluğunu bulun.

2. Noktalar ve görünümler ver-shi-na-mi pa-ral-le-lo-gram-ma. Bu noktada or-di'yi bulun.

3. Noktayı birleştirerek kesimden itibaren uzunluğu bulun ve

4. Koordinat düzleminde renkli şeklin arkasındaki alanı bulun.

5. Merkezi na-cha-le ko-or-di-nat'ta olan bir daire bu noktadan geçiyor. Onun yarıçapını bulun.

6. Çemberin-di-te ra-di-us'unu bulun, dik açı hakkında-san-noy-no-ka'yı tanımlayın, bir şeyin üst kısımlarının bir ko-veya -di-na-varlığı var, o kadar sorumlusunuz ki

Çözümler:

1. Bir yamuğun orta çizgisinin tabanlarının toplamının yarısına eşit olduğu bilinmektedir. Taban eşittir ve taban. Daha sonra

Cevap:

2. Bu problemi çözmenin en kolay yolu (paralelkenar kuralı) olduğunu not etmektir. Vektörlerin koordinatlarını hesaplamak zor değildir: . Vektörleri eklerken koordinatlar eklenir. Sonra koordinatları var. Vektörün orijini koordinatların olduğu nokta olduğundan nokta da bu koordinatlara sahiptir. Ordinatla ilgileniyoruz. O eşittir.

Cevap:

3. Hemen iki nokta arasındaki mesafe formülüne göre hareket ediyoruz:

Cevap:

4. Resme bakın ve gölgeli alanın hangi iki şeklin arasına sıkıştırıldığını söyleyin? İki kare arasına sıkıştırılmıştır. Daha sonra istenen şeklin alanı, büyük karenin alanından küçük olanın alanına eşittir. Küçük bir karenin kenarı noktaları birleştiren bir doğru parçası olup uzunluğu

O zaman küçük karenin alanı

Aynısını büyük bir kare için yapıyoruz: kenarı noktaları birleştiren bir segmenttir ve uzunluğu

O halde büyük karenin alanı

İstenilen şeklin alanını aşağıdaki formülü kullanarak buluyoruz:

Cevap:

5. Bir dairenin merkezi orijine sahipse ve bir noktadan geçiyorsa, yarıçapı tam olarak parçanın uzunluğuna eşit olacaktır (bir çizim yapın ve bunun neden açık olduğunu anlayacaksınız). Bu parçanın uzunluğunu bulalım:

Cevap:

6. Bir dikdörtgenin çevrelediği dairenin yarıçapının köşegeninin yarısına eşit olduğu bilinmektedir. İki köşegenden herhangi birinin uzunluğunu bulalım (sonuçta dikdörtgende bunlar eşittir!)

Cevap:

Peki her şeyin üstesinden geldin mi? Bunu anlamak çok zor olmadı değil mi? Burada tek bir kural var - görsel bir resim oluşturabilmek ve içindeki tüm verileri basitçe "okuyabilmek".

Çok az şeyimiz kaldı. Aslında tartışmak istediğim iki nokta daha var.

Bu basit sorunu çözmeye çalışalım. İki puan verelim. Doğru parçasının orta noktasının koordinatlarını bulun. Bu sorunun çözümü şu şekildedir: Nokta istenen orta olsun, o zaman koordinatları vardır:

Yani: parçanın ortasının koordinatları = parçanın uçlarının karşılık gelen koordinatlarının aritmetik ortalaması.

Bu kural çok basittir ve genellikle öğrenciler için zorluk yaratmaz. Hangi problemlerde ve nasıl kullanıldığını görelim:

1. Kesimden-di-te veya-di-na-tu se-re-di-ny'yi bulun, noktayı bağlayın ve

2. Puanlar dünyanın zirvesi gibi görünüyor. Dia-go-na-ley'in per-re-se-che-niya'sını bul.

3. Çemberin merkezini bulun, dikdörtgen-no-ka hakkında-san-noy'u tanımlayın, bir şeyin üstleri co-or-di-na-you-sorumlu bir şekilde-ama var.

Çözümler:

1. İlk sorun tam bir klasiktir. Segmentin ortasını belirlemek için hemen ilerliyoruz. Koordinatları var. Ordinat eşittir.

Cevap:

2. Bu dörtgenin bir paralelkenar (hatta bir eşkenar dörtgen) olduğunu görmek kolaydır. Kenar uzunluklarını hesaplayıp birbirleriyle karşılaştırarak bunu kendiniz kanıtlayabilirsiniz. Paralelkenarlar hakkında ne biliyorum? Köşegenleri kesişme noktasına göre ikiye bölünmüştür! Evet! Peki köşegenlerin kesişme noktası nedir? Bu herhangi bir köşegenin ortasıdır! Özellikle köşegeni seçeceğim. O zaman noktanın koordinatları vardır. Noktanın ordinatı eşittir.

Cevap:

3. Dikdörtgenin çevrelediği dairenin merkezi neyle çakışmaktadır? Köşegenlerinin kesişme noktasına denk gelir. Dikdörtgenin köşegenleri hakkında ne biliyorsunuz? Eşittirler ve kesişme noktası onları ikiye böler. Görev bir öncekine indirildi. Örneğin köşegeni ele alalım. O zaman çevrel çemberin merkezi ise orta noktadır. Koordinatları arıyorum: Apsis eşittir.

Cevap:

Şimdi kendi başınıza biraz pratik yapın, kendinizi test edebilmeniz için her sorunun yanıtını vereceğim.

1. Çemberin yarıçapını bulun, üçgen açıyı tanımlayın-no-ka, bir şeyin üst kısımlarında bir co-or-di -no misters var

2. Çemberin merkezini bulun-di-te veya-di-on-noy'u, üstleri koordinatlara sahip olan üçgen-no-ka hakkında tanımlayın

3. Merkezi ab-cis eksenine değecek bir noktada olan bir çemberin yarıçapı nasıl olmalıdır?

4. Eksenin yeniden ayrıldığı noktayı ve kesme noktasını bulun, noktayı birleştirin ve

Yanıtlar:

Her şey başarılı mıydı? Bunu gerçekten umuyorum! Şimdi - son itiş. Şimdi özellikle dikkatli olun. Şimdi açıklayacağım materyal sadece Kısım B'deki koordinat yöntemindeki basit problemlerle doğrudan ilgili değil, aynı zamanda Problem C2'nin her yerinde bulunuyor.

Hangi sözlerimi henüz tutmadım? Vektörler üzerinde hangi işlemleri tanıtmaya söz verdiğimi ve hangilerini sonuçta tanıttığımı hatırlıyor musunuz? Hiçbir şeyi unutmadığıma emin misin? Unutmuş olmak! Vektör çarpımının ne anlama geldiğini açıklamayı unuttum.

Bir vektörü bir vektörle çarpmanın iki yolu vardır. Seçilen yönteme bağlı olarak farklı nitelikteki nesneler elde edeceğiz:

Çapraz çarpım oldukça akıllıca yapılmıştır. Bir sonraki makalede bunun nasıl yapılacağını ve neden gerekli olduğunu tartışacağız. Ve bunda skaler çarpıma odaklanacağız.

Bunu hesaplamamıza izin veren iki yol vardır:

Tahmin ettiğiniz gibi sonuç aynı olmalı! O halde önce ilk yönteme bakalım:

Koordinatlar aracılığıyla nokta çarpımı

Bul: - skaler çarpım için genel kabul görmüş gösterim

Hesaplama formülü aşağıdaki gibidir:

Yani skaler çarpım = vektör koordinatlarının çarpımlarının toplamı!

Örnek:

Bul-di-te

Çözüm:

Her bir vektörün koordinatlarını bulalım:

Skaler çarpımı aşağıdaki formülü kullanarak hesaplıyoruz:

Cevap:

Bakın kesinlikle karmaşık bir şey yok!

Peki, şimdi kendiniz deneyin:

· Yüzyılların skaler bir pro-iz-ve-de-nie'sini bulun ve

Becerebildin mi? Belki küçük bir yakalama fark ettiniz? Hadi kontrol edelim:

Önceki problemde olduğu gibi vektör koordinatları! Cevap: .

Koordinat olana ek olarak, skaler çarpımı hesaplamanın başka bir yolu da vardır, yani vektörlerin uzunlukları ve aralarındaki açının kosinüsü aracılığıyla:

Ve vektörleri arasındaki açıyı belirtir.

Yani skaler çarpım, vektörlerin uzunlukları ile aralarındaki açının kosinüsünün çarpımına eşittir.

Madem ki çok daha basit olan birinci formüle sahibiz, en azından içinde kosinüs yok, bu ikinci formüle neden ihtiyacımız var? Ve birinci ve ikinci formüllerden vektörler arasındaki açıyı nasıl bulacağımızı çıkarabilmemiz için buna ihtiyaç var!

O zaman vektörün uzunluğunun formülünü hatırlayalım!

Daha sonra bu verileri skaler çarpım formülünde değiştirirsem şunu elde ederim:

Ama başka bir şekilde:

Peki sen ve ben ne elde ettik? Artık iki vektör arasındaki açıyı hesaplamamızı sağlayan bir formülümüz var! Bazen kısa olması açısından şu şekilde de yazılır:

Yani, vektörler arasındaki açıyı hesaplamak için kullanılan algoritma aşağıdaki gibidir:

  1. Koordinatlar aracılığıyla skaler çarpımı hesaplayın
  2. Vektörlerin uzunluklarını bulun ve çarpın
  3. 1. noktanın sonucunu 2. noktanın sonucuna bölün

Örneklerle pratik yapalım:

1. Göz kapakları ile arasındaki açıyı bulun. Cevabı grad-du-sah'ta verin.

2. Önceki problemin koşullarında vektörler arasındaki kosinüsü bulun

Haydi şunu yapalım: İlk sorunu çözmenize yardım edeceğim ve ikincisini kendiniz yapmaya çalışın! Kabul etmek? O zaman başlayalım!

1. Bu vektörler bizim eski dostlarımızdır. Skaler çarpımlarını zaten hesaplamıştık ve eşitti. Koordinatları: , . Sonra uzunluklarını buluyoruz:

Daha sonra vektörler arasındaki kosinüsü ararız:

Açının kosinüsü nedir? Burası köşe.

Cevap:

Şimdi ikinci sorunu kendiniz çözün ve sonra karşılaştırın! Çok kısa bir çözüm sunacağım:

2. Koordinatları vardır, koordinatları vardır.

Vektörler arasındaki açı olsun ve sonra

Cevap:

Sınav kağıdının B Bölümünde doğrudan vektörler ve koordinat yöntemiyle ilgili problemlerin oldukça nadir olduğunu belirtmek gerekir. Ancak C2 problemlerinin büyük çoğunluğu bir koordinat sistemi getirilerek kolayca çözülebilir. Dolayısıyla bu makaleyi, karmaşık sorunları çözmek için ihtiyaç duyacağımız oldukça akıllı yapılar yapacağımız temel olarak düşünebilirsiniz.

KOORDİNATLAR VE VEKTÖRLER. ORTALAMA SEVİYE

Sen ve ben koordinat yöntemini incelemeye devam ediyoruz. Son bölümde aşağıdakileri yapmanıza olanak tanıyan bir dizi önemli formül türettik:

  1. Vektör koordinatlarını bulun
  2. Bir vektörün uzunluğunu bulun (alternatif olarak: iki nokta arasındaki mesafe)
  3. Vektörleri ekleyin ve çıkarın. Bunları gerçek sayıyla çarpın
  4. Bir segmentin orta noktasını bulun
  5. Vektörlerin nokta çarpımını hesaplayın
  6. Vektörler arasındaki açıyı bulun

Elbette koordinat yönteminin tamamı bu 6 noktaya sığmıyor. Üniversitede aşina olacağınız analitik geometri gibi bir bilimin temelini oluşturur. Sorunları tek bir eyalette çözmenize olanak sağlayacak bir temel oluşturmak istiyorum. sınav. B bölümünün görevlerini ele aldık. Şimdi yüksek kaliteye geçme zamanı yeni seviye! Bu makale, koordinat yöntemine geçmenin mantıklı olacağı C2 problemlerini çözmeye yönelik bir yönteme ayrılacaktır. Bu makullük problemde neyin bulunması gerektiği ve hangi rakamın verildiği ile belirlenir. Dolayısıyla sorular şu şekildeyse koordinat yöntemini kullanırdım:

  1. İki düzlem arasındaki açıyı bulun
  2. Düz bir çizgi ile bir düzlem arasındaki açıyı bulun
  3. İki düz çizgi arasındaki açıyı bulun
  4. Bir noktadan bir düzleme olan mesafeyi bulun
  5. Bir noktadan bir çizgiye olan mesafeyi bulun
  6. Düz bir çizgiden bir düzleme olan mesafeyi bulun
  7. İki çizgi arasındaki mesafeyi bulun

Problem cümlesinde verilen şekil dönen bir cisim ise (top, silindir, koni...)

Koordinat yöntemi için uygun rakamlar şunlardır:

  1. Dikdörtgen paralel yüzlü
  2. Piramit (üçgen, dörtgen, altıgen)

Ayrıca deneyimlerime göre için koordinat yöntemini kullanmak uygun değildir.:

  1. Kesit alanlarını bulma
  2. Vücut hacimlerinin hesaplanması

Ancak hemen belirtmek gerekir ki koordinat yöntemi için üç "olumsuz" durum pratikte oldukça nadirdir. Çoğu görevde kurtarıcınız olabilir, özellikle de üç boyutlu yapılar konusunda pek iyi değilseniz (ki bu bazen oldukça karmaşık olabilir).

Yukarıda listelediğim tüm rakamlar nelerdir? Artık örneğin bir kare, bir üçgen, bir daire gibi düz değiller, hacimlidirler! Buna göre iki boyutlu değil üç boyutlu bir koordinat sistemi düşünmemiz gerekiyor. Oluşturulması oldukça kolaydır: apsis ve ordinat eksenine ek olarak başka bir eksen, uygulama ekseni tanıtacağız. Şekil şematik olarak göreceli konumlarını göstermektedir:

Hepsi birbirine diktir ve koordinatların orijini diyeceğimiz bir noktada kesişirler. Daha önce olduğu gibi apsis eksenini, ordinat eksenini ve tanıtılan uygulama eksenini - göstereceğiz.

Daha önce düzlemdeki her nokta iki sayıyla (apsis ve ordinat) tanımlanıyorsa, uzaydaki her nokta zaten üç sayıyla (apsis, ordinat ve aplike) tanımlanıyordu. Örneğin:

Buna göre bir noktanın apsisi eşittir, ordinatı dır ve uygulaması dır.

Bazen bir noktanın apsisine, bir noktanın apsis eksenine izdüşümü, ordinat - bir noktanın ordinat eksenine izdüşümü ve uygulama - bir noktanın uygulama eksenine izdüşümü de denir. Buna göre bir nokta verilirse koordinatları olan bir nokta:

bir noktanın düzleme izdüşümüne denir

bir noktanın düzleme izdüşümüne denir

Doğal olarak şu soru ortaya çıkıyor: İki boyutlu durum için türetilen tüm formüller uzayda geçerli midir? Cevap evet, adil ve aynı görünüme sahipler. Küçük bir detay için. Sanırım hangisi olduğunu zaten tahmin ettiniz. Tüm formüllerde uygulama ekseninden sorumlu bir terim daha eklememiz gerekecek. Yani.

1. Eğer iki puan verilirse: , o zaman:

  • Vektör koordinatları:
  • İki nokta arasındaki mesafe (veya vektör uzunluğu)
  • Segmentin orta noktasının koordinatları vardır

2. Eğer iki vektör verilirse: ve, o zaman:

  • Bunların skaler çarpımı şuna eşittir:
  • Vektörler arasındaki açının kosinüsü şuna eşittir:

Ancak uzay o kadar basit değil. Anladığınız gibi, bir koordinat daha eklemek, bu alanda "yaşayan" figürlerin yelpazesine önemli bir çeşitlilik katıyor. Ve daha fazla anlatım için, kabaca konuşursak, düz çizginin bazı "genellemelerini" tanıtmam gerekecek. Bu “genelleme” bir düzlem olacaktır. Uçak hakkında ne biliyorsun? Uçak nedir sorusunu cevaplamaya çalışın. Bunu söylemek çok zor. Ancak hepimiz sezgisel olarak bunun neye benzediğini hayal ederiz:

Kabaca söylemek gerekirse, bu uzaya sıkışmış bir tür sonsuz "çarşaftır". “Sonsuzluk”, düzlemin her yöne uzandığı, yani alanının sonsuza eşit olduğu anlaşılmalıdır. Ancak bu “uygulamalı” açıklama, uçağın yapısı hakkında en ufak bir fikir vermiyor. Ve bizimle ilgilenecek olan odur.

Geometrinin temel aksiyomlarından birini hatırlayalım:

Veya uzaydaki analogu:

Elbette, bir çizginin denklemini verilen iki noktadan nasıl çıkaracağınızı hatırlıyorsunuz; hiç de zor değil: eğer ilk noktanın koordinatları varsa: ve ikincisi, o zaman çizginin denklemi aşağıdaki gibi olacaktır:

Bunu 7. sınıfta almıştın. Uzayda bir çizginin denklemi şuna benzer: Bize koordinatları olan iki nokta verilse: o zaman bunlardan geçen çizginin denklemi şu şekilde olur:

Örneğin bir çizgi noktalardan geçer:

Bu nasıl anlaşılmalıdır? Bu şu şekilde anlaşılmalıdır: Koordinatları aşağıdaki sistemi sağlıyorsa, bir nokta bir çizgi üzerinde yer alır:

Doğrunun denklemiyle pek ilgilenmeyeceğiz ama en çok dikkat etmemiz gerekiyor. önemli kavram vektör düz çizgiyi yönlendiriyor. - belirli bir çizgi üzerinde veya ona paralel olan sıfırdan farklı herhangi bir vektör.

Örneğin, her iki vektör de bir düz çizginin yön vektörleridir. Bir doğru üzerinde uzanan bir nokta ve onun yön vektörü olsun. O zaman doğrunun denklemi aşağıdaki biçimde yazılabilir:

Bir kez daha söylüyorum, düz çizgi denklemiyle pek ilgilenmeyeceğim ama yön vektörünün ne olduğunu hatırlamanıza gerçekten ihtiyacım var! Tekrar: bu, bir doğru üzerinde veya ona paralel uzanan sıfırdan farklı HERHANGİ bir vektördür.

Geri çekilmek verilen üç noktaya dayalı bir düzlemin denklemi artık o kadar önemsiz değil ve genellikle bu konu kursta ele alınmıyor lise. Ama boşuna! Karmaşık sorunları çözmek için koordinat yöntemine başvurduğumuzda bu teknik hayati önem taşır. Ancak yeni bir şeyler öğrenmeye hevesli olduğunuzu varsayıyorum? Üstelik, genellikle analitik geometri derslerinde çalışılan bir tekniğin nasıl kullanılacağını zaten bildiğiniz ortaya çıktığında, üniversitedeki öğretmeninizi etkileyebileceksiniz. Öyleyse başlayalım.

Bir düzlemin denklemi, bir düzlem üzerindeki düz bir çizginin denkleminden çok farklı değildir, yani şu şekildedir:

bazı sayılar (hepsi değil) sıfıra eşit) ve değişkenler, örneğin: vb. Gördüğünüz gibi bir düzlemin denklemi düz bir çizginin denkleminden (doğrusal fonksiyon) çok farklı değildir. Ancak sen ve ben ne tartıştık hatırlıyor musun? Aynı doğru üzerinde yer almayan üç noktamız varsa, o zaman düzlemin denkleminin bunlardan benzersiz bir şekilde yeniden oluşturulabileceğini söyledik. Ama nasıl? Size bunu açıklamaya çalışacağım.

Düzlemin denklemi şu olduğundan:

Ve noktalar bu düzleme aitse, her noktanın koordinatlarını düzlem denkleminde yerine koyarken doğru kimliği elde etmeliyiz:

Bu nedenle bilinmeyen üç denklemin çözülmesi gerekiyor! İkilem! Ancak bunu her zaman varsayabilirsiniz (bunu yapmak için bölmeniz gerekir). Böylece üç bilinmeyenli üç denklem elde ederiz:

Ancak böyle bir sistemi çözmeyeceğiz, ondan çıkan gizemli ifadeyi yazacağız:

Verilen üç noktadan geçen bir düzlemin denklemi

\[\sol| (\begin(array)(*(20)(c))(x - (x_0))&((x_1) - (x_0))&((x_2) - (x_0))\\(y - (y_0) )&((y_1) - (y_0))&((y_2) - (y_0))\\(z - (z_0))&((z_1) - (z_0))&((z_2) - (z_0)) \end(array)) \right| = 0\]

Durmak! Bu nedir? Çok sıradışı bir modül! Ancak karşınızda gördüğünüz nesnenin modülle hiçbir ilgisi yoktur. Bu nesneye üçüncü dereceden determinant denir. Artık düzlemde koordinat yöntemiyle uğraştığınızda aynı determinantlarla çok sık karşılaşacaksınız. Üçüncü dereceden determinant nedir? İşin tuhafı, bu sadece bir sayı. Belirleyiciyle hangi belirli sayıyı karşılaştıracağımızı anlamak için kalır.

Önce üçüncü dereceden determinantı more'da yazalım. Genel görünüm:

Bazı numaralar nerede? Ayrıca ilk indeks ile satır numarasını, indeks ile de sütun numarasını kastediyoruz. Örneğin bu sayının ikinci satır ile üçüncü sütunun kesişiminde olduğu anlamına gelir. Haydi giyelim sonraki soru: Böyle bir determinantı tam olarak nasıl hesaplayacağız? Yani, onunla hangi spesifik sayıyı karşılaştıracağız? Üçüncü dereceden determinant için buluşsal (görsel) bir üçgen kuralı vardır, şuna benzer:

  1. Ana köşegenin elemanlarının çarpımı (sol üst köşeden sağ alt köşeye kadar) ana köşegene “dik” olan birinci üçgeni oluşturan elemanların çarpımı Ana köşegene “dik” olan ikinci üçgeni oluşturan elemanların çarpımı ana diyagonal
  2. İkincil köşegenin elemanlarının çarpımı (sağ üst köşeden sol alta kadar) ikincil köşegene “dik” olan birinci üçgeni oluşturan elemanların çarpımı İkinci köşegene “dik” olan ikinci üçgeni oluşturan elemanların çarpımı ikincil diyagonal
  3. Daha sonra determinant, adımda elde edilen değerler arasındaki farka eşittir ve

Bütün bunları rakamlarla yazarsak aşağıdaki ifadeyi elde ederiz:

Bununla birlikte, bu formdaki hesaplama yöntemini hatırlamanıza gerek yoktur; sadece üçgenleri kafanızda tutmanız ve neyin neye ekleneceği ve neyin daha sonra neyden çıkarılacağı fikrini aklınızda tutmanız yeterlidir).

