Меню
Бесплатно
Главная  /  Ячмень  /  Вторичную биологическую продукцию в экосистемах создают. Продуктивность вторичная

Вторичную биологическую продукцию в экосистемах создают. Продуктивность вторичная

С каждым годом человек все больше и больше истощает ресурсы планеты. Неудивительно, что в последнее время огромное значение приобретает оценка того, как много ресурсов может дать тот или иной биоценоз. Сегодня продуктивность экосистемы имеет решающее значение при выборе способа хозяйствования, так как от количества продукции, которое может быть получено, напрямую зависит экономическая обоснованность работ.

Вот основные вопросы, которые сегодня стоят перед учеными:

  • Сколько солнечной энергии доступно и сколько ассимилируется растениями, как это измерено?
  • У каких самая высокая производительность и какие дают больше всего первичной продукции?
  • Какие количество в местном масштабе и во всем мире?
  • Какова эффективность, с которой энергия преобразуется растениями?
  • Каковы различия между эффективностью ассимиляции, чистой продукции и экологической эффективностью?
  • Как экосистемы отличаются по количеству биомассы или объему
  • Сколько энергии доступно людям и сколько мы используем?

Мы постараемся хотя бы частично ответить на них в рамках этой статьи. Во-первых, разберемся с основными понятиями. Итак, продуктивностью экосистемы называется процесс накопления органического вещества в определенном объеме. Какие же организмы ответственны за эту работу?

Автотрофы и гетеротрофы

Мы знаем, что некоторые организмы способны к синтезированию органических молекул из неорганических предшественников. Их называют автотрофами, что означает "самокормление". Собственно, продуктивность экосистем зависит именно от их деятельности. Автотрофы также упоминаются как первичные продуценты. Организмы, которые в состоянии производить сложные органические молекулы из простых неорганических веществ (вода, CO2), чаще всего относятся к классу растений, но теми же способностями обладают некоторые бактерии. Процесс, при помощи которого они синтезируют органику, называется фотохимическим синтезом. Как нетрудно понять из названия, фотосинтез требует наличия солнечного света.

Мы также должны упомянуть путь, известный как хемосинтез. Некоторые автотрофы, главным образом специализированные бактерии, могут преобразовать неорганические питательные вещества в органические соединения без доступа солнечного света. Есть несколько групп в морской и пресной воде, причем особенно часто они встречаются в средах с повышенным содержанием сероводорода или серы. Как хлорофиллоносные растения и другие организмы, способные к фотохимическому синтезу, хемосинтетические организмы - автотрофы. Впрочем, продуктивностью экосистемы называется скорее деятельность растительности, так как именно она отвечает за накопление более 90 % органического вещества. Хемосинтез играет в этом несоизмеримо меньшую роль.

Меж тем, многие организмы могут получать необходимую энергию, только питаясь другими организмами. Их называют гетеротрофами. В принципе, к ним относятся все те же растения (они тоже «едят» готовую органику), животные, микробы, грибы и микроорганизмы. Гетеротрофов также называют «потребителями».

Роль растений

Как правило, под словом «продуктивность» в этом случае понимается способность растений запасать определенное количество органического вещества. И в этом нет ничего удивительного, так как только растительные организмы могут преобразовывать неорганические вещества в органические. Без них сама жизнь на нашей планете была бы невозможна, а потому и продуктивность экосистемы рассматривается с этой позиции. В общем, вопрос ставится крайне просто: так какую массу органического вещества способны запасти растения?

Какие биоценозы являются наиболее продуктивными?

Как ни странно, но созданные человеком биоценозы являются далеко не самыми продуктивными. Джунгли, болота, сельвы крупных тропических рек в этом плане их далеко опережают. Кроме того, именно эти биоценозы обезвреживают громадное количество токсических веществ, которые, опять-таки, попадают в природу в результате человеческой деятельности, а также вырабатывают более 70 % кислорода, содержащегося в атмосфере нашей планеты. Кстати, во многих учебниках до сих пор утверждается, что наиболее продуктивной «житницей» являются океаны Земли. Как ни странно, но это утверждение очень далеко от истины.

«Океанический парадокс»

Знаете, с чем сравнивается биологическая продуктивность экосистем морей и океанов? С полупустынями! Большие же объемы биомассы объясняются тем, что именно водные просторы занимают большую часть поверхности планеты. Так что неоднократно предсказанное использование морей в качестве основного источника питательных веществ для всего человечества в ближайшие годы вряд ли возможно, так как экономическая обоснованность подобного крайне низка. Впрочем, низкая продуктивность экосистем этого типа ни в коей мере не умаляет важности океанов для жизни всего живого, так что их нужно охранять как можно более тщательным образом.

Современные экологи говорят, что возможности сельскохозяйственных угодий далеко не исчерпаны, и в будущем мы сможем получать с них более обильные урожаи. Особые надежды возлагают на которые могут давать огромное количество ценной органики за счет своих уникальных характеристик.

Основные сведения о продуктивности биологических систем

В общем и целом продуктивность экосистемы определяется скоростью фотосинтеза и накопления органических веществ в том или ином биоценозе. Та масса органики, которая создается за единицу времени, называется первичной продукцией. Выразить ее можно двумя способами: или в Джоулях, или же в сухой массе растений. Валовой продукцией называется ее объем, созданный растительными организмами за определенную единицу времени, при постоянной скорости процесса фотосинтеза. Следует помнить, что часть этого вещества пойдет на жизнедеятельность самих растений. Оставшаяся после этого органика - чистая первичная продуктивность экосистемы. Именно она идет на питание гетеротрофов, к числу которых относимся и мы с вами.

Есть ли «верхний предел» первичной продукции?

Если говорить кратко, то "да". Давайте вкратце рассмотрим, насколько в принципе эффективен процесс фотосинтеза. Вспомните, что интенсивность солнечной радиации, достигающей поверхности земли, сильно зависит от местоположения: максимальная энергетическая отдача характерна для экваториальных зон. Она уменьшается по экспоненте по мере приближения к полюсам. Примерно половина солнечной энергии отражается льдом, снегом, океанами или пустынями, поглощается газами в атмосфере. Например, слой озона атмосферы абсорбирует почти все ультрафиолетовое излучение! Только половина света, который попадает на листья растений, используется в реакции фотосинтеза. Так что биологическая продуктивность экосистем - результат преобразования ничтожной части энергии солнца!

Что такое вторичная продукция?

Соответственно, вторичной продукцией называется прирост консументов (то есть потребителей) за какой-то определенный промежуток времени. Конечно, продуктивность экосистемы от них зависит в намного меньшей степени, но именно эта биомасса играет важнейшую роль в жизни человека. Следует учесть, что вторичную органику отдельно подсчитывают на каждом трофическом уровне. Таким образом, виды продуктивности экосистемы делятся на два типа: первичный и вторичный.

Соотношение первичной и вторичной продукции

Как можно догадаться, соотношение биомассы и общей растительной массы сравнительно невелико. Даже в джунглях и болотах этот показатель редко превышает отметку в 6,5 %. Чем больше травянистых растений в сообществе, тем выше скорость накопления органики и тем значительнее расхождение.

О скорости и объемах образования органических веществ

Вообще предельная скорость образования органического вещества первичного происхождения полностью зависит от состояния фотосинтетического аппарата растений (ФАР). Максимальное значение эффективности фотосинтеза, которое было достигнуто в лабораторных условиях, составляет 12 % от величины ФАР. В природных же условиях и значение в 5 % считается предельно высоким и практически не встречается. Считается, что на Земле усвоение солнечного света не превышает 0,1 %.

Распределение первичной продукции

Следует отметить, что продуктивность природной экосистемы - штука крайне неравномерная в масштабах всей планеты. Общая масса всего органического вещества, которое ежегодно образуется на поверхности Земли, составляет порядка 150-200 млрд тонн. Помните, что мы говорили о продуктивности океанов выше? Так вот, 2/3 этого вещества образуются на суше! Только представьте себе: гигантские, неимоверные объемы гидросферы образуют в три раза меньше органики, чем мизерная часть суши, немалую часть которой представляют пустыни!

Более 90 % накопленной органики в том или ином виде идет на пищу гетеротрофным организмам. Лишь ничтожная часть солнечной энергии запасается в виде почвенного гумуса (а также нефти и угля, образование которых идет даже сегодня). На территории нашей страны прирост первичной биологической продукции варьирует от 20 ц/га (близ Северного Ледовитого океана) до более 200 ц/га на Кавказе. В пустынных областях эта величина не превышает 20 ц/га.

В принципе, на пяти теплых континентах нашего мира интенсивность продуцирования практически не отличается, почти: в Южной Америке растительность накапливает раза в полтора больше сухого вещества, что обусловлено отличными климатическими условиями. Там продуктивность природных и искусственных экосистем максимальна.

Что обеспечивает питание людей?

Приблизительно 1,4 млрд Га занимают на поверхности нашей планеты плантации культивируемых человеком растений, которые обеспечивают нас с вами пищей. Это - приблизительно 10 % от всех экосистем планеты. Как ни странно, но только половина получаемой продукции идет непосредственно в пищу людям. Все остальное используется в качестве корма для домашних животных и идет на нужды промышленного производства (не относящегося к выпуску продуктов питания). Ученые уже давно бьют тревогу: продуктивность и биомасса экосистем нашей планеты способны обеспечить не более 50 % потребностей человечества в белке. Проще говоря, половина населения планеты живет в условиях хронического белкового голодания.

Биоценозы-рекордсмены

Как мы уже и говорили, наибольшей продуктивностью характеризуются экваториальные леса. Только вдумайтесь: на один гектар такого биоценоза может приходиться более 500 тонн сухого вещества! И это далеко не предел. В Бразилии, к примеру, один гектар леса продуцирует от 1200 до 1500 тонн (!) органического вещества за год! Вдумайтесь только: на квадратный метр приходится до двух центнеров органики! В тундрах на той же площади образуется не более 12 т, а в лесах средней полосы - в пределах 400 т. Этим активно пользуются сельскохозяйственные хозяйства в тех краях: продуктивность искусственной экосистемы в виде поля сахарного тростника, который может накопить до 80 тонн сухого вещества на гектар, больше нигде таких урожаев не сможет дать физически. Впрочем, слабо отличаются от них заливы Ориноко, Миссисипи, а также некоторые области Чада. Здесь за год экосистемы «выдают» до 300 тонн вещества на гектар площади!

Итоги

Таким образом, оценку продуктивности следует проводить именно по первичному веществу. Дело в том, что вторичная продукция составляет не более 10 % от этого значения, ее величина сильно колеблется, а потому делать подробный анализ этого показателя попросту невозможно.

В процессе жизнедеятельности биоценоза создается и расходуется органическое вещество, т. е. соответствующая экосистема обладает определенной продуктивностью биомассы. Биомассу измеряют в единицах массы или выражают количеством энергии, заключенной в тканях.

Понятия «продукция» и «продуктивность» в экологии (как и в биологии) имеют различный смысл.

Продуктивность - это скорость производства биомассы в единицу времени, которую нельзя взвесить, а можно только рассчитать в единицах энергии или накопления органических веществ. В качестве синонима термина «продуктивность» Ю. Одум предложил использовать термин «скорость продуцирования».

Продуктивность экосистемы говорит о ее «богатстве». В богатом или продуктивном сообществе больше организмов, чем в менее продуктивном, хотя иногда бывает и наоборот, когда организмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, урожай травы на корню богатого пастбища, выедаемого скотом, может быть гораздо меньше, чем на менее продуктивном пастбище, на которое не выгоняли скот.

Различают также продуктивность текущую и общую. Например, в некоторых конкретных условиях 1 га соснового леса способен за период своего существования и роста образовать 200 м 3 древесной массы - это его общая продуктивность. Однако за один год этот лес создает всего лишь около 2 м 3 древесины, что является текущей продуктивностью или годовым приростом.

При поедании одних организмов другими пища (вещество и энергия) переходит с одного трофического уровня на последующий. Непереваренная часть пищи выбрасывается. Животные, обладающие пищеварительным каналом, выделяют фекалии (экскременты) и конечные органические отходы метаболизма (экскреты), например мочевину; и в том, и в другом случае содержится некоторое количество энергии. Как животные, так и растения теряют часть энергии при дыхании.

Энергию, оставшуюся после потерь из-за дыхания, пищеварения, экскреции, организмы используют для роста, размножения и процессов жизнедеятельности (мышечная работа, поддержание температуры теплокровных животных и пр.). Затраты энергии на терморегуляцию зависят от климатических условий и времени года, особенно велики различия между гомойотермными и пойкилотермными животными. Теплокровные, получив преимущество при неблагоприятных и нестабильных условиях среды, потеряли в продуктивности.

Расход потребленной животными энергии определяется уравнением

РОСТ + ДЫХАНИЕ (ЖИЗНЕДЕЯТЕЛЬНОСТЬ) + РАЗМНОЖЕНИЕ +

ФЕКАЛИИ + ЭКСКРЕТЫ = ПОТРЕБЛЕННАЯ ПИЩА.

В целом, травоядные усваивают пищу почти в два раз менее эффективно, чем хищники. Это объясняется тем, что растения содержат большое количество целлюлозы, а порой и древесины (включающей целлюлозу и лигнин), которые плохо перевариваются и не могут служить источником энергии для большинства травоядных. Энергия, заключенная в экскрементах и экскретах, передается детритофагам и редуцентам, поэтому для экосистемы, в целом, она не теряется.

Сельскохозяйственные животные всегда, даже при содержании на пастбище на подножном корму, отличаются более высокой продуктивностью, т. е. способностью более эффективно использовать потребленный корм для создания продукции. Главная причина состоит в том, что эти животные освобождены от значительной части энергетических расходов, связанных с поиском корма, с защитой от врагов, непогоды и т. д.

Первичная продуктивность экосистемы, сообщества или любой их части определяется как скорость, с которой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или химического синтеза (хемопродуцентами). Эта энергия материализуется в виде органических веществ тканей продуцентов.

Принято выделять четыре последовательные ступени (или стадии) процесса производства органического вещества:

валовая первичная продуктивность - общая скорость накопления органических веществ продуцентами (скорость фотосинтеза), включая те, что были израсходованы на дыхание и секреторные функции. Растения на процессы жизнедеятельности тратят примерно 20 % производимой химической энергии;

чистая первичная продуктивность - скорость накопления органических веществ за вычетом тех, что были израсходованы при дыхании и секреции за изучаемый период. Эта энергия может быть использована организмами следующих трофических уровней;

чистая продуктивность сообщества - скорость общего накопления органических веществ, оставшихся после потребления гетеротрофами - консументами (чистая первичная продукция минус потребление гетеротрофами). Она обычно измеряется за какой-то период, например вегетационный период роста и развития растений или за год в целом;

вторичная продуктивность - скорость накопления энергии консументами. Ее не делят на «валовую» и «чистую», так как консументы потребляют лишь ранее созданные (готовые) питательные вещества, расходуя их на дыхание и секреторные нужды, а остальное превращая в собственные ткани. Ежегодно на суше растения образуют в пересчете на сухое вещество 1,7 · 10 11 т биомассы, эквивалентной 3,2·10 18 кДж энергии - такова чистая первичная продуктивность. Однако с учетом затраченного на дыхание валовая первичная продуктивность (работоспособность) наземной растительности составляет около 4,2 10 18 кДж.

Показатели первичной и вторичной продуктивности для основных экосистем приведены в табл. 8.1.

Таблица 8.1. Первичная и вторичная продуктивность экосистем Земли (по Н. Ф. Реймерсу)

Экосистемы Площадь, млн км 2 Средняя чистая первичная продуктивность, г/см 2 в год Общая чистая первичная продуктивность, млрд т в год Вторичная продуктив-ность, млн т в год
Континентальные (в целом) в том числе:
влажные тропические леса 37,4
вечнозеленые леса умеренных широт 6,5
листопадные леса умеренных широт 8,4
тайга 9,6
саванна 13,5
тундры 1,1
пустыни и полупустыни 1,6
болота 4,0
озера и водотоки 0,5
земли, возделываемые человеком 9,1
Морские (в целом) в том числе: 55,0
открытый океан 41,5
апвелинги (зоны подъема вод) 0,4 0,2
континентальный шельф 9,6
рифы и заросли водорослей 0,6 1,6
эстуарии 1,4 2,1
биосфера (в целом) 170,0

Первичная продукция, доступная гетеротрофам, а человек относится именно к ним, составляет максимум 4 % от общей энергии Солнца, поступающей к поверхности Земли. Поскольку на каждом трофическом уровне энергия теряется, для всеядных организмов (в том числе и для человека) наиболее эффективный способ извлечения энергии - потребление растительной пищи (вегетарианство). Однако необходимо учитывать также следующее:

Животный белок содержит больше незаменимых аминокислот, и лишь некоторые бобовые (например, соя) приближаются к нему по своей ценности;

Растительный белок переваривается труднее, чем животный, из-за необходимости предварительно разрушить жесткие клеточные стенки;

В ряде экосистем животные добывают пищу на большой территории, где не выгодно выращивать культурные растения (это неплодородные земли, на которых пасутся овцы или северные олени).

Так, у человека около 8 % белков ежедневно выводится из организма (с мочой) и вновь синтезируется. Для полноценного питания необходимо сбалансированное поступление аминокислот, подобных тем, что содержатся в тканях животных.

При отсутствии какой-либо важной для организма человека аминокислоты (например, в злаках) при метаболизме усваивается меньшая доля белков. Сочетание в рационе питания бобовых и зерновых обеспечивает лучшее использование белка, чем при потреблении каждого из этих видов пищи в отдельности.

В более плодородных прибрежных водах продуцирование приурочено к верхнему слою воды толщиной около 30 м, а в более чистых, но бедных водах открытого моря зона первичного продуцирования может простираться вглубь на 100 м и ниже. Поэтому прибрежные воды выглядят темно-зелеными, а океанические - синими. Во всех водах пик фотосинтеза приходится на слой воды, расположенный непосредственно под поверхностным слоем, так как циркулирующий в воде фитопланктон адаптирован к сумеречному освещению и яркий солнечный свет тормозит его жизненные процессы.


Похожая информация.


Продуктивность экосистем

Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений. Безостановочное производство биомассы (живой материи) - один из фундаментальных процессов биосферы. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называют первичной продукцией экосистемы (сообщества). Количественно ее выражают в сырой или сухой массе растений или в энергетических единицах -эквивалентном числе ккалорий или джоулей. Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в экосистеме (рис. 12.33).

Рис. 12.33. Первичная продукция больших подразделений

биосферы (из Ф. Рамада, 1981)

Примечание: интенсивность продукции пропорциональна густоте штриховки

Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. А как известно, лишь часть энергии света, получаемой зеленой поверхностью, может быть использована растениями. Из коротковолнового излучения Солнца только 44% относится к фотосинтетически активной радиации (ФАР) - свет по длине волны, пригодный для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза 10-12% энергии ФАР, что составляет около половины от теоретически возможного, отмечается в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5% считается очень высоким для фитоценоза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 % из-за ограничения фотосинтетической активности растений множеством факторов, среди них таких, как недостаток тепла и влаги, неблагоприятные физические и химические свойства почвы и т. д. Средний коэффициент использования энергии ФАР для территории России равен 0,8%, на европейской части страны составляет 1,0-1,2%, а в восточных районах, где условия увлажнения менее благоприятны, не превышает 0,4- 0,8%. Скорость, с которой растения накапливают химическую энергию, называют валовой первичной продуктивностью (ВПП). Около 20% этой энергии расходуется растениями и?1| дыхание и фотодыхание. Скорость накопления органического веще4| ства за вычетом этого расхода называется чистой первичной иро-| дуктивностью (ЧПП). Это энергия, которую могут использовать| организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называется вторичной продукцией. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, в конечном итоге живут за счет чистой первичной продукции сообщества. Полнота ее расхода в разных экосистемах различна. Постеленное увеличение общей биомассы продуцентов отмечается, если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений.

Мировое распределение первичной биологической продукции весьма неравномерно. Чистая продукция меняется от 3000 г/м 2 /год до нуля в экстрааридных пустынях, лишенных растений, или в условиях Антарктиды с ее вечными льдами на поверхности суши, а запас биомассы - соответственно от 60 кг/м 2 до нуля. Р. Уиттекер (1980) делит по продуктивности все сообщества на четыре класса.

1. Сообщества высшей продуктивности, 3000-2000 г/м 2 /год. Сюда относятся тропические леса, посевы риса и сахарного тростника. Запас биомассы в этом классе продуктивности весьма различен и превышает 50 кг/м 2 в лесных сообществах и равен продуктивности у однолетних сельскохозяйственных культур.

2. Сообщества высокой продуктивности, 2000-1000 г/м 2 /год. В этот класс включены листопадные леса умеренной полосы, луга при применении удобрений, посевы кукурузы. Максимальная биомасса приближается к биомассе первого класса. Минимальная биомасса соответственно равна чистой биологической продукции однолетних культур.

3. Сообщества умеренной продуктивности, 1000-250 г/м 2 /год. К этому классу относится основная масса возделываемых сельскохозяйственных культур, кустарники, степи. Биомасса степей меняется в пределах 0,2-5 кг/м 2 .

4. Сообщества низкой продуктивности, ниже 250 г/м^год - пустыни, полупустыни (в отечественной литературеих называют чаще опустыненными степями), тундры.

Биомасса и первичная продуктивность основных типов экосистем представлена в табл. 12.6.

Таблица 12.6

Биомасса и первичная продуктивность основных типов экосистем (по Т. Д. Акимовой, В. В. Хаскину, 1994)

На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного периода (сезона). Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га в Краснодарском крае, на Черноморском по-1 бережье Кавказа (рис. 12.34).

Рис. 12.34. Запасы фитомассы (А) основных экосистем европейской I территории России и соотношение (в %) частей фитомассы (Б):

1 - зеленые части растений; 2- надземные многолетние одревес- " несшие части; 3 - подземные части

Общая годовая продуктивность сухого органического вещества на Земле составляет 150-200 млрд т. Две трети его образуется на суше, третья часть - в океане.

Практически вся чистая первичная продукция Земли служит для поддержки жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, гумусе почв и органических осадках водоемов. Питание людей большей частью обеспечивается сельскохозяйственными культурами, занимающими около 10% площади суши. Годовой прирост культурных растений равен примерно 16% всей продуктивности суши, большая часть которой приходится на леса.



Половина урожая идет непосредственно на питание людей, остальное - на корм домашним животным, используется в промышленности и теряется в отходах. Всего человек потребляет около 0,2% первичной продукции Земли. Ресурсы, имеющиеся на Земле, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно только 50% потребностей современного населения Земли.

За успехам и в мировом производстве продовольствия скрывается тот факт, что с 1950 по 1988 г. среднедушевое производство продовольствия сократилось в 43 развивающихся странах (22 африканские страны), где проживает каждый седьмой житель планеты. Самый большой спад наблюдается в Африке. Здесь в период между I960 и 1988 г. среднее производство продовольствия в перерасчете на душу населения упало на 21 %. Предполагается, что в ближайшие 25 лет оно сократится еще на 30%. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день.

Следовательно, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством.

Динамика экосистем

Сложение экосистем - динамический процесс. В экосистемах постоянно происходят изменения в состоянии и жизнедеятельности их членов и соотношении популяций. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.

Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов. Суточная динамика экосистем связана главным образом с ритмикой природных явлений и носит строго периодический характер. Нами уже было рассмотрено, что в каждом биоценозе имеются группы организмов, активность жизни у которых приходится на разное время суток. Одни активны днем, другие - ночью. Отсюда в составе и в соотношении отдельных видов биоценоза той или иной экосистемы происходят периодические изменения, так как отдельные организмы на определенное время выключаются из него. Суточную динамику биоценоза обеспечивают как животные, так и растения. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов - ночью не происходит фотосинтез, нередко у растений цветки раскрываются только в ночные часы и опыляются ночными животными, другие приспособлены к опылению днем. Суточная динамика в биоценозах, как правило, выражена тем сильнее, чем значительнее разница температур, влажности и других факторов среды днем и ночью.

Более значительные отклонения в биоценозах наблюдаются при сезонной динамике. Это обусловлено биологическими циклами организмов, которые зависят от сезонной цикличности явлений природы. Так, смена времени года значительное влияние оказывает на жизнедеятельность животных и растений (спячка, зимний сон, диапауза и миграции у животных; периоды цветения, плодоношения, активного роста, листопада и зимнего покоя у растений). Сезонной изменчивости подвержена нередко и ярусная структура биоценоза. Отдельные ярусы растений в соответствующие сезоны года могут полностью исчезать, например, состоящий из однолетников травянистый ярус. Длительность биологических сезонов в разных широтах неодинакова. В связи с этим сезонная динамика биоценозов арктической, умеренной и тропической зон различна. Она выражена наиболее четко в экосистемах умеренного климата и в северных широтах.

Многолетняя изменчивость является нормальной в жизни любого биоценоза. Так, количество осадков, выпадающих в Барабинской лесостепи, резко колеблется по годам, ряд засушливых лет чередуется с многолетним периодом обилия осадков. Тем самым оказывается существенное влияние на растения и животных. При этом происходит выработка экологических ниш - функциональное размежевание в возникающем множестве или его дополнение при малом разнообразии.

Многолетние изменения в составе биоценозов повторяются и в связи с периодическими изменениями общей циркуляции атмосферы, в свою очередь, обусловленной усилением или ослаблением солнечной активности.

В процессе суточной и сезонной динамики целостность биоценозов обычно не нарушается. Биоценоз испытывает лишь периодические колебания качественных и количественных характеристик.

Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов. Причинами подобных смен могут являться внешние по отношению к биоценозу факторы, действующие длительное время в одном направлении, например увеличивающееся загрязнение водоемов, возрастающее в результате мелиорации иссушение болотных почв, усиленный выпас скота и т. д. Данные смены одного биоценоза другим называют экзогенети-ческими. В том случае, когда усиливающее влияние фактора приводит к постепенному упрощению структуры биоценоза, обеднению их состава, снижению продуктивности, подобные смены называют дигрессивными или дигрессиями.

Эндогенетические смены возникают в результате процессов, которые происходят внутри самого биоценоза. Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession - последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат - оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит таким образом смена господствующих видов. Здесь четко прослеживается правило (принцип) экологического дублирования (рис. 12.35). Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями.

Рис. 12.35. Потоки энергии и механизм обеспечения

надежности биотических систем в биосфере

(по Н. Ф. Реймерсу, 1994):

1, 2, З... - потоки энергии через виды; а-а... - связи между ними, А - состояние до исчезновения вида; Б - вид 3 исчез, проходившие через него потоки энергии идут через дублирующие виды 2 и 4

На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, - зарастание небольшого озера с последующим появлением на его месте болота, а затем леса (рис. 12.36).

Рис. 12.36. Сукцессия при зарастании небольшого озера

(по А.О. Рувинскому и др., 1993)

Вначале по краям озера образуется сплавна - плавающий ковер из осок, мхов и других растений. Постоянно озеро заполняется отмершими остатками растений - торфом. Образуется болото, постепенно зарастающее лесом. Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.

Сукцессии в природе чрезвычайно разномасштабны. Их можно наблюдать в банках с культурами, представляющими собой планктонные сообщества - различные виды плавающих водорослей и их потребителей - коловраток, жгутиковых в лужах и прудах, на заброшенных пашнях, выветрившихся скалах и др. В организации экосистем иерархичность проявляется и в сукцессионных процессах - более крупные преобразования биоценозов складываются из более мелких. В стабильных экосистемах с отрегулированным круговоротом веществ также постоянно осуществляются локальные сукцессионные смены, поддерживающие сложную внутреннюю структуру сообществ.

Типы сукцессионных смен. Выделяют два главных типа сукцессионных смен: 1 - с участием автотрофного и гетеротрофного населения; 2 - с участием только гетеротрофов. Сукцессии второго типа совершаются лишь в таких условиях, где создается предварительный запас или постоянное поступление органических соединений, за счет которых и существует сообщество: в кучах или буртах навоза, в разлагающейся растительной массе, в загрязненных органическими веществами водоемах и т. д.

Процесс сукцессии. По Ф. Клементсу (1916), процесс сукцессии состоит из следующих этапов: 1. Возникновение незанятого жизнью участка. 2. Миграция на него различных организмов или их зачатков. 3. Приживание их на данном участке. 4. Конкуренции их между собой и вытеснение отдельных видов. 5. Преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений. Сукцессии со сменой растительности могут быть первичными и вторичными.

Первичной сукцессией называется процесс развития и смены экосистем на незаселенных ранее участках, начинающихся с их колонизации. Классический пример - постоянное обрастание голых скал с развитием в конечном итоге на них леса. Так, в первичных сукцессиях, протекающих на скалах Уральских гор, различают следующие этапы.

1. Поселение эндолитических и накипных лишайников, сплошь покрывающих каменистую поверхность. Накипные лишайники несут своеобразную микрофлору и содержат богатую фауну простейших, коловраток, нематод. Мелкие клещи - сапрофаги и пер-вичнобескрылые насекомые обнаруживаются сначала только в трещинах. Активность всего населения прерывиста, отмечается главным образом после выпадения осадков в виде дождя или смачивания скал влагой туманов. Данные сообщества организмов называют пионерными.

2. Преобладание листоватых лишайников, которые постепенно образуют сплошной ковер. Под круговинками лишайников в результате выделяемых ими кислот и механического сокращения слоевищ при высыхании образуются выщербленности, идет отмирание слоевищ и накопление детрита. В большом количестве под лишайниками встречаются мелкие членистоногие: коллемболы, панцирные клещи, личинки комаров-толкунчиков, сеноеды и другие. Образуется микрогоризонт, состоящий из их экскрементов.

3. Поселение литофильных мхов Hedwidia u Pleurozium schreberi. Под ними погребаются лишайники и подлишайниковые пленочные почвы. Ризоиды мхов здесь прикрепляются не к камню, а к мелкозему, который имеет мощность не менее 3 см. Колебания температуры и влажности под мхами в несколько раз меньше, чем под лишайниками. Усиливается деятельность микроорганизмов, увеличивается разнообразие групп животных.

4. Появление гипновых мхов и сосудистых растений. В разложении растительных остатков и формировании почвенного профиля постепенно уменьшается роль мелких членистоногих и растет участие более крупных беспозвоночных - сапрофагов: энхитреид, дождевых червей, личинок насекомых.

5. Заселение крупными растениями, способствующее дальнейшему накоплению и образованию почвы. Ее слой оказывается достаточным для развития кустарников и деревьев. Их опадающие листья и ветви не дают расти мхам и большинству других мелких видов, начавших сукцессию. Так, постепенно на изначально голых скалах идет процесс смены лишайников мхами, мхов травами и наконец лесом. Такие сукцессии в геоботанике называют экогенетически-ми, так как они ведут к преобразованию самого местообитания.

Вторичная сукцессия - это восстановление экосистемы, когда-то уже существовавшей на данной территории. Она начинается в том случае, если уже в сложившемся биоценозе нарушены установившиеся взаимосвязи организмов в результате извержения вулкана, пожара, вырубки, вспашки и т. д. Смены, ведущие к восстановлению прежнего биоценоза, получили название в геоботанике демутационных. Примером может служить динамика видового, разнообразия на острове, Кракатау после полного уничтожения аборигенной флоры и фауны вулканическим взрывом в 1893 году (рис. 12.37).

Рис. 12.37. Динамика видового разнообразия на о. Кракатау после

полного уничтожения аборигенной флоры и фауны вулканическим

взрывом в 1893 г. (по Р. МакАртуру и Е. О. Вильсону, 1967)

Примечание крестики - число видов растений, светлые кружки - число видов гнездящихся птиц, зачерненные кружки - суммарное число видов растений и животных

Другой пример, вторичная сукцессия сибирского темно-хвойного леса (пихтово-кедровой тайги) после опустошительного лесного пожара (рис. 12.38). На более выжженных местах из спор, занесенных ветром, появляются мхи-пионеры: через 3-5лет после пожара наиболее обильны «пожарный мох» -Funaria hygrometrica, Geratodon; purpureus, и др. Из высших растений весьма быстро заселяют гари Иван-чай (Chamaenerion angustifolium), который уже через 2-3 месяца обильно цветет на пожарище, а также вейник наземный (Calamagrostis epigeios) и другие виды.

Рис. 12.38. Вторичная сукцессия сибирского темно-хвойного леса

(пихтово-кедровой тайги) после опустошительного лесного пожара

(по Н. Ф. Реймерсу, 1990)

Примечание: числа в прямоугольниках - колебания в длительности прохождения фаз вторичной сукцессии (в скобках указан срок их окончания). Биомасса и биологическая продуктивность показаны в произвольном масштабе (кривые отражают качественную и количественную стороны процесса)

Наблюдается дальнейшее происхождение фаз сукцессии: вейниковый луг сменяется кустарниками, затем березовым или осиновым лесом, смешанным сосново-лиственным лесом, сосновым лесом, сосново-кедровым лесом, и, наконец, через 250 лет происходит восстановление кедрово-пихтового леса.

Вторичные сукцессии совершаются, как правило, быстрее и легче, чем первичные, так как в нарушенном местообитании сохраняется почвенный профиль, семена, зачатки и часть прежнего населения и прежних связей. Демутация не является повторением какого-либо этапа первичных сукцессии.

Климаксовоя экосистема. Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют относительно посто-яннуючисленностьидальнейшейсменыеесоставанепроисходит. Такое равновесное состояние называют климаксом, а экосистему - кли-максовой. В разных абиотических условиях формируются неодинаковые климаксовые экосистемы. В жарком и влажном климате это будет дождевой тропический лес, в сухом и жарком - пустыня. Основные биомы земли - это климаксовые экосистемы соответствующих географических областей.

Изменения в экосистеме во время сукцессии. Продуктивность и биомасса. Как уже отмечалось, сукцессия является закономерным, направленным процессом, а изменения, которые происходят на той или иной ее стадии, свойственны любому сообществу и не зависят от его видового состава или географического местоположения. Основными называют четыре типа сукцесси-онных изменений.

1. В процессе сукцессии виды растений и животных непрерывно сменяются. 2. Сукцессионные изменения всегда сопровождаются повышением видового разнообразия организмов. 3. Биомасса органического вещества увеличивается по ходу сукцессии. 4. Снижение чистой продукции сообщества и повышение интенсивности дыхания - важнейшие явления сукцессии.

Следует также отметить, что смена фаз сукцессии идет в соответствии с определенными правилами. Каждая фаза готовит среду для возникновения последующей. Здесь действует закон последовательности прохождения фаз развития: фазы развития природной системы могут следовать лишь в эволюционно закрепленном (исторически, экологически обусловленном) порядке, обычно от относительно простого к сложному, как правило, без выпадения промежуточных этапов, но, возможно, с очень быстрым их прохождением или эволюционно закрепленным отсутствием. Когда экосистема приближается к состоянию климакса, в ней, как и во всех равновесных системах, происходит замедление всех процессов развития. Это положение находит отражение в законе сукцессионного замедления: процессы, идущие в зрелых равновесных экосистемах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов. При этом восстановительный тип сукцессии меняется на вековой их ход, т. е. саморазвитие идет в пределах климакса или узлового развития. Эмпирический закон сукцессионного замедления является следствием правила Г. Одума и Р. Пинкертона, или правила максимума энергии поддержания зрелой системы: сукцессия идет в направлении фундаментального сдвига потока энергии в сторону увеличения ее количества, направленного на поддержание системы. Правило Г. Одума и Р. Пинкертона, в свою очередь, базируется на правиле максимума энергии в биологических системах, сформулированном А. Лоткой. Вопрос этот в дальнейшем был хорошо разработан Р. Маргалефом, Ю. Одумом и известен как доказательство принципа «нулевого максимума», или минимализации прироста в зрелой экосистеме: экосистема в сукцессионном развитии стремится к образованию наибольшей биомассы при наименьшей биологической продуктивности.

Линдеман (1942) экспериментально доказал, что сукцессии сопровождаются повышением продуктивности вплоть до климаксового сообщества, в котором превращение энергии происходит наиболее эффективно. Данные исследований сукцессии дубовых и дубово-ясеневых лесов показывают, что на поздних стадиях их продуктивность действительно возрастает. Однако при переходе к кли-максному сообществу обычно происходит снижение общей продуктивности. Таким образом, продуктивность в старых лесах ниже, чем в молодых, которые, в свою очередь, могут иметь меньшую продуктивность, чем предшествовавшие им более богатые видами ярусы травянистых растений. Сходное падение продуктивности наблюдается и в некоторых водных системах. Для этого есть несколько причин. Одна из них то, что накопление питательных веществ в растущей биомассе леса на корню может вести к уменьшению их круговорота. Снижение общей продуктивности могло быть просто результатом уменьшения жизненности особей по мере увеличