Menü
Ücretsiz
Kayıt
Ev  /  Cilt hastalıklarına yönelik hazırlıklar/ Modüllü logaritmik denklemler, çözüm örnekleri. Logaritmik denklemler. Basitten karmaşığa

Modüllü logaritmik denklemler, çözüm örnekleri. Logaritmik denklemler. Basitten karmaşığa

Logaritmik denklemler. Basitten karmaşığa.

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

Logaritmik denklem nedir?

Bu logaritmalı bir denklemdir. Şaşırdım, değil mi?) O zaman açıklığa kavuşturacağım. Bu bilinmeyenlerin (x'lerin) ve onlarla ifadelerin bulunduğu bir denklemdir Logaritmaların içinde. Ve sadece orada! Bu önemli.

İşte bazı örnekler logaritmik denklemler :

günlük 3 x = günlük 3 9

günlük 3 (x 2 -3) = günlük 3 (2x)

log x+1 (x 2 +3x-7) = 2

lg 2 (x+1)+10 = 11lg(x+1)

Peki, anlıyorsun... )

Not! X'li en çeşitli ifadeler bulunur yalnızca logaritmalar dahilinde. Eğer aniden denklemin bir yerinde bir X belirirse dıştan, Örneğin:

log 2 x = 3+x,

bu bir denklem olacak karışık tip. Bu tür denklemlerin çözümü için açık kurallar yoktur. Şimdilik bunları dikkate almayacağız. Bu arada, logaritmaların içinde olduğu denklemler var Sadece sayılar. Örneğin:

Ne söyleyebilirim? Bununla karşılaşırsan şanslısın! Sayılarla logaritma bir miktar. Bu kadar. Böyle bir denklemi çözmek için logaritmanın özelliklerini bilmek yeterlidir. Özel kurallar bilgisi ve özellikle çözüme uyarlanmış teknikler logaritmik denklemler, burada gerekli değil.

Bu yüzden, logaritmik denklem nedir- çözdük.

Logaritmik denklemler nasıl çözülür?

Çözüm logaritmik denklemler- olay aslında çok basit değil. Yani bölümümüz dört... İlgili her türlü konu hakkında yeterli miktarda bilgi gereklidir. Ayrıca bu denklemlerin bir özelliği daha var. Ve bu özellik o kadar önemlidir ki, logaritmik denklemlerin çözümünde güvenle ana problem olarak adlandırılabilir. Bir sonraki dersimizde bu sorunu ayrıntılı olarak ele alacağız.

Şimdilik endişelenmeyin. Doğru yola gideceğiz basitten karmaşığa. Açık spesifik örnekler. Önemli olan basit şeyleri araştırmak ve bağlantıları takip etmekte tembel olmayın, onları oraya koymamın bir nedeni var... Ve her şey sizin için yoluna girecek. Mutlaka.

En temel, en basit denklemlerle başlayalım. Bunları çözmek için logaritma hakkında bir fikre sahip olmanız tavsiye edilir, ancak daha fazlası değil. Hiçbir fikrim yok logaritma, bir karar almak logaritmik denklemler - bir şekilde garip bile... Çok cesur diyebilirim).

En basit logaritmik denklemler.

Bunlar formun denklemleridir:

1. log 3 x = log 3 9

2. log 7 (2x-3) = log 7 x

3. log 7 (50x-1) = 2

Çözüm süreci herhangi bir logaritmik denklem logaritmalı bir denklemden logaritmasız bir denkleme geçişten oluşur. En basit denklemlerde bu geçiş tek adımda gerçekleştirilir. Bu yüzden en basitleridir.)

Ve bu tür logaritmik denklemlerin çözülmesi şaşırtıcı derecede kolaydır. Kendin için gör.

İlk örneği çözelim:

günlük 3 x = günlük 3 9

Bu örneği çözmek için neredeyse hiçbir şey bilmenize gerek yok, evet… Tamamen sezgi!) Neye ihtiyacımız var? özellikle bu örneği beğenmediniz mi? Ne-ne... Logaritmalardan hoşlanmıyorum! Sağ. Öyleyse onlardan kurtulalım. Örneğe yakından baktığımızda içimizde doğal bir istek doğuyor... Kesinlikle karşı konulmaz! Logaritmaları tamamen alın ve atın. Ve iyi olan şu ki Olabilmek Yapmak! Matematik izin verir. Logaritmalar kayboluyor cevap:

Harika, değil mi? Bu her zaman yapılabilir (ve yapılmalıdır). Logaritmaları bu şekilde ortadan kaldırmak, logaritmik denklemleri ve eşitsizlikleri çözmenin ana yollarından biridir. Matematikte bu işleme denir potansiyelizasyon. Elbette bu tür tasfiyelerin kuralları var ama sayıları az. Hatırlamak:

Aşağıdaki durumlarda logaritmaları korkmadan ortadan kaldırabilirsiniz:

a) aynı sayısal tabanlar

c) soldan sağa logaritmalar saftır (herhangi bir katsayı olmadan) ve muhteşem bir izolasyondadır.

Son noktaya açıklık getireyim. Denklemde diyelim ki

log 3 x = 2 log 3 (3x-1)

Logaritmalar kaldırılamaz. Sağdaki ikisi buna izin vermiyor. Katsayı, bilirsiniz... Örnekte

log 3 x+log 3 (x+1) = log 3 (3+x)

Denklemin kuvvetlendirilmesi de imkansızdır. Sol tarafta yalnız logaritma yoktur. İki tane var.

Kısacası denklem şu şekilde görünüyorsa ve yalnızca şu şekilde ise logaritmaları kaldırabilirsiniz:

log a (.....) = log a (.....)

Üç noktanın bulunduğu parantez içinde şunlar olabilir: herhangi bir ifade. Basit, süper karmaşık, her türden. Her neyse. Önemli olan logaritmaları ortadan kaldırdıktan sonra elimizde kalan şey daha basit bir denklem. Elbette doğrusal, ikinci dereceden, kesirli, üstel ve diğer denklemleri logaritma olmadan nasıl çözeceğinizi zaten bildiğiniz varsayılmaktadır.)

Artık ikinci örneği kolayca çözebilirsiniz:

log 7 (2x-3) = log 7 x

Aslında akılda kararlaştırılmıştır. Potansiyelleştiririz, şunu elde ederiz:

Peki çok mu zor?) Gördüğünüz gibi, logaritmik Denklemin çözümünün bir kısmı sadece logaritmaların ortadan kaldırılmasında... Ve sonra onlarsız kalan denklemin çözümü geliyor. Önemsiz bir mesele.

Üçüncü örneği çözelim:

log 7 (50x-1) = 2

Sol tarafta bir logaritma olduğunu görüyoruz:

Bu logaritmanın, sublogaritmik bir ifade elde etmek için tabanının yükseltilmesi gereken (yani yedi) bir sayı olduğunu hatırlayalım; (50x-1).

Ama bu sayı iki! Denklem'e göre. Yani:

Temelde hepsi bu. Logaritma ortadan kayboldu, Geriye zararsız bir denklem kalıyor:

Bu logaritmik denklemi yalnızca logaritmanın anlamına dayanarak çözdük. Logaritmaları ortadan kaldırmak hala daha kolay mı?) Katılıyorum. Bu arada ikiden logaritma yaparsanız bu örneği yok etme yoluyla çözebilirsiniz. Herhangi bir sayı logaritmaya dönüştürülebilir. Üstelik ihtiyacımız olan şekilde. Logaritmik denklemlerin ve (özellikle!) eşitsizliklerin çözümünde çok faydalı bir teknik.

Bir sayıdan logaritmayı nasıl çıkaracağınızı bilmiyor musunuz? Önemli değil. Bölüm 555 bu tekniği ayrıntılı olarak açıklamaktadır. Bunda ustalaşabilir ve sonuna kadar kullanabilirsiniz! Hata sayısını büyük ölçüde azaltır.

Dördüncü denklem tamamen benzer bir şekilde çözülür (tanım gereği):

Bu kadar.

Bu dersi özetleyelim. Örnekleri kullanarak en basit logaritmik denklemlerin çözümüne baktık. Bu çok önemli. Ve sadece bu tür denklemler testlerde ve sınavlarda göründüğü için değil. Gerçek şu ki, en kötü ve karmaşık denklemler bile mutlaka en basitine indirgenir!

Aslında en basit denklemler çözümün son kısmıdır herhangi denklemler. Ve bu son kısım kesinlikle anlaşılmalıdır! Ve ilerisi. Bu sayfayı sonuna kadar okuduğunuzdan emin olun. Orada bir sürpriz var...)

Artık kendimiz karar veriyoruz. Tabiri caizse iyileşelim...)

Denklemlerin kökünü (veya birden fazla varsa köklerin toplamını) bulun:

ln(7x+2) = ln(5x+20)

günlük 2 (x 2 +32) = günlük 2 (12x)

log 16 (0,5x-1,5) = 0,25

log 0,2 (3x-1) = -3

ln(e 2 +2x-3) = 2

günlük 2 (14x) = günlük 2 7 + 2

Cevaplar (tabii ki darmadağın): 42; 12; 9; 25; 7; 1.5; 2; 16.

Ne, her şey yolunda gitmiyor mu? Olur. Merak etme! Bölüm 555, tüm bu örneklerin çözümünü açık ve ayrıntılı bir şekilde açıklamaktadır. Kesinlikle orada çözeceksin. Ayrıca faydalı pratik teknikleri de öğreneceksiniz.

Her şey yolunda gitti!? Tüm “bir tane kaldı” örnekleri?) Tebrikler!

Acı gerçeği size açıklamanın zamanı geldi. Bu örneklerin başarılı bir şekilde çözülmesi, diğer tüm logaritmik denklemlerin çözümünde başarıyı garanti etmez. Bunun gibi en basit olanları bile. Ne yazık ki.

Gerçek şu ki, herhangi bir logaritmik denklemin çözümü (en temel olanı bile!) aşağıdakilerden oluşur: iki eşit parça. Denklemin çözümü ve ODZ ile çalışma. Bir kısımda uzmanlaştık; denklemin çözümü. O kadar da zor değil Sağ?

Bu ders için DL'nin cevabı hiçbir şekilde etkilemediği örnekleri özel olarak seçtim. Ama herkes benim kadar nazik değil, değil mi?...)

Bu nedenle diğer kısma hakim olmak zorunludur. ODZ. Logaritmik denklemlerin çözümündeki temel problem budur. Ve zor olduğu için değil - bu kısım ilkinden bile daha kolay. Ama çünkü insanlar ODZ'yi unutuyorlar. Veya bilmiyorlar. Ya da her ikisi de). Ve birdenbire düşüyorlar...

Bir sonraki derste bu problemle ilgileneceğiz. O zaman güvenle karar verebilirsiniz herhangi basit logaritmik denklemler ve oldukça sağlam görevlere yaklaşma.

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

ana özellikler.

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

aynı gerekçeler

Log6 4 + log6 9.

Şimdi görevi biraz karmaşıklaştıralım.

Logaritma çözme örnekleri

Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Elbette tüm bu kurallar, logaritmanın ODZ'sine uyulduğu takdirde anlamlıdır: a > 0, a ≠ 1, x >

Görev. İfadenin anlamını bulun:

Yeni bir temele geçiş

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Görev. İfadenin anlamını bulun:

Ayrıca bakınız:


Logaritmanın temel özellikleri

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır.

Logaritmanın temel özellikleri

Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.


Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.

3.

4. Nerede .



Örnek 2. Eğer x'i bulun


Örnek 3. Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer




Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor - onlar olmadan tek bir ciddi sorun çözülemez. logaritmik problem. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Not: önemli an Burada - aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller hesaplamanıza yardımcı olacaktır logaritmik ifade tek tek parçaları sayılmasa bile (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçoğu bu gerçek üzerine inşa edilmiştir sınav kağıtları. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Bunu fark etmek kolaydır son kural ilk ikisini takip ediyor. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz.

Logaritma formülleri. Logaritma örnek çözümleri.

Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden logaritmanın tabanının ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller nadiren geleneksel olarak bulunur. sayısal ifadeler. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısının b kuvveti bu kuvvete a sayısını verecek kadar yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa - logaritma sıfıra eşit! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Ayrıca bakınız:

b'nin a tabanına göre logaritması ifadeyi belirtir. Logaritmayı hesaplamak, eşitliğin sağlandığı x () kuvvetini bulmak anlamına gelir

Logaritmanın temel özellikleri

Logaritmalarla ilgili hemen hemen tüm problemler ve örnekler temel alınarak çözüldüğü için yukarıdaki özellikleri bilmek gerekir. Egzotik özelliklerin geri kalanı bu formüllerle matematiksel manipülasyonlar yoluyla elde edilebilir.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmaların toplamı ve farkı formülünü (3.4) hesaplarken oldukça sık karşılaşırsınız. Geri kalanı biraz karmaşıktır ancak bazı görevlerde karmaşık ifadeleri basitleştirmek ve değerlerini hesaplamak için vazgeçilmezdirler.

Yaygın logaritma durumları

Yaygın logaritmalardan bazıları, tabanın on, üstel veya iki olduğu logaritmalardır.
On tabanına göre logaritmaya genellikle ondalık logaritma denir ve basitçe lg(x) ile gösterilir.

Kayıtta esasların yazılmadığı kayıttan anlaşılıyor. Örneğin

Doğal logaritma, tabanı bir üs olan (ln(x) ile gösterilir) bir logaritmadır.

Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır. Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.

Ve ikinci tabanın bir diğer önemli logaritması şu şekilde gösterilir:

Bir fonksiyonun logaritmasının türevi, birin değişkene bölünmesine eşittir

İntegral veya ters türev logaritması ilişkiyle belirlenir.

Verilen materyal, logaritma ve logaritmalarla ilgili çok çeşitli problemleri çözmeniz için yeterlidir. Materyali anlamanıza yardımcı olmak için okul müfredatından ve üniversitelerden yalnızca birkaç yaygın örnek vereceğim.

Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.
Logaritmanın farkının özelliği ile elimizdeki

3.
Bulduğumuz özellikler 3.5'i kullanarak

4. Nerede .

Görünüşte karmaşık bir ifade, bir dizi kural kullanılarak basitleştirilerek oluşturulur

Logaritma değerlerini bulma

Örnek 2. Eğer x'i bulun

Çözüm. Hesaplama için son terim 5 ve 13'ün özelliklerine başvuruyoruz.

Bunu kayda geçirdik ve yas tuttuk

Tabanlar eşit olduğundan ifadeleri eşitliyoruz

Logaritmalar. İlk seviye.

Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer

Çözüm: Değişkenin logaritmasını alarak terimlerinin toplamı üzerinden logaritmasını yazalım.


Bu, logaritmalar ve özellikleriyle tanışmamızın sadece başlangıcıdır. Hesaplamalar yapın, pratik becerilerinizi zenginleştirin; yakında logaritmik denklemleri çözmek için edindiğiniz bilgilere ihtiyacınız olacak. Bu tür denklemleri çözmenin temel yöntemlerini inceledikten sonra, bilginizi eşit derecede önemli başka bir konuya, logaritmik eşitsizliklere genişleteceğiz...

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Görev. İfadenin değerini bulun: log6 4 + log6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden logaritmanın tabanının ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısının b kuvveti bu kuvvete a sayısını verecek kadar yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

giriiş

Logaritmalar hesaplamaları hızlandırmak ve basitleştirmek için icat edildi. Logaritma fikri yani sayıları aynı tabanın kuvvetleri olarak ifade etme fikri Mikhail Stiefel'e aittir. Ancak Stiefel'in zamanında matematik bu kadar gelişmemişti ve logaritma fikri de gelişmemişti. Logaritmalar daha sonra İskoç bilim adamı John Napier (1550-1617) ve İsviçreli Jobst Burgi (1552-1632) tarafından eşzamanlı ve birbirinden bağımsız olarak icat edildi. Napier, çalışmayı 1614'te yayınlayan ilk kişi oldu. "Açıklama" başlıklı muhteşem masa Logaritmalar”, Napier'in logaritma teorisi oldukça eksiksiz bir ciltte verildi, logaritma hesaplama yöntemi en basit olarak verildi, bu nedenle Napier'in logaritmanın icadındaki değeri Bürgi'ninkinden daha büyüktü. Bürgi, Napier'le aynı zamanda masalarda çalışıyordu ama uzun zamandır bunları gizli tuttu ve ancak 1620'de yayınladı. Napier, 1594 civarında logaritma fikrinde ustalaştı. tablolar 20 yıl sonra yayınlanmış olmasına rağmen. İlk başta logaritmalarına "yapay sayılar" adını verdi ve ancak daha sonra bu "yapay sayılara" tek kelimeyle "logaritma" adını vermeyi önerdi; bu, Yunancadan çevrildiğinde, biri aritmetik ilerlemeden, diğeri ise bir aritmetik ilerlemeden alınan "bağıntılı sayılar" anlamına gelir. Bunun için özel olarak seçilmiş geometrik ilerleme. Rusça'daki ilk tablolar 1703'te yayınlandı. 18. yüzyılın harika bir öğretmeninin katılımıyla. L. F. Magnitsky. Logaritma teorisinin geliştirilmesinde büyük önem Petersburglu akademisyen Leonhard Euler'in çalışmaları vardı. Logaritmayı bir kuvvete yükseltmenin tersi olarak düşünen ilk kişi oydu; "logaritma tabanı" ve "mantis" terimlerini tanıttı. Briggs, 10 tabanlı logaritma tabloları derledi. Ondalık tablolar pratik kullanım için daha uygundur, teorileri Napier'in logaritmasından daha basittir. Bu yüzden ondalık logaritmalar bazen brig denir. "Karakterizasyon" terimi Briggs tarafından tanıtıldı.

Bilgelerin bilinmeyen miktarlar içeren eşitlikler hakkında ilk kez düşünmeye başladıkları o uzak zamanlarda, muhtemelen madeni para veya cüzdan yoktu. Ancak bilinmeyen sayıda öğeyi tutabilecek depolama önbelleklerinin rolü için mükemmel olan yığınların yanı sıra tencere ve sepetler de vardı. Mezopotamya'nın, Hindistan'ın, Çin'in, Yunanistan'ın eski matematik problemlerinde bilinmeyen nicelikler, bahçedeki tavus kuşlarının sayısını, sürüdeki boğaların sayısını ve mal paylaşımında dikkate alınan şeylerin toplamını ifade ediyordu. Hesap bilimi konusunda iyi eğitimli katipler, yetkililer ve inisiyeler gizli bilgi Rahipler bu tür görevlerle oldukça başarılı bir şekilde başa çıktılar.

Bize ulaşan kaynaklar, eski bilim adamlarının bazı genel teknikler Bilinmeyen miktarlarla ilgili problemleri çözme. Ancak tek bir papirüs veya kil tablette bu tekniklerin açıklaması yer almıyor. Yazarlar sayısal hesaplamalarına yalnızca ara sıra "Bak!", "Bunu yap!", "Doğru olanı buldun" gibi kısa yorumlarda bulundular. Bu anlamda istisna, Yunan matematikçi İskenderiyeli Diophantus'un (III. Yüzyıl) “Aritmetiği”dir - çözümlerinin sistematik bir sunumuyla denklem oluşturmaya yönelik bir problemler koleksiyonu.

Ancak sorunları çözmeye yönelik yaygın olarak bilinen ilk el kitabı, 9. yüzyıldaki Bağdatlı bilim adamının çalışmasıydı. Muhammed bin Musa el-Harezmi. Bu risalenin Arapça ismi olan "Kitab al-jaber wal-mukabala" ("Restorasyon ve muhalefet kitabı") olan "el-cebr" kelimesi zamanla çok iyi bilinen "cebir" kelimesine dönüştü ve el- Khwarizmi'nin çalışması denklem çözme biliminin gelişiminde başlangıç ​​noktasını oluşturdu.

Logaritmik denklemler ve eşitsizlikler

1. Logaritmik denklemler

Logaritma işareti altında veya tabanında bir bilinmeyen içeren bir denkleme logaritmik denklem denir.

En basit logaritmik denklem, formun bir denklemidir

kayıt A X = B . (1)

Açıklama 1. Eğer A > 0, A≠ 1, herhangi bir gerçek için denklem (1) B benzersiz bir çözümü var X = bir b .

Örnek 1. Denklemleri çözün:

a)günlük 2 X= 3, b) log 3 X= -1, c)

Çözüm. İfade 1'i kullanarak şunu elde ederiz: a) X= 2 3 veya X= 8; B) X= 3 -1 veya X= 1/3; C)

veya X = 1.

Logaritmanın temel özelliklerini sunalım.

P1. Temel logaritmik kimlik:

Nerede A > 0, A≠ 1 ve B > 0.

P2. Pozitif faktörlerin çarpımının logaritması toplamına eşit bu faktörlerin logaritmaları:

kayıt A N 1 · N 2 = günlük A N 1 + günlük A N 2 (A > 0, A ≠ 1, N 1 > 0, N 2 > 0).


Yorum. Eğer N 1 · N 2 > 0 ise P2 özelliği şu formu alır

kayıt A N 1 · N 2 = günlük A |N 1 | + günlük A |N 2 | (A > 0, A ≠ 1, N 1 · N 2 > 0).

P3. İki pozitif sayının bölümünün logaritması, bölünen ile bölenin logaritmaları arasındaki farka eşittir

(A > 0, A ≠ 1, N 1 > 0, N 2 > 0).

Yorum. Eğer

, (bu eşdeğerdir N 1 N 2 > 0) o zaman P3 özelliği şu şekli alır (A > 0, A ≠ 1, N 1 N 2 > 0).

P4. Pozitif bir sayının kuvvetinin logaritması, üssün çarpımına ve bu sayının logaritmasına eşittir:

kayıt A N k = k kayıt A N (A > 0, A ≠ 1, N > 0).

Yorum. Eğer k - çift ​​sayı (k = 2S), O

kayıt A N 2S = 2S kayıt A |N | (A > 0, A ≠ 1, N ≠ 0).

P5. Başka bir üsse geçmenin formülü:

(A > 0, A ≠ 1, B > 0, B ≠ 1, N > 0),

özellikle eğer N = B, alıyoruz

(A > 0, A ≠ 1, B > 0, B ≠ 1). (2)

P4 ve P5 özelliklerini kullanarak aşağıdaki özellikleri elde etmek kolaydır

(A > 0, A ≠ 1, B > 0, C ≠ 0), (3) (A > 0, A ≠ 1, B > 0, C ≠ 0), (4) (A > 0, A ≠ 1, B > 0, C ≠ 0), (5)

ve eğer (5)'te ise C- çift sayı ( C = 2N), meydana gelmek

(B > 0, A ≠ 0, |A | ≠ 1). (6)

Ana özellikleri listeliyoruz logaritmik fonksiyon F (X) = günlük A X :

1. Logaritmik bir fonksiyonun tanım alanı pozitif sayılar kümesidir.

2. Logaritmik fonksiyonun değer aralığı gerçek sayılar kümesidir.

3. Ne zaman A> 1 logaritmik fonksiyon kesinlikle artıyor (0< X 1 < X 2 günlük A X 1 < logA X 2) ve 0'da< A < 1, - строго убывает (0 < X 1 < X 2 günlük A X 1 > günlük A X 2).

4.günlük A 1 = 0 ve log A A = 1 (A > 0, A ≠ 1).

5. Eğer A> 1 ise logaritmik fonksiyon negatiftir: X(0;1) ve pozitif X(1;+∞) ve eğer 0 ise< A < 1, то логарифмическая функция положительна при X (0;1) ve negatif X (1;+∞).

6. Eğer A> 1 ise logaritmik fonksiyon yukarıya doğru dışbükeydir ve eğer A(0;1) - aşağı doğru dışbükey.

Logaritmik denklemleri çözerken aşağıdaki ifadeler (örneğin bkz.) kullanılır.

Logaritmik denklemlerin çözümü. Bölüm 1.

Logaritmik denklem bilinmeyenin logaritmanın işareti altında (özellikle logaritmanın tabanında) yer aldığı bir denklemdir.

En basit logaritmik denklemşu forma sahiptir:

Herhangi bir logaritmik denklemi çözme logaritmalardan logaritma işareti altındaki ifadelere geçişi içerir. Ancak bu eylem kapsamı genişletir kabul edilebilir değerler denklem ve yabancı köklerin ortaya çıkmasına neden olabilir. Yabancı köklerin ortaya çıkmasını önlemek için, üç yoldan birini yapabilirsiniz:

1. Eşdeğer bir geçiş yapın orijinal denklemden aşağıdakileri içeren bir sisteme

hangi eşitsizliğin veya daha basit olduğuna bağlı olarak.

Denklem logaritmanın tabanında bir bilinmeyen içeriyorsa:

daha sonra sisteme geçiyoruz:

2. Denklemin kabul edilebilir değerlerinin aralığını ayrı ayrı bulun, ardından denklemi çözün ve bulunan çözümlerin denklemi karşılayıp karşılamadığını kontrol edin.

3. Denklemi çözün ve ardından kontrol etmek: Bulunan çözümleri orijinal denklemde yerine koyun ve doğru eşitliği elde edip etmediğimizi kontrol edin.

Herhangi bir karmaşıklık düzeyindeki logaritmik denklem, sonuçta her zaman en basit logaritmik denkleme indirgenir.

Tüm logaritmik denklemler dört türe ayrılabilir:

1 . Yalnızca birinci kuvvete göre logaritma içeren denklemler. Dönüşümler ve kullanımlar yardımıyla forma getirilirler.

Örnek. Denklemi çözelim:

Logaritma işareti altındaki ifadeleri eşitleyelim:

Denklemin kökünün sağlanıp sağlanmadığını kontrol edelim:

Evet tatmin ediyor.

Cevap: x=5

2 . 1'den farklı kuvvetlerin logaritmasını içeren denklemler (özellikle bir kesrin paydasında). Bu tür denklemler kullanılarak çözülebilir değişken değişikliğinin tanıtılması.

Örnek. Denklemi çözelim:

ODZ denklemini bulalım:

Denklem logaritmanın karesini içerdiğinden değişken değişikliği kullanılarak çözülebilir.

Önemli! Bir değiştirme yapmadan önce, logaritmanın özelliklerini kullanarak denklemin parçası olan logaritmaları "tuğlalara" "parçalamanız" gerekir.

Logaritmaları "parçalarken" logaritmanın özelliklerini çok dikkatli kullanmak önemlidir:

Ayrıca burada ince bir nokta daha var ve sık yapılan bir hatadan kaçınmak için ara eşitlik kullanacağız: logaritmanın derecesini şu şekilde yazacağız:

Aynı şekilde,

Ortaya çıkan ifadeleri orijinal denklemde yerine koyalım. Şunu elde ederiz:

Şimdi bilinmeyenin denklemin bir parçası olarak yer aldığını görüyoruz. Değiştirmeyi tanıtalım: . Herhangi bir gerçek değeri alabileceği için değişkene herhangi bir kısıtlama getirmiyoruz.

Bu derste logaritmalarla ilgili temel teorik gerçekleri gözden geçireceğiz ve en basit logaritmik denklemleri çözmeyi ele alacağız.

Merkezi tanımı, logaritmanın tanımını hatırlayalım. Kararla alakalı üstel denklem. Bu denklemin tek bir kökü vardır ve buna b'nin a tabanına göre logaritması denir:

Tanım:

B'nin a tabanına göre logaritması, b'yi elde etmek için a tabanının yükseltilmesi gereken üstür.

Size hatırlatalım temel logaritmik kimlik.

İfade (ifade 1) denklemin köküdür (ifade 2). İfade 1'deki x değerini x yerine ifade 2'ye koyun ve ana logaritmik özdeşliği elde edin:

Yani her değerin bir değerle ilişkilendirildiğini görüyoruz. b'yi x() ile, c'yi y ile gösteririz ve böylece logaritmik bir fonksiyon elde ederiz:

Örneğin:

Logaritmik fonksiyonun temel özelliklerini hatırlayalım.

Burada bir kez daha dikkat edelim, çünkü logaritmanın altında logaritmanın tabanı olarak kesinlikle pozitif bir ifade olabilir.

Pirinç. 1. Farklı tabanlara sahip logaritmik fonksiyonun grafiği

Fonksiyonun grafiği siyah renkte gösterilmiştir. Pirinç. 1. Eğer argüman sıfırdan sonsuza artarsa, fonksiyon eksiden artı sonsuza artar.

Fonksiyonun grafiği kırmızıyla gösterilmiştir. Pirinç. 1.

Bu fonksiyonun özellikleri:

İhtisas: ;

Değer aralığı: ;

Fonksiyon, tüm tanım alanı boyunca monotondur. Monoton olarak (kesinlikle) arttığında, daha yüksek değer argüman fonksiyonun daha büyük değerine karşılık gelir. Monoton olarak (kesinlikle) azaldığında, argümanın daha büyük bir değeri, fonksiyonun daha küçük bir değerine karşılık gelir.

Logaritmik fonksiyonun özellikleri çeşitli logaritmik denklemleri çözmenin anahtarıdır.

En basit logaritmik denklemi ele alalım, diğer tüm logaritmik denklemler kural olarak bu forma indirgenir.

Logaritmanın tabanları ve logaritmanın kendisi eşit olduğundan, logaritmanın altındaki fonksiyonlar da eşittir, ancak tanım alanını kaçırmamalıyız. Logaritma yalnızca ayakta durabilir pozitif sayı, sahibiz:

f ve g fonksiyonlarının eşit olduğunu bulduk, dolayısıyla ODZ'ye uymak için herhangi bir eşitsizliği seçmenin yeterli olduğunu gördük.

Böylece, bir denklemin ve bir eşitsizliğin olduğu karma bir sistemimiz var:

Kural olarak, bir eşitsizliği çözmek gerekli değildir; denklemi çözmek ve bulunan kökleri eşitsizliğin yerine koymak ve böylece bir kontrol yapmak yeterlidir.

En basit logaritmik denklemleri çözmek için bir yöntem formüle edelim:

Logaritmanın tabanlarını eşitleyin;

Sublogaritmik fonksiyonları eşitleyin;

Kontrol gerçekleştirin.

Belirli örneklere bakalım.

Örnek 1 - denklemi çözün:

Logaritmanın tabanları başlangıçta eşittir, alt logaritmik ifadeleri eşitleme hakkına sahibiz, ODZ'yi unutmayın, eşitsizliği oluşturmak için ilk logaritmayı seçiyoruz:

Örnek 2 - denklemi çözün:

Bu denklem öncekinden farklıdır çünkü logaritmanın tabanları birden az ancak bu, çözümü hiçbir şekilde etkilemez:

Kökü bulalım ve eşitsizliğin yerine koyalım:

Yanlış bir eşitsizlik aldık, bu da bulunan kökün ODZ'yi karşılamadığı anlamına geliyor.

Örnek 3 - denklemi çözün:

Logaritmanın tabanları başlangıçta eşittir, alt logaritmik ifadeleri eşitleme hakkımız var, ODZ'yi unutmayın, eşitsizliği oluşturmak için ikinci logaritmayı seçiyoruz:

Kökü bulalım ve eşitsizliğin yerine koyalım:

Açıkçası, yalnızca ilk kök ODZ'yi karşılıyor.