Üçgen yöntemini bir örnekle açıklayalım:

1. Belirleyiciyi hesaplayın:

Ne eklediğimizi ve ne çıkardığımızı bulalım:

Artı ile gelen terimler:

Bu ana köşegendir: elemanların çarpımı eşittir

İlk üçgen, "ana köşegene dik: elemanların çarpımı eşittir"

İkinci üçgen, "ana köşegene dik: elemanların çarpımı eşittir"

Üç sayıyı toplayın:

Eksi ile gelen terimler

Bu bir yan köşegendir: elemanların çarpımı eşittir

İlk üçgen, “ikincil köşegenlere dik: elemanların çarpımı eşittir

İkinci üçgen, “ikincil köşegenlere dik: elemanların çarpımı eşittir

Üç sayıyı toplayın:

Geriye kalan tek şey “artı” terimlerin toplamını “eksi” terimlerin toplamından çıkarmaktır:

Böylece,

Gördüğünüz gibi üçüncü dereceden determinantların hesaplanmasında karmaşık veya doğaüstü hiçbir şey yoktur. Üçgenleri hatırlamak ve aritmetik hatalar yapmamak önemlidir. Şimdi bunu kendiniz hesaplamaya çalışın:

Kontrol ediyoruz:

  1. Ana köşegene dik olan ilk üçgen:
  2. Ana köşegene dik ikinci üçgen:
  3. Artı ile terimlerin toplamı:
  4. İkincil köşegene dik olan ilk üçgen:
  5. Yan köşegenlere dik olan ikinci üçgen:
  6. Eksili terimlerin toplamı:
  7. Artı olan terimlerin toplamı eksi eksi olan terimlerin toplamı:

İşte birkaç belirleyici daha: değerlerini kendiniz hesaplayın ve cevaplarla karşılaştırın:

Yanıtlar:

Peki her şey çakıştı mı? Harika, o zaman devam edebilirsiniz! Zorluklar varsa, tavsiyem şu: İnternette determinantı çevrimiçi hesaplamak için birçok program var. İhtiyacınız olan tek şey, kendi determinantınızı bulmak, onu kendiniz hesaplamak ve ardından bunu programın hesapladığıyla karşılaştırmaktır. Ve sonuçlar çakışmaya başlayana kadar böyle devam eder. Bu anın gelmesinin uzun sürmeyeceğinden eminim!

Şimdi üç noktadan geçen bir düzlemin denkleminden bahsederken yazdığım determinant konusuna geri dönelim. verilen puanlar:

İhtiyacınız olan tek şey, değerini doğrudan hesaplamak (üçgen yöntemini kullanarak) ve sonucu sıfıra ayarlamaktır. Doğal olarak bunlar değişken olduğundan onlara bağlı bazı ifadeler elde edersiniz. Aynı düz çizgi üzerinde yer almayan üç noktadan geçen bir düzlemin denklemi olacak olan bu ifadedir!

Bunu basit bir örnekle açıklayalım:

1. Noktalardan geçen bir düzlemin denklemini oluşturun

Bu üç nokta için bir determinant derliyoruz:

Basitleştirelim:

Şimdi bunu doğrudan üçgen kuralını kullanarak hesaplıyoruz:

\[(\left| (\begin(array)(*(20)(c))(x + 3)&2&6\\(y - 2)&0&1\\(z + 1)&5&0\end(array)) \ sağ| = \left((x + 3) \right) \cdot 0 \cdot 0 + 2 \cdot 1 \cdot \left((z + 1) \right) + \left((y - 2) \right) \cdot 5 \cdot 6 - )\]

Böylece noktalardan geçen düzlemin denklemi şu şekildedir:

Şimdi bir sorunu kendiniz çözmeye çalışın, sonra tartışacağız:

2. Noktalardan geçen düzlemin denklemini bulun

Şimdi çözümü tartışalım:

Bir determinant oluşturalım:

Ve değerini hesaplayın:

O halde düzlemin denklemi şu şekildedir:

Veya azaltarak şunu elde ederiz:

Şimdi kendi kendini kontrol etmek için iki görev:

  1. Üç noktadan geçen bir düzlemin denklemini oluşturun:

Yanıtlar:

Her şey çakıştı mı? Yine, bazı zorluklar varsa, o zaman tavsiyem şudur: Kafanızdan üç nokta alın (yüksek olasılıkla aynı düz çizgide uzanmayacaklardır), bunlara dayalı bir uçak yapın. Daha sonra kendinizi çevrimiçi olarak kontrol edersiniz. Örneğin sitede:

Ancak determinantların yardımıyla sadece düzlemin denklemini oluşturmayacağız. Hatırlayın, size vektörler için sadece nokta çarpımının tanımlanmadığını söylemiştim. Karışık çarpımın yanı sıra vektör çarpımı da vardır. Ve eğer iki vektörün skaler çarpımı bir sayı ise, o zaman iki vektörün vektör çarpımı bir vektör olacak ve bu vektör verilenlere dik olacaktır:

Üstelik modülü ve vektörleri üzerine kurulu bir paralelkenarın alanına eşit olacaktır. Bir noktadan bir çizgiye olan mesafeyi hesaplamak için bu vektöre ihtiyacımız olacak. Nasıl sayabiliriz? vektör çarpımı vektörler ve koordinatları verilmişse? Üçüncü dereceden determinant yine yardımımıza koşuyor. Ancak vektör çarpımını hesaplamak için kullanılan algoritmaya geçmeden önce küçük bir açıklama yapmam gerekiyor.

Bu arasöz temel vektörlerle ilgilidir.

Şekilde şematik olarak gösterilmiştir:

Neden bunlara temel denildiğini düşünüyorsunuz? Gerçek şu ki :

Veya resimde:

Bu formülün geçerliliği açıktır çünkü:

Vektör çizimleri

Artık çapraz çarpımı tanıtmaya başlayabilirim:

İki vektörün vektör çarpımı bir vektördür ve aşağıdaki kurala göre hesaplanır:

Şimdi çapraz çarpımın hesaplanmasına ilişkin bazı örnekler verelim:

Örnek 1: Vektörlerin çapraz çarpımını bulun:

Çözüm: Bir determinant oluşturuyorum:

Ve bunu hesaplıyorum:

Şimdi temel vektörler üzerinden yazdıktan sonra olağan vektör gösterimine döneceğim:

Böylece:

Şimdi dene.

Hazır? Kontrol ediyoruz:

Ve geleneksel olarak iki kontrol için görevler:

  1. Aşağıdaki vektörlerin vektör çarpımını bulun:
  2. Aşağıdaki vektörlerin vektör çarpımını bulun:

Yanıtlar:

Üç vektörün karışık çarpımı

İhtiyacım olan son yapı üç vektörün karışık çarpımıdır. Skaler gibi bir sayıdır. Bunu hesaplamanın iki yolu vardır. - bir determinant yoluyla, - bir karma çarpım aracılığıyla.

Yani bize üç vektör verilsin:

Daha sonra ile gösterilen üç vektörün karışık çarpımı şu şekilde hesaplanabilir:

1. - yani karışık çarpım bir vektörün skaler çarpımı ile diğer iki vektörün vektör çarpımıdır

Örneğin, üç vektörün karışık çarpımı şöyledir:

Vektör çarpımını kullanarak bunu kendiniz hesaplamaya çalışın ve sonuçların eşleştiğinden emin olun!

Ve yine - iki örnek bağımsız karar:

Yanıtlar:

Koordinat sisteminin seçilmesi

Artık karmaşık stereometrik geometri problemlerini çözmek için gerekli tüm bilgi temeline sahibiz. Ancak bunları çözmek için doğrudan örneklere ve algoritmalara geçmeden önce şu soru üzerinde durmanın faydalı olacağını düşünüyorum: Tam olarak nasıl belirli bir şekil için bir koordinat sistemi seçin. Sonuçta, hesaplamaların ne kadar hantal olacağını nihai olarak belirleyecek olan, koordinat sisteminin göreceli konumunun ve uzaydaki şeklin seçimidir.

Bu bölümde aşağıdaki rakamları dikkate aldığımızı hatırlatmama izin verin:

  1. Dikdörtgen paralel yüzlü
  2. Düz prizma (üçgen, altıgen...)
  3. Piramit (üçgen, dörtgen)
  4. Tetrahedron (üçgen piramit ile aynı)

Dikdörtgen paralel yüzlü veya küp için size aşağıdaki yapıyı öneririm:

Yani figürü “köşeye” yerleştireceğim. Küp ve paralel yüzlü çok iyi rakamlar. Onlar için köşelerinin koordinatlarını her zaman kolayca bulabilirsiniz. Örneğin, eğer (şekilde gösterildiği gibi)

bu durumda köşelerin koordinatları aşağıdaki gibidir:

Tabii ki, bunu hatırlamanıza gerek yok, ancak bir küp veya dikdörtgen paralel borunun en iyi nasıl yerleştirileceğini hatırlamanız tavsiye edilir.

Düz prizma

Prizma daha zararlı bir figürdür. Uzayda farklı şekillerde konumlandırılabilir. Ancak aşağıdaki seçenek bana en kabul edilebilir görünüyor:

Üçgen prizma:

Yani üçgenin kenarlarından birini tamamen eksenin üzerine yerleştiriyoruz ve köşelerden biri koordinatların orijini ile çakışıyor.

Altıgen prizma:

Yani köşelerden biri orijine denk gelir ve kenarlardan biri eksen üzerinde yer alır.

Dörtgen ve altıgen piramit:

Durum bir küpe benzer: tabanın iki tarafını koordinat eksenleriyle hizalıyoruz ve köşelerden birini koordinatların kökeniyle hizalıyoruz. Tek hafif zorluk noktanın koordinatlarını hesaplamak olacaktır.

Altıgen bir piramit için - altıgen prizmayla aynı. Ana görev yine tepe noktasının koordinatlarını bulmak olacaktır.

Tetrahedron (üçgen piramit)

Durum üçgen prizma için verdiğim duruma çok benziyor: bir köşe orijine denk geliyor, bir taraf koordinat ekseninde yatıyor.

Artık sen ve ben nihayet sorunları çözmeye başlamaya yaklaştık. Makalenin en başında söylediklerimden şu sonucu çıkarabilirsiniz: C2 problemlerinin çoğu 2 kategoriye ayrılır: açı problemleri ve mesafe problemleri. Öncelikle açı bulma problemlerine bakacağız. Bunlar sırasıyla aşağıdaki kategorilere ayrılır (karmaşıklık arttıkça):

Açı bulma problemleri

  1. İki düz çizgi arasındaki açıyı bulma
  2. İki düzlem arasındaki açıyı bulma

Bu problemlere sırasıyla bakalım: İki düz çizgi arasındaki açıyı bularak başlayalım. Peki, unutma, sen ve ben daha önce benzer örnekleri çözmemiş miydik? Hatırlıyor musunuz, buna benzer bir şeyimiz vardı zaten... İki vektör arasındaki açıyı arıyorduk. Hatırlatayım, eğer iki vektör verilirse ve aralarındaki açı bağıntıdan bulunursa:

Şimdi amacımız iki düz çizgi arasındaki açıyı bulmak. “Düz resme” bakalım:

İki düz çizgi kesiştiğinde kaç açı elde ettik? Sadece birkaç şey. Doğru, bunlardan sadece ikisi eşit değil, diğerleri ise onlara dikey (ve dolayısıyla onlarla çakışıyor). Peki iki düz çizgi arasındaki açıyı hangi açı olarak düşünmeliyiz: veya? Burada kural şudur: iki düz çizgi arasındaki açı her zaman dereceden fazla değildir. Yani iki açıdan her zaman derece ölçüsü en küçük olan açıyı seçeceğiz. Yani bu resimde iki düz çizgi arasındaki açı eşittir. Kurnaz matematikçiler, her seferinde iki açıdan en küçüğünü bulma zahmetine girmemek için bir modül kullanmayı önerdiler. Böylece iki düz çizgi arasındaki açı aşağıdaki formülle belirlenir:

Dikkatli bir okuyucu olarak sizin şu soruyu sormanız gerekirdi: Bir açının kosinüsünü hesaplamak için ihtiyaç duyduğumuz bu sayıları tam olarak nereden alıyoruz? Cevap: Bunları doğruların yön vektörlerinden alacağız! Böylece iki düz çizgi arasındaki açıyı bulma algoritması aşağıdaki gibidir:

  1. Formül 1'i uyguluyoruz.

Veya daha ayrıntılı olarak:

  1. İlk düz çizginin yön vektörünün koordinatlarını arıyoruz
  2. İkinci düz çizginin yön vektörünün koordinatlarını arıyoruz
  3. Skaler çarpımlarının modülünü hesaplıyoruz
  4. İlk vektörün uzunluğunu arıyoruz
  5. İkinci vektörün uzunluğunu arıyoruz
  6. 4. noktanın sonuçlarını 5. noktanın sonuçlarıyla çarpın
  7. 3. noktanın sonucunu 6. noktanın sonucuna bölüyoruz. Doğrular arasındaki açının kosinüsünü alıyoruz
  8. Bu sonuç açıyı doğru bir şekilde hesaplamamıza izin veriyorsa, onu ararız.
  9. Aksi takdirde ark kosinüs yoluyla yazarız

Eh, şimdi sıra sorunlara geçiyor: İlk ikisinin çözümünü ayrıntılı olarak göstereceğim, diğerinin çözümünü ayrıntılı olarak sunacağım. kısaca ve son iki problem için sadece cevap vereceğim, onlar için tüm hesaplamaları kendiniz yapmalısınız.

Görevler:

1. Sağ tet-ra-ed-re'de, tet-ra-ed-ra'nın yüksekliği ile orta taraf arasındaki açıyı bulun.

2. Sağdaki altı köşeli pi-ra-mi-de'de yüz os-no-va-niya eşittir ve yan kenarlar eşittir, ve çizgileri arasındaki açıyı bulun.

3. Sağdaki dört kömürlü pi-ra-mi-dy'nin tüm kenarlarının uzunlukları birbirine eşittir. Düz çizgiler arasındaki açıyı bulun ve eğer kesimden itibaren - verilen pi-ra-mi-dy ile iseniz, nokta bo-co-ikinci kaburga üzerinde se-re-di-dir

4. Küpün kenarında düz çizgiler arasındaki açıyı bulacak bir nokta vardır.

5. Nokta - küpün kenarlarında Düz çizgiler arasındaki açıyı bulun.

Görevleri bu sıraya göre düzenlemem tesadüf değil. Henüz koordinat yöntemini kullanmaya başlamamış olsanız da, ben en “sorunlu” rakamları kendim analiz edeceğim ve en basit küple uğraşmayı size bırakacağım! Yavaş yavaş tüm rakamlarla nasıl çalışılacağını öğrenmeniz gerekecek; Konudan konuya görevlerin karmaşıklığını artıracağım.

Sorunları çözmeye başlayalım:

1. Bir tetrahedron çizin ve daha önce önerdiğim gibi koordinat sistemine yerleştirin. Tetrahedron düzgün olduğundan, tüm yüzleri (taban dahil) düzgün üçgenlerdir. Kenarın uzunluğu verilmediğine göre bunu eşit alabilirim. Sanırım açının aslında tetrahedronumuzun ne kadar "gerildiğine" bağlı olmayacağını anladınız mı? Ayrıca tetrahedrondaki yüksekliği ve ortancayı da çizeceğim. Yol boyunca tabanını çizeceğim (bizim için de faydalı olacak).

ile arasındaki açıyı bulmam gerekiyor. Biz ne biliyoruz? Sadece noktanın koordinatını biliyoruz. Bu, noktaların koordinatlarını bulmamız gerektiği anlamına gelir. Şimdi şöyle düşünüyoruz: Bir nokta, üçgenin yüksekliklerinin (veya açıortaylarının veya kenarortaylarının) kesişme noktasıdır. Ve bir nokta yükseltilmiş bir noktadır. Nokta segmentin ortasıdır. O zaman nihayet şunu bulmamız gerekiyor: noktaların koordinatları: .

En basit şeyle başlayalım: bir noktanın koordinatları. Şekle bakın: Bir noktanın uygulamasının sıfıra eşit olduğu açıktır (nokta düzlem üzerindedir). Ordinatı eşittir (ortanca olduğu için). Apsislerini bulmak daha zordur. Ancak bu Pisagor teoremine dayanarak kolaylıkla yapılabilir: Bir üçgen düşünün. Hipotenüsü eşittir ve bacaklarından biri eşittir O halde:

Sonunda elimizde: .

Şimdi noktanın koordinatlarını bulalım. Uygulamasının yine sıfıra eşit olduğu ve koordinatının noktanınkiyle aynı olduğu açıktır. Apsisini bulalım. Bunu hatırlarsanız, bu oldukça önemsiz bir şekilde yapılır. yükseklikler eşkenar üçgen kesişme noktası orantılı olarak bölünür, üstten sayıyorum. Çünkü: , o zaman parçanın uzunluğuna eşit olan noktanın gerekli apsisi şuna eşittir: . Buna göre noktanın koordinatları şöyledir:

Noktanın koordinatlarını bulalım. Apsis ve koordinatının noktanın apsis ve koordinatıyla örtüştüğü açıktır. Ve uygulama, segmentin uzunluğuna eşittir. - bu üçgenin bacaklarından biri. Bir üçgenin hipotenüsü bir segmenttir - bir bacak. Kalın harflerle işaretlediğim nedenlerle aranıyor:

Nokta segmentin ortasıdır. O zaman parçanın orta noktasının koordinatlarının formülünü hatırlamamız gerekiyor:

İşte bu kadar, şimdi yön vektörlerinin koordinatlarını arayabiliriz:

Her şey hazır: tüm verileri formüle yerleştiriyoruz:

Böylece,

Cevap:

Bu tür “korkutucu” yanıtlardan korkmamalısınız: C2 görevleri için bu yaygın bir uygulamadır. Bu bölümdeki “güzel” cevaba şaşırmayı tercih ederim. Ayrıca, fark ettiğiniz gibi, Pisagor teoremi ve eşkenar üçgenin yükseklik özelliği dışında pratikte hiçbir şeye başvurmadım. Yani stereometrik problemi çözmek için minimum stereometriyi kullandım. Bundaki kazanç oldukça hantal hesaplamalarla kısmen “söndürülmüştür”. Ama oldukça algoritmikler!

2. Koordinat sistemi ve tabanıyla birlikte düzenli bir altıgen piramidi tasvir edelim:

Çizgiler arasındaki açıyı bulmamız gerekiyor. Böylece görevimiz noktaların koordinatlarını bulmaktır: . Küçük bir çizim kullanarak son üçünün koordinatlarını bulacağız ve noktanın koordinatı üzerinden tepe noktasının koordinatını bulacağız. Yapılacak çok iş var ama başlamamız gerekiyor!

a) Koordinat: Uygulama ve ordinatının sıfıra eşit olduğu açıktır. Apsis'i bulalım. Bunu yapmak için bir dik üçgen düşünün. Ne yazık ki, burada sadece eşit olan hipotenüsü biliyoruz. Bacağını bulmaya çalışacağız (çünkü bacağın iki katı uzunluğunun bize noktanın apsisini vereceği açıktır). Onu nasıl arayabiliriz? Piramidin tabanında nasıl bir figür olduğunu hatırlayalım mı? Bu normal bir altıgen. Bu ne anlama geliyor? Bu, tüm kenarların ve tüm açıların eşit olduğu anlamına gelir. Böyle bir açı bulmamız gerekiyor. Herhangi bir fikir? Pek çok fikir var ama bir formül var:

Düzenli bir n-gon'un açılarının toplamı .

Böylece düzgün altıgenin açılarının toplamı dereceye eşittir. O zaman açıların her biri şuna eşittir:

Fotoğrafa tekrar bakalım. Doğru parçasının açınınortay olduğu açıktır. O halde açı dereceye eşittir. Daha sonra:

O zaman nereden.

Böylece koordinatları vardır

b) Artık noktanın koordinatını kolaylıkla bulabiliriz: .

c) Noktanın koordinatlarını bulun. Apsisleri segmentin uzunluğuna denk geldiğinden eşittir. Ordinatı bulmak da çok zor değil: Noktaları birleştirirsek ve çizginin kesişme noktasını örneğin olarak belirlersek. (basit inşaatı kendiniz yapın). O halde B noktasının ordinatı, parçaların uzunluklarının toplamına eşittir. Şimdi üçgene tekrar bakalım. Daha sonra

O zamandan bu yana noktanın koordinatları var

d) Şimdi noktanın koordinatlarını bulalım. Dikdörtgeni düşünün ve şunu kanıtlayın: Böylece noktanın koordinatları:

e) Tepe noktasının koordinatlarını bulmak kalır. Apsis ve koordinatının noktanın apsis ve koordinatıyla örtüştüğü açıktır. Uygulamayı bulalım. O zamandan beri. Bir dik üçgen düşünün. Sorunun durumuna göre bir yan kenar. Bu benim üçgenimin hipotenüsü. O halde piramidin yüksekliği bir bacaktır.

O zaman noktanın koordinatları vardır:

İşte bu kadar, ilgimi çeken tüm noktaların koordinatları elimde. Düz çizgilerin yönlendirici vektörlerinin koordinatlarını arıyorum:

Bu vektörler arasındaki açıyı arıyoruz:

Cevap:

Yine, bu problemi çözerken, düzenli bir n-gon'un açılarının toplamı formülü ve ayrıca bir dik üçgenin kosinüs ve sinüs tanımı dışında herhangi bir karmaşık teknik kullanmadım.

3. Piramidin kenarlarının uzunlukları yine bize verilmediğinden onları sayacağım bire eşit. Böylece, sadece yan kenarlar değil, TÜM kenarlar birbirine eşit olduğundan, piramidin tabanında ve bende bir kare vardır ve yan yüzler normal üçgenlerdir. Problem metninde verilen tüm verileri not ederek böyle bir piramidi ve tabanını bir düzlem üzerine çizelim:

ile arasındaki açıyı arıyoruz. Noktaların koordinatlarını araştırırken çok kısa hesaplamalar yapacağım. Bunları “deşifre etmeniz” gerekecek:

b) - segmentin ortası. Koordinatları:

c) Pisagor teoremini kullanarak bir üçgende doğru parçasının uzunluğunu bulacağım. Bunu bir üçgende Pisagor teoremini kullanarak bulabilirim.

Koordinatlar:

d) - segmentin ortası. Koordinatları

e) Vektör koordinatları

f) Vektör koordinatları

g) Açının aranması:

Küp en basit şekildir. Eminim bunu kendi başınıza çözeceksiniz. 4. ve 5. sorunun cevapları aşağıdaki gibidir:

Düz bir çizgi ile bir düzlem arasındaki açıyı bulma

Basit bulmacaların zamanı bitti! Şimdi örnekler daha da karmaşık olacak. Bir doğru ile bir düzlem arasındaki açıyı bulmak için şu şekilde ilerleyeceğiz:

  1. Üç noktayı kullanarak düzlemin denklemini oluşturuyoruz
    ,
    üçüncü dereceden bir determinant kullanarak.
  2. İki nokta kullanarak düz çizginin yönlendirici vektörünün koordinatlarını ararız:
  3. Düz bir çizgi ile bir düzlem arasındaki açıyı hesaplamak için formülü uygularız:

Gördüğünüz gibi bu formül, iki düz çizgi arasındaki açıları bulmak için kullandığımız formüle çok benziyor. Sağ taraftaki yapı tamamen aynıdır ve solda artık daha önce olduğu gibi kosinüsü değil sinüsü arıyoruz. Buna kötü bir eylem daha eklendi: Düzlemin denklemini aramak.

Ertelemeyelim çözüm örnekleri:

1. Ana-ama-va-ni-em direkt prizması-biz eşit-fakir bir üçgeniz. Düz çizgi ile düzlem arasındaki açıyı bulun

2. Batıdan dikdörtgen bir par-ral-le-le-pi-pe-de'de Düz çizgi ile düzlem arasındaki açıyı bulun

3. Altı köşeli bir sağ prizmada tüm kenarlar eşittir. Düz çizgi ile düzlem arasındaki açıyı bulun.

4. Bilinen kaburgaların os-no-va-ni-em'i ile sağ üçgen pi-ra-mi-de'de Bir köşe bulun, ob-ra-zo-van -taban olarak düz ve düz, griden geçen kaburga ve

5. Tepe noktası olan dik dörtgensel pi-ra-mi-dy'nin tüm kenarlarının uzunlukları birbirine eşittir. Nokta pi-ra-mi-dy'nin kenarı tarafındaysa, düz çizgi ile düzlem arasındaki açıyı bulun.

Yine ilk iki problemi detaylı, üçüncüyü kısaca çözeceğim ve son ikisini kendi başınıza çözmenize bırakacağım. Üstelik zaten üçgen ve dörtgen piramitlerle uğraşmak zorundaydınız ama henüz prizmalarla uğraşmadınız.

Çözümler:

1. Bir prizmayı ve tabanını tasvir edelim. Bunu koordinat sistemiyle birleştirelim ve problem ifadesinde verilen tüm verileri not edelim:

Oranlara uymadığım için özür dilerim, ancak sorunu çözmek için bu aslında o kadar da önemli değil. Uçak, prizmamın basitçe "arka duvarı"dır. Böyle bir düzlemin denkleminin şu şekilde olduğunu basitçe tahmin etmek yeterlidir:

Ancak bu doğrudan gösterilebilir:

Bu düzlemde rastgele üç nokta seçelim: örneğin .

Düzlemin denklemini oluşturalım:

Kendiniz için egzersiz yapın: Bu determinantı kendiniz hesaplayın. Başardın mı? O zaman düzlemin denklemi şöyle görünür:

Ya da sadece

Böylece,

Örneği çözmek için düz çizginin yön vektörünün koordinatlarını bulmam gerekiyor. Nokta koordinatların orijini ile çakıştığı için vektörün koordinatları noktanın koordinatlarıyla çakışacaktır.Bunu yapmak için önce noktanın koordinatlarını buluyoruz.

Bunu yapmak için bir üçgen düşünün. Tepe noktasından yüksekliği (medyan ve açıortay olarak da bilinir) çizelim. Çünkü noktanın ordinatı eşittir. Bu noktanın apsisini bulmak için doğru parçasının uzunluğunu hesaplamamız gerekir. Pisagor teoremine göre elimizde:

O zaman noktanın koordinatları vardır:

Nokta "yükseltilmiş" bir noktadır:

O zaman vektör koordinatları şöyledir:

Cevap:

Gördüğünüz gibi, bu tür sorunları çözerken temelde zor olan hiçbir şey yoktur. Aslında prizma gibi bir şeklin “düzlüğü” ile süreç biraz daha basitleştirilmiştir. Şimdi bir sonraki örneğe geçelim:

2. Bir paralel uçlu çizin, içine bir düzlem ve düz bir çizgi çizin ve ayrıca alt tabanını ayrı ayrı çizin:

İlk önce düzlemin denklemini buluyoruz: İçinde bulunan üç noktanın koordinatları:

(ilk iki koordinat net bir şekilde elde edilmiştir ve son koordinatı noktadan itibaren resimden rahatlıkla bulabilirsiniz). Daha sonra düzlemin denklemini oluştururuz:

Hesaplıyoruz:

Kılavuz vektörün koordinatlarını arıyoruz: Koordinatlarının noktanın koordinatlarıyla örtüştüğü açık değil mi? Koordinatlar nasıl bulunur? Bunlar, uygulanan eksen boyunca birer yükseltilmiş noktanın koordinatlarıdır! . Sonra istenen açıyı ararız:

Cevap:

3. Düzenli bir altıgen piramit çizin ve içine bir düzlem ve düz bir çizgi çizin.

Burada bir düzlem çizmek bile sorunlu, bu sorunu çözmekten bahsetmiyorum bile, ancak koordinat yöntemi umursamıyor! Çok yönlülüğü ana avantajıdır!

Uçak üç noktadan geçer: . Koordinatlarını arıyoruz:

1). Son iki noktanın koordinatlarını kendiniz bulun. Bunun için altıgen piramit problemini çözmeniz gerekecek!

2) Düzlemin denklemini oluşturuyoruz:

Vektörün koordinatlarını arıyoruz: . (Üçgen piramit problemine tekrar bakın!)

3) Bir açı arıyorum:

Cevap:

Gördüğünüz gibi bu görevlerde doğaüstü derecede zor olan hiçbir şey yok. Sadece köklere çok dikkat etmeniz gerekiyor. Sadece son iki sorunun cevabını vereceğim:

Gördüğünüz gibi problemleri çözme tekniği her yerde aynıdır: Asıl görev, köşelerin koordinatlarını bulmak ve bunları belirli formüllerde değiştirmektir. Açıları hesaplamak için hala bir sınıf problemi daha ele almamız gerekiyor:

İki düzlem arasındaki açıların hesaplanması

Çözüm algoritması şu şekilde olacaktır:

  1. Üç noktayı kullanarak ilk düzlemin denklemini ararız:
  2. Diğer üç noktayı kullanarak ikinci düzlemin denklemini ararız:
  3. Formülü uyguluyoruz:

Gördüğünüz gibi formül, düz çizgiler arasındaki ve düz çizgi ile düzlem arasındaki açıları aradığımız önceki iki formüle çok benziyor. Bu yüzden bunu hatırlamanız sizin için zor olmayacak. Görevlerin analizine geçelim:

1. Sağ üçgen prizmanın tabanının kenarı eşittir ve yan yüzün köşegeni eşittir. Düzlem ile prizmanın eksen düzlemi arasındaki açıyı bulun.

2. Tüm kenarları eşit olan sağdaki dört köşeli pi-ra-mi-de'de, kalem-di-ku- noktasından geçen düzlem ile düzlem kemiği arasındaki açının sinüsünü bulun. lyar-ama düz.

3. Normal bir dört köşeli prizmada tabanın kenarları eşittir ve yan kenarlar eşittir. Benden-che-on'un kenarında bir nokta var ki. Düzlemler arasındaki açıyı bulun ve

4. Bir dik dörtgen prizmada tabanın kenarları eşit ve yan kenarlar eşittir. Bu noktadan itibaren kenarda bir nokta var ve böylece düzlemler arasındaki açıyı bulun.

5. Bir küpte düzlemler ile düzlemler arasındaki açının kosinüsünü bulun.

Sorun çözümleri:

1. Düzenli (tabanda bir eşkenar üçgen) üçgen prizma çiziyorum ve problem ifadesinde görünen düzlemleri bunun üzerine işaretliyorum:

İki düzlemin denklemlerini bulmamız gerekiyor: Tabanın denklemi önemsizdir: karşılık gelen determinantı üç noktayı kullanarak oluşturabilirsiniz, ancak denklemi hemen oluşturacağım:

Şimdi denklemi bulalım Noktanın koordinatları vardır Nokta - Üçgenin ortancası ve yüksekliği olduğundan, üçgende Pisagor teoremi kullanılarak kolayca bulunur. O zaman noktanın koordinatları vardır: Noktanın uygulamasını bulalım.Bunu yapmak için bir dik üçgen düşünün.

Daha sonra aşağıdaki koordinatları elde ederiz: Düzlemin denklemini oluştururuz.

Düzlemler arasındaki açıyı hesaplıyoruz:

Cevap:

2. Çizim yapmak:

En zor şey, noktadan dik olarak geçen bunun ne tür gizemli bir düzlem olduğunu anlamaktır. Peki, asıl mesele şu ki, bu nedir? Önemli olan dikkat! Aslında çizgi diktir. Düz çizgi aynı zamanda diktir. O halde bu iki doğrunun içinden geçen düzlem, doğruya dik olacak ve bu arada, noktadan geçecektir. Bu düzlem aynı zamanda piramidin tepesinden de geçer. Sonra istenen uçak - Ve uçak zaten bize verildi. Noktaların koordinatlarını arıyoruz.

Noktanın koordinatını noktadan geçerek buluyoruz. Küçük resimden noktanın koordinatlarının şu şekilde olacağı sonucunu çıkarmak kolaydır: Piramidin tepesinin koordinatlarını bulmak için şimdi ne bulunacak? Ayrıca yüksekliğini de hesaplamanız gerekir. Bu, aynı Pisagor teoremi kullanılarak yapılır: önce bunu kanıtlayın (önemsiz olarak tabanda bir kare oluşturan küçük üçgenlerden). Koşullu olarak elimizde:

Artık her şey hazır: köşe koordinatları:

Düzlemin denklemini oluşturuyoruz:

Belirleyicileri hesaplama konusunda zaten uzmansınız. Zorluk yaşamadan şunları alacaksınız:

Veya aksi takdirde (her iki tarafı da ikinin köküyle çarparsak)

Şimdi düzlemin denklemini bulalım:

(Düzlem denklemini nasıl elde ettiğimizi unutmadınız değil mi? Bu eksi birin nereden geldiğini anlamıyorsanız, o zaman düzlem denkleminin tanımına geri dönün! Her zaman ondan önce ortaya çıktı. uçağım koordinatların orijinine aitti!)

Belirleyiciyi hesaplıyoruz:

(Düzlemin denkleminin noktalardan geçen doğrunun denklemiyle örtüştüğünü fark etmişsinizdir! Nedenini bir düşünün!)

Şimdi açıyı hesaplayalım:

Sinüs bulmamız gerekiyor:

Cevap:

3. Zor bir soru: Sizce dikdörtgenler prizması nedir? Bu sadece iyi bildiğiniz bir paralelyüzlü! Hemen bir çizim yapalım! Tabanı ayrı ayrı tasvir etmenize bile gerek yok; burada çok az faydası var:

Daha önce belirttiğimiz gibi düzlem bir denklem biçiminde yazılmıştır:

Şimdi bir uçak oluşturalım

Hemen düzlemin denklemini yaratıyoruz:

Bir açı arıyorum:

Şimdi son iki sorunun cevapları:

Artık biraz ara vermenin zamanı geldi çünkü sen ve ben harikayız ve harika bir iş çıkardık!

Koordinatlar ve vektörler. İleri düzey

Bu yazıda sizinle koordinat yöntemi kullanılarak çözülebilecek başka bir problem sınıfını tartışacağız: mesafe hesaplama problemleri. Yani aşağıdaki durumları ele alacağız:

  1. Kesişen çizgiler arasındaki mesafenin hesaplanması.

Bu görevleri artan zorluk derecesine göre sıraladım. Bulmak en kolayı gibi görünüyor noktadan düzleme uzaklık ve en zor şey bulmaktır geçiş çizgileri arasındaki mesafe. Tabii ki hiçbir şey imkansız değildir! Ertelemeyelim ve hemen birinci sınıf sorunları ele almaya başlayalım:

Bir noktadan bir düzleme olan mesafenin hesaplanması

Bu sorunu çözmek için neye ihtiyacımız var?

1. Nokta koordinatları

Dolayısıyla gerekli tüm verileri alır almaz formülü uyguluyoruz:

Son bölümde tartıştığım problemlerden bir düzlemin denklemini nasıl oluşturduğumuzu zaten biliyor olmalısınız. Hemen görevlere geçelim. Şema şu şekildedir: 1, 2 - Karar vermenize yardımcı oluyorum ve biraz ayrıntılı olarak 3, 4 - yalnızca cevap, çözümü kendiniz gerçekleştiriyorsunuz ve karşılaştırıyorsunuz. Hadi başlayalım!

Görevler:

1. Bir küp verildi. Küpün kenar uzunlukları eşittir. Se-re-di-na'dan kesimden düzleme olan mesafeyi bulun

2. Sağdaki dört kömür pi-ra-mi-evet verildiğinde, tarafın tarafı tabana eşittir. Noktadan kenarlarda - se-re-di-olan düzleme olan mesafeyi bulun.

3. Os-no-va-ni-em ile sağ üçgen pi-ra-mi-de'de, yan kenar eşittir ve os-no-vania'daki yüz-ro-eşittir. Üstten düzleme olan mesafeyi bulun.

4. Bir sağ altıgen prizmada tüm kenarlar eşittir. Bir noktadan bir düzleme olan mesafeyi bulun.

Çözümler:

1. Tek kenarlı bir küp çizin, bir doğru parçası ve bir düzlem oluşturun, parçanın ortasını bir harfle belirtin

.

Öncelikle kolay olanla başlayalım: noktanın koordinatlarını bulun. O zamandan beri (segmentin ortasının koordinatlarını hatırlayın!)

Şimdi üç noktayı kullanarak düzlemin denklemini oluşturuyoruz

\[\sol| (\begin(array)(*(20)(c))x&0&1\\y&1&0\\z&1&1\end(array)) \right| = 0\]

Artık mesafeyi bulmaya başlayabilirim:

2. Tüm verileri işaretlediğimiz bir çizimle yeniden başlıyoruz!

Bir piramit için tabanını ayrı ayrı çizmek faydalı olacaktır.

Pençesiyle tavuk gibi çizim yapmam bile bu sorunu kolaylıkla çözmemize engel olmayacak!

Artık bir noktanın koordinatlarını bulmak çok kolay

Noktanın koordinatları olduğundan,

2. a noktasının koordinatları doğru parçasının ortası olduğuna göre,

Düzlemdeki iki noktanın daha koordinatlarını sorunsuz bir şekilde bulabiliriz.Düzlem için bir denklem oluşturup onu basitleştiriyoruz:

\[\sol| (\left| (\begin(array)(*(20)(c))x&1&(\frac(3)(2))\\y&0&(\frac(3)(2))\\z&0&(\frac( (\sqrt 3 )(2))\end(array)) \right|) \right| = 0\]

Noktanın koordinatları: olduğundan mesafeyi hesaplarız:

Cevap (çok nadir!):

Peki anladın mı? Bana öyle geliyor ki burada her şey bir önceki bölümde incelediğimiz örneklerdeki kadar teknik. Bu yüzden eminim ki, eğer bu materyale hakim olduysanız, kalan iki problemi çözmeniz sizin için zor olmayacaktır. Size sadece cevapları vereceğim:

Düz bir çizgiden düzleme olan mesafenin hesaplanması

Aslında burada yeni bir şey yok. Düz bir çizgi ve bir düzlem birbirine göre nasıl konumlandırılabilir? Tek bir olasılıkları var: kesişmek ya da düz bir çizginin düzleme paralel olması. Sizce bir düz çizgi ile bu doğrunun kesiştiği düzlem arasındaki mesafe nedir? Bana öyle geliyor ki burada böyle bir mesafenin sıfıra eşit olduğu açık. İlginç bir durum değil.

İkinci durum daha yanıltıcıdır: burada mesafe zaten sıfır değildir. Ancak doğru düzleme paralel olduğundan, doğrunun her noktası bu düzleme eşit uzaklıktadır:

Böylece:

Bu, görevimin bir öncekine indirgendiği anlamına geliyor: Düz bir çizgi üzerindeki herhangi bir noktanın koordinatlarını arıyoruz, düzlemin denklemini arıyoruz ve noktadan düzleme olan mesafeyi hesaplıyoruz. Aslında, Birleşik Devlet Sınavında bu tür görevler son derece nadirdir. Yalnızca bir sorun bulmayı başardım ve içindeki veriler öyleydi ki koordinat yöntemi buna pek uygulanamadı!

Şimdi başka, çok daha önemli bir sorun sınıfına geçelim:

Bir noktanın bir çizgiye olan mesafesini hesaplama

Neye ihtiyacımız var?

1. Mesafeyi aradığımız noktanın koordinatları:

2. Bir doğru üzerinde bulunan herhangi bir noktanın koordinatları

3. Düz çizginin yönlendirici vektörünün koordinatları

Hangi formülü kullanıyoruz?

Bu kesrin paydasının ne anlama geldiği sizin için açık olmalıdır: bu, düz çizginin yönlendirici vektörünün uzunluğudur. Bu çok zor bir paydır! İfadesi, vektörlerin vektör çarpımının modülünü (uzunluğunu) ifade eder ve vektör çarpımının nasıl hesaplanacağını çalışmanın önceki bölümünde inceledik. Bilgilerinizi tazeleyin, artık buna çok ihtiyacımız olacak!

Böylece, problem çözme algoritması aşağıdaki gibi olacaktır:

1. Mesafeyi aradığımız noktanın koordinatlarını arıyoruz:

2. Mesafeyi aradığımız doğru üzerindeki herhangi bir noktanın koordinatlarını arıyoruz:

3. Bir vektör oluşturun

4. Düz bir çizginin yönlendirici vektörünü oluşturun

5. Vektör çarpımını hesaplayın

6. Ortaya çıkan vektörün uzunluğunu arıyoruz:

7. Mesafeyi hesaplayın:

Yapacak çok işimiz var ve örnekler oldukça karmaşık olacak! O halde şimdi tüm dikkatinizi odaklayın!

1. Tepesi olan dik üçgen bir pi-ra-mi-da verilmiştir. Pi-ra-mi-dy temelinde yüz-ro-eşittir, sen eşitsin. Gri kenardan, ve noktalarının gri kenarlar olduğu düz çizgiye ve veterinere olan mesafeyi bulun.

2. Kaburgaların uzunlukları ve düz açılı par-ral-le-le-pi-pe-da buna göre eşittir ve üstten düz çizgiye olan mesafeyi bulun

3. Bir sağ altıgen prizmada tüm kenarlar eşittir; bir noktadan düz bir çizgiye olan mesafeyi bulun

Çözümler:

1. Tüm verileri işaretlediğimiz düzgün bir çizim yapıyoruz:

Yapacak çok işimiz var! Öncelikle neyi arayacağımızı ve hangi sırayla araştıracağımızı kelimelerle anlatmak istiyorum:

1. Noktaların koordinatları ve

2. Nokta koordinatları

3. Noktaların koordinatları ve

4. Vektörlerin koordinatları ve

5. Çapraz çarpımları

6. Vektör uzunluğu

7. Vektör çarpımının uzunluğu

8. Uzaklık

Neyse, önümüzde çok işimiz var! Hadi kolları sıvamış olarak işe başlayalım!

1. Piramidin yüksekliğinin koordinatlarını bulmak için noktanın koordinatlarını bilmemiz gerekir.Uygulaması sıfırdır ve ordinatı apsisine eşittir, parçanın uzunluğuna eşittir.Çünkü yüksekliği bir eşkenar üçgen, buradan itibaren tepe noktasından sayılarak orana bölünür. Sonunda koordinatları aldık:

Nokta koordinatları

2. - segmentin ortası

3. - segmentin ortası

Segmentin orta noktası

4. Koordinatlar

Vektör koordinatları

5. Vektör çarpımını hesaplayın:

6. Vektör uzunluğu: Değiştirmenin en kolay yolu, parçanın üçgenin orta çizgisi olması, yani tabanın yarısına eşit olmasıdır. Bu yüzden.

7. Vektör çarpımının uzunluğunu hesaplayın:

8. Son olarak mesafeyi buluyoruz:

İşte bu! Size dürüstçe söyleyeyim: Bu sorunu geleneksel yöntemlerle (inşaat yoluyla) çözmek çok daha hızlı olacaktır. Ama burada her şeyi hazır bir algoritmaya indirgedim! Çözüm algoritmasının sizin için açık olduğunu düşünüyorum? Bu nedenle geri kalan iki sorunu kendiniz çözmenizi isteyeceğim. Cevapları karşılaştıralım mı?

Tekrar ediyorum: Bu sorunları koordinat yöntemine başvurmak yerine inşaatlarla çözmek daha kolaydır (daha hızlıdır). Bu çözüm yöntemini yalnızca size "hiçbir şey inşa etmeyi bitirmemenize" olanak tanıyan evrensel bir yöntem göstermek için gösterdim.

Son olarak, son sınıftaki sorunları ele alalım:

Kesişen çizgiler arasındaki mesafenin hesaplanması

Burada problem çözme algoritması öncekine benzer olacaktır. Neyimiz var:

3. Birinci ve ikinci çizginin noktalarını birleştiren herhangi bir vektör:

Çizgiler arasındaki mesafeyi nasıl buluruz?

Formül aşağıdaki gibidir:

Pay modüldür karışık ürün(bunu önceki bölümde tanıttık) ve payda önceki formüldeki gibidir (düz çizgilerin yönlendirici vektörlerinin vektör çarpımının modülü, aradığımız mesafe).

sana şunu hatırlatacağım

Daha sonra mesafe formülü şu şekilde yeniden yazılabilir::

Bu bir determinantın bir determinantla bölünmesidir! Gerçi dürüst olmak gerekirse burada şaka yapacak vaktim yok! Bu formül aslında oldukça hantaldır ve oldukça karmaşık hesaplamalara yol açmaktadır. Senin yerinde olsaydım, buna yalnızca son çare olarak başvururdum!

Yukarıdaki yöntemi kullanarak birkaç sorunu çözmeye çalışalım:

1. Tüm kenarları eşit olan bir dik üçgen prizmada, düz çizgiler arasındaki mesafeyi bulun.

2. Bir dik üçgen prizma verildiğinde, tabanın tüm kenarları gövde kaburgasından geçen kesite eşittir ve se-re-di-well kaburgalar bir karedir. Düz çizgiler arasındaki mesafeyi bulun ve

Birincisine ben karar veririm ve buna göre ikincisine sen karar verirsin!

1. Bir prizma çiziyorum ve düz çizgiler çiziyorum ve

C noktasının koordinatları: o halde

Nokta koordinatları

Vektör koordinatları

Nokta koordinatları

Vektör koordinatları

Vektör koordinatları

\[\left((B,\overrightarrow (A(A_1)) \overrightarrow (B(C_1)) ) \right) = \left| (\begin(array)(*(20)(l))(\begin(array)(*(20)(c))0&1&0\end(array))\\(\begin(array)(*(20) (c))0&0&1\end(array))\\(\begin(array)(*(20)(c))(\frac((\sqrt 3 ))(2))&( - \frac(1) (2))&1\end(array))\end(array)) \right| = \frac((\sqrt 3 ))(2)\]

Vektörler arasındaki vektör çarpımını hesaplıyoruz ve

\[\overrightarrow (A(A_1)) \cdot \overrightarrow (B(C_1)) = \left| \begin(array)(l)\begin(array)(*(20)(c))(\overrightarrow i )&(\overrightarrow j )&(\overrightarrow k )\end(array)\\\begin(array )(*(20)(c))0&0&1\end(array)\\\begin(array)(*(20)(c))(\frac((\sqrt 3 ))(2))&( - \ frac(1)(2))&1\end(array)\end(array) \right| - \frac((\sqrt 3 ))(2)\overrightarrow k + \frac(1)(2)\overrightarrow i \]

Şimdi uzunluğunu hesaplıyoruz:

Cevap:

Şimdi ikinci görevi dikkatlice tamamlamaya çalışın. Bunun cevabı şu olacaktır: .

Koordinatlar ve vektörler. Kısa açıklama ve temel formüller

Bir vektör yönlendirilmiş bir bölümdür. - vektörün başlangıcı, - vektörün sonu.
Bir vektör veya ile gösterilir.

Mutlak değer vektör - vektörü temsil eden parçanın uzunluğu. Olarak belirtildi.

Vektör koordinatları:

,
\displaystyle a vektörünün uçları nerede?

Vektörlerin toplamı: .

Vektörlerin çarpımı:

Vektörlerin nokta çarpımı:

Oh-oh-oh-oh-oh... yani, sanki kendi kendine bir cümle okuyormuş gibi zor =) Ancak rahatlamanın daha sonra faydası olacak, özellikle bugün uygun aksesuarları aldığım için. Bu nedenle ilk bölüme geçelim, umarım yazının sonunda neşeli ruh halimi korurum.

İki düz çizginin göreceli konumu

Seyircinin koro halinde şarkı söylemesi böyle bir durumdur. İki düz çizgi olabilir:

1) maç;

2) paralel olun: ;

3) veya tek bir noktada kesişir: .

Aptallar için yardım : lütfen hatırla matematiksel işaret kavşaklarda çok sık meydana gelecektir. Gösterim, çizginin çizgiyle noktasında kesiştiği anlamına gelir.

İki çizginin göreceli konumu nasıl belirlenir?

İlk durumla başlayalım:

İki doğru ancak ve ancak karşılık gelen katsayıları orantılıysa çakışır yani eşitlikleri sağlayan bir “lambda” sayısı vardır

Düz çizgileri ele alalım ve karşılık gelen katsayılardan üç denklem oluşturalım: . Her denklemden bu nedenle bu çizgilerin çakıştığı sonucu çıkar.

Aslında denklemin tüm katsayıları -1 ile çarpın (işaretleri değiştirin) ve denklemin tüm katsayıları 2'ye bölerseniz aynı denklemi elde edersiniz: .

Doğruların paralel olduğu ikinci durum:

İki doğru ancak ve ancak değişkenlerin katsayıları orantılı ise paraleldir: , Ancak.

Örnek olarak iki düz çizgiyi ele alalım. Değişkenler için karşılık gelen katsayıların orantılılığını kontrol ediyoruz:

Ancak şu çok açık ki.

Ve üçüncü durum, çizgiler kesiştiğinde:

İki doğru ancak ve ancak değişkenlerin katsayıları orantılı DEĞİLSE kesişir yani eşitlikleri sağlayacak şekilde bir “lambda” değeri YOKTUR

Yani düz çizgiler için bir sistem oluşturacağız:

İlk denklemden şu çıkar ve ikinci denklemden: , yani sistem tutarsız(çözüm yok). Dolayısıyla değişkenlerin katsayıları orantılı değildir.

Sonuç: çizgiler kesişiyor

Pratik problemlerde az önce tartışılan çözüm şemasını kullanabilirsiniz. Bu arada, sınıfta incelediğimiz vektörlerin eşdoğrusallık açısından kontrol edilmesine yönelik algoritmayı çok anımsatıyor. Vektörlerin doğrusal(bağımsız)bağımlılığı kavramı. Vektörlerin temeli. Ancak daha medeni bir paketleme var:

örnek 1

Çizgilerin göreceli konumunu öğrenin:

Çözüm düz çizgilerin yönlendirme vektörlerinin incelenmesine dayanmaktadır:

a) Denklemlerden doğruların yön vektörlerini buluruz: .


Bu, vektörlerin eşdoğrusal olmadığı ve çizgilerin kesiştiği anlamına gelir.

Her ihtimale karşı, kavşaklara işaretli bir taş koyacağım:

Geri kalanlar taşın üzerinden atlar ve doğrudan Ölümsüz Kashchei'ye kadar takip eder =)

b) Doğruların yön vektörlerini bulun:

Çizgiler aynı yön vektörüne sahiptir, yani paralel veya çakışıktırlar. Burada belirleyiciyi saymaya gerek yok.

Bilinmeyenlerin katsayılarının orantılı olduğu açıktır.

Eşitliğin doğru olup olmadığını öğrenelim:

Böylece,

c) Doğruların yön vektörlerini bulun:

Bu vektörlerin koordinatlarından oluşan determinantı hesaplayalım:
dolayısıyla yön vektörleri eşdoğrusaldır. Çizgiler ya paraleldir ya da çakışıktır.

Orantılılık katsayısı “lambda”yı doğrudan doğrusal yön vektörlerinin oranından görmek kolaydır. Ancak denklemlerin katsayıları aracılığıyla da bulunabilir: .

Şimdi eşitliğin doğru olup olmadığını öğrenelim. Her iki serbest terim de sıfırdır, dolayısıyla:

Ortaya çıkan değer bu denklemi karşılar (genel olarak herhangi bir sayı bunu karşılar).

Böylece çizgiler çakışıyor.

Cevap:

Çok yakında, sözlü olarak tartışılan sorunu birkaç saniye içinde tam anlamıyla çözmeyi öğreneceksiniz (ya da zaten öğrenmişsinizdir). Bu bağlamda, bağımsız bir çözüm için herhangi bir şey önermenin bir anlamı görmüyorum, geometrik temele bir önemli tuğla daha koymak daha iyidir:

Belirli bir çizgiye paralel bir çizgi nasıl oluşturulur?

Bu en basit görevin cehaleti nedeniyle Soyguncu Bülbül ağır şekilde cezalandırır.

Örnek 2

Düz çizgi denklemle verilir. Bu noktadan geçen paralel doğrunun denklemini yazınız.

Çözüm: Bilinmeyen satırı harfle gösterelim. Durumu onun hakkında ne söylüyor? Düz çizgi noktadan geçer. Ve eğer çizgiler paralelse, o zaman "tse" düz çizgisinin yön vektörünün de "de" düz çizgisini oluşturmak için uygun olduğu açıktır.

Yön vektörünü denklemden çıkarıyoruz:

Cevap:

Örnek geometri basit görünüyor:

Analitik testler aşağıdaki adımlardan oluşur:

1) Çizgilerin aynı yön vektörüne sahip olup olmadığını kontrol ederiz (doğrunun denklemi doğru şekilde basitleştirilmezse vektörler aynı doğrultuda olacaktır).

2) Noktanın sonuç denklemini karşılayıp karşılamadığını kontrol edin.

Çoğu durumda analitik testler sözlü olarak kolaylıkla yapılabilir. İki denkleme bakın; çoğunuz herhangi bir çizim yapmadan çizgilerin paralelliğini hızlı bir şekilde belirleyeceksiniz.

Bugün bağımsız çözüm örnekleri yaratıcı olacaktır. Çünkü yine de Baba Yaga ile rekabet etmek zorunda kalacaksın ve o, biliyorsun, her türlü bilmeceyi seviyor.

Örnek 3

Doğruya paralel bir noktadan geçen doğrunun denklemini yazınız.

Bunu çözmenin hem rasyonel hem de rasyonel olmayan bir yolu var. En kısa yol dersin sonudur.

Paralel çizgilerle biraz çalıştık, onlara daha sonra döneceğiz. Çizgilerin çakışması durumu pek ilgimizi çekmiyor, o yüzden okul müfredatından çok aşina olduğunuz bir problemi ele alalım:

İki doğrunun kesişme noktası nasıl bulunur?

Düz ise noktada kesişiyorsa koordinatları çözümdür doğrusal denklem sistemleri

Çizgilerin kesişme noktası nasıl bulunur? Sistemi çözün.

Hadi bakalım geometrik anlamı iki kişilik sistemler doğrusal denklemler iki bilinmeyenli- bunlar bir düzlemde kesişen iki (çoğunlukla) çizgidir.

Örnek 4

Çizgilerin kesişme noktasını bulun

Çözüm: Çözmenin iki yolu vardır - grafiksel ve analitik.

Grafik yöntemi verilen çizgileri basitçe çizmek ve kesişim noktasını doğrudan çizimden bulmaktır:

İşte konumuz: . Kontrol etmek için, koordinatlarını çizginin her denklemine koymalısınız, hem oraya hem de oraya sığmalıdırlar. Başka bir deyişle bir noktanın koordinatları sistemin çözümüdür. Temel olarak grafiksel bir çözüme baktık doğrusal denklem sistemleri iki denklem ve iki bilinmeyenle.

Grafiksel yöntem elbette kötü değil, ancak gözle görülür dezavantajlar var. Hayır, mesele yedinci sınıf öğrencilerinin bu şekilde karar vermesi değil, mesele doğru ve DOĞRU bir çizim oluşturmanın zaman alacağıdır. Ek olarak, bazı düz çizgilerin inşa edilmesi o kadar kolay değildir ve kesişme noktasının kendisi defter sayfasının dışında otuzuncu krallıkta bir yerde bulunabilir.

Bu nedenle kesişme noktasını analitik bir yöntem kullanarak aramak daha uygundur. Sistemi çözelim:

Sistemi çözmek için denklemlerin terim terim eklenmesi yöntemi kullanıldı. İlgili becerileri geliştirmek için ders alın Bir denklem sistemi nasıl çözülür?

Cevap:

Kontrol önemsizdir; kesişme noktasının koordinatları sistemin her denklemini karşılamalıdır.

Örnek 5

Doğrular kesişiyorsa kesişme noktasını bulun.

Bu kendi başınıza çözebileceğiniz bir örnektir. Görevi birkaç aşamaya bölmek uygundur. Durumun analizi bunun gerekli olduğunu göstermektedir:
1) Doğrunun denklemini yazınız.
2) Doğrunun denklemini yazınız.
3) Çizgilerin göreceli konumunu bulun.
4) Doğrular kesişiyorsa kesişme noktasını bulun.

Bir eylem algoritmasının geliştirilmesi birçokları için tipiktir geometrik problemler ve ben defalarca buna odaklanacağım.

Tam çözüm ve dersin sonundaki cevap:

Dersin ikinci bölümüne geldiğimizde bir çift ayakkabı bile eskimemişti:

Dikey çizgiler. Bir noktadan bir çizgiye olan mesafe.
Düz çizgiler arasındaki açı

Tipik ve çok tipik bir şeyle başlayalım önemli görev. İlk bölümde buna paralel bir düz çizginin nasıl inşa edileceğini öğrendik ve şimdi tavuk budu üzerindeki kulübe 90 derece dönecek:

Belirli bir çizgiye dik bir çizgi nasıl oluşturulur?

Örnek 6

Düz çizgi denklemle verilir. Bu noktadan geçen doğruya dik olan denklemi yazınız.

Çözüm: Şartıyla öyle bilinir. Çizginin yönlendirici vektörünü bulmak güzel olurdu. Çizgiler dik olduğundan işin püf noktası basit:

Denklemden, düz çizginin yönlendirici vektörü olacak normal vektörü "kaldırıyoruz".

Bir nokta ve yön vektörünü kullanarak düz bir çizginin denklemini oluşturalım:

Cevap:

Geometrik çizimi genişletelim:

Hımmm... Turuncu gökyüzü, turuncu deniz, turuncu deve.

Çözümün analitik doğrulaması:

1) Denklemlerden yön vektörlerini çıkarıyoruz ve yardımıyla vektörlerin skaler çarpımıçizgilerin gerçekten dik olduğu sonucuna varıyoruz: .

Bu arada normal vektörleri kullanabilirsiniz, daha da kolay.

2) Noktanın sonuç denklemini karşılayıp karşılamadığını kontrol edin .

Testin sözlü olarak yapılması yine kolaydır.

Örnek 7

Denklem biliniyorsa dik doğruların kesişme noktasını bulun ve dönem.

Bu kendi başınıza çözebileceğiniz bir örnektir. Problemde çeşitli eylemler vardır, bu nedenle çözümü nokta nokta formüle etmek uygundur.

Heyecan verici yolculuğumuz devam ediyor:

Noktadan çizgiye mesafe

Önümüzde düz bir nehir şeridi var ve görevimiz ona en kısa yoldan ulaşmak. Hiçbir engel yok ve en uygun rota dikey olarak hareket etmek olacaktır. Yani bir noktadan bir çizgiye olan mesafe, dik parçanın uzunluğudur.

Geometride mesafe geleneksel olarak Yunanca “rho” harfiyle gösterilir, örneğin: – “em” noktasından “de” düz çizgisine olan mesafe.

Noktadan çizgiye mesafe formülle ifade edilir

Örnek 8

Bir noktadan bir çizgiye olan mesafeyi bulun

Çözüm: Tek yapmanız gereken sayıları formülde dikkatlice yerine koymak ve hesaplamaları yapmaktır:

Cevap:

Çizimi yapalım:

Noktadan çizgiye olan mesafe tam olarak kırmızı parçanın uzunluğu kadardır. Kareli kağıda 1 birim ölçekte bir çizim çizerseniz. = 1 cm (2 hücre) ise mesafe sıradan bir cetvelle ölçülebilir.

Aynı çizime dayalı başka bir görevi ele alalım:

Görev, düz çizgiye göre noktaya simetrik olan bir noktanın koordinatlarını bulmaktır. . Adımları kendiniz gerçekleştirmenizi öneririm, ancak çözüm algoritmasını ara sonuçlarla birlikte özetleyeceğim:

1) Doğruya dik olan bir doğru bulun.

2) Doğruların kesişme noktasını bulun: .

Her iki eylem de bu derste ayrıntılı olarak tartışılmaktadır.

3) Nokta, doğru parçasının orta noktasıdır. Ortanın ve uçlardan birinin koordinatlarını biliyoruz. İle bir parçanın orta noktasının koordinatları için formüller bulduk .

Mesafenin de 2,2 birim olduğunu kontrol etmek iyi bir fikir olacaktır.

Burada hesaplamalarda zorluklar ortaya çıkabilir, ancak bir mikro hesap makinesi kulede çok yardımcı olur ve saymanıza olanak tanır ortak kesirler. Size defalarca tavsiyede bulundum ve yine tavsiye edeceğim.

İki paralel çizgi arasındaki mesafe nasıl bulunur?

Örnek 9

İki paralel çizgi arasındaki mesafeyi bulun

Bu da kendi başınıza karar vermeniz için başka bir örnek. Size küçük bir ipucu vereceğim: Bunu çözmenin sonsuz sayıda yolu var. Dersin sonunda bilgilendirme, ancak kendi başınıza tahmin etmeye çalışmak daha iyidir, bence yaratıcılığınız oldukça gelişmiştir.

İki düz çizgi arasındaki açı

Her köşe bir pervazdır:


Geometride, iki düz çizgi arasındaki açı DAHA KÜÇÜK açı olarak alınır ve bundan otomatik olarak geniş olamayacağı sonucu çıkar. Şekilde kırmızı yay ile gösterilen açı, kesişen doğrular arasındaki açı olarak kabul edilmemektedir. Ve onun “yeşil” komşusu veya zıt yönlü"ahududu" köşesi.

Doğrular birbirine dik ise 4 açıdan herhangi biri aralarındaki açı olarak alınabilir.

Açılar nasıl farklı? Oryantasyon. İlk olarak, açının "kaydırıldığı" yön temel olarak önemlidir. İkinci olarak, negatif yönlü bir açı eksi işaretiyle yazılır, örneğin eğer .

Bunu sana neden söyledim? Görünüşe göre alışılagelmiş açı kavramıyla idare edebiliriz. Gerçek şu ki, açıları bulacağımız formüller kolaylıkla olumsuz sonuçla sonuçlanabiliyor ve bu sizi şaşırtmamalı. Eksi işaretli bir açı daha da kötü değildir ve çok özel bir geometrik anlamı vardır. Çizimde negatif açı için yönünü bir okla (saat yönünde) belirttiğinizden emin olun.

İki düz çizgi arasındaki açı nasıl bulunur?İki çalışma formülü vardır:

Örnek 10

Çizgiler arasındaki açıyı bulun

Çözüm Ve Birinci yöntem

Genel formdaki denklemlerle tanımlanan iki düz çizgiyi ele alalım:

Düz ise dik değil, O odaklı Aralarındaki açı aşağıdaki formül kullanılarak hesaplanabilir:

Paydaya çok dikkat edelim - bu tam olarak skaler çarpım Düz çizgilerin yönlendirici vektörleri:

Eğer öyleyse, formülün paydası sıfır olur ve vektörler dik, çizgiler dik olur. Bu nedenle formülasyonda düz çizgilerin dik olmaması konusunda bir çekince konulmuştur.

Yukarıdakilere dayanarak çözümü iki adımda resmileştirmek uygundur:

1) Doğruların yön vektörlerinin skaler çarpımını hesaplayalım:
Bu, çizgilerin dik olmadığı anlamına gelir.

2) Aşağıdaki formülü kullanarak düz çizgiler arasındaki açıyı bulun:

Kullanarak ters fonksiyon Köşenin kendisini bulmak kolaydır. Bu durumda arktanjantın tuhaflığını kullanırız (bkz. Temel fonksiyonların grafikleri ve özellikleri):

Cevap:

Cevabınızda, hesap makinesi kullanılarak hesaplanan kesin değerin yanı sıra yaklaşık değeri de (tercihen hem derece hem de radyan cinsinden) belirtiyoruz.

Eksi, eksi, pek de önemli değil. İşte geometrik bir çizim:

Açının negatif bir yönelime sahip olması şaşırtıcı değildir, çünkü problem ifadesinde ilk sayı düz bir çizgidir ve açının "gevşetilmesi" tam olarak onunla başlamıştır.

Gerçekten pozitif bir açı elde etmek istiyorsanız çizgileri değiştirmeniz, yani ikinci denklemdeki katsayıları almanız gerekir. ve ilk denklemin katsayılarını alın. Kısacası, doğrudan başlamanız gerekir. .

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Siteye bir başvuru gönderdiğinizde adınız, telefon numaranız, e-posta adresiniz vb. gibi çeşitli bilgileri toplayabiliriz.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Topladığımız kişisel bilgiler, benzersiz teklifler, promosyonlar, diğer etkinlikler ve yaklaşan etkinlikler konusunda sizinle iletişim kurmamıza olanak tanır.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri, sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak amacıyla denetimler, veri analizi ve çeşitli araştırmalar yapmak gibi şirket içi amaçlarla da kullanabiliriz.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde - yasaya, adli prosedüre, yasal işlemlere uygun olarak ve/veya kamunun talep veya taleplerine dayanarak Devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

Bir noktadan bir çizgiye olan uzaklık, o noktadan çizgiye çizilen dikmenin uzunluğudur. Tanımlayıcı geometride aşağıda verilen algoritma kullanılarak grafiksel olarak belirlenir.

Algoritma

  1. Düz çizgi herhangi bir projeksiyon düzlemine paralel olacak bir konuma taşınır. Bu amaçla dik projeksiyonları dönüştürme yöntemleri kullanılır.
  2. Bir noktadan bir doğruya bir dik çizilir. Bu yapı dik açının izdüşümüne ilişkin teoreme dayanmaktadır.
  3. Bir dikmenin uzunluğu, izdüşümlerinin dönüştürülmesi veya dik üçgen yöntemi kullanılarak belirlenir.

Aşağıdaki şekil, CD doğru parçasıyla tanımlanan M noktası ve b çizgisinin karmaşık bir çizimini göstermektedir. Aralarındaki mesafeyi bulmanız gerekiyor.

Algoritmamıza göre yapılacak ilk şey düz çizgiyi konuma taşımaktır. düzleme paralel projeksiyonlar. Dönüşümler gerçekleştirildikten sonra nokta ile çizgi arasındaki gerçek mesafenin değişmemesi gerektiğini anlamak önemlidir. Bu nedenle burada, uzayda hareket eden figürleri içermeyen düzlem değiştirme yöntemini kullanmak uygundur.

İnşaatın ilk aşamasının sonuçları aşağıda gösterilmiştir. Şekil, b'ye paralel olarak ilave bir ön düzlem P4'ün nasıl yerleştirildiğini göstermektedir. İÇİNDE yeni sistem(P 1, P 4) C"" 1, D"" 1, M"" 1 noktaları X ekseni 1'den C"", D"", M"" ile X ekseninden aynı uzaklıkta bulunmaktadır.

Algoritmanın ikinci bölümünü gerçekleştirerek, M"" 1'den M"" 1 N"" 1 dik çizgisini b"" 1 düz çizgisine indiriyoruz, çünkü b ve MN arasındaki MND dik açısı P düzlemine yansıtılıyor. 4 tam boy. İletişim hattını kullanarak N" noktasının konumunu belirliyoruz ve MN segmentinin M"N" projeksiyonunu gerçekleştiriyoruz.

Açık son aşama MN segmentinin boyutunu M"N" ve M"" 1 N"" 1 projeksiyonlarından belirlemeniz gerekir. Bunu yapmak için, N"" 1 N 0 ayağı M" ve N" noktalarının mesafesinin farkına (Y M 1 – Y N 1) eşit olan bir M"" 1 N"" 1 N 0 dik üçgeni oluşturuyoruz. X 1 ekseninden. M"" 1 N"" 1 N 0 üçgeninin M"" 1 N 0 hipotenüsünün uzunluğu, M'den b'ye istenen mesafeye karşılık gelir.

İkinci çözüm

  • CD'ye paralel olarak yeni bir ön düzlem P 4'ü tanıtıyoruz. P 1 ile X 1 ekseni boyunca ve X 1 ∥C"D" ile kesişir. Düzlemleri değiştirme yöntemine uygun olarak, şekilde gösterildiği gibi C"" 1, D"" 1 ve M"" 1 noktalarının projeksiyonlarını belirliyoruz.
  • C"" 1 D"" 1'e dik olarak, üzerine b düz çizgisinin C" 2 = b" 2 noktasına yansıtıldığı ek bir yatay P 5 düzlemi inşa ediyoruz.
  • M noktası ile b çizgisi arasındaki mesafe, kırmızıyla gösterilen M" 2 C" 2 segmentinin uzunluğu ile belirlenir.

Benzer görevler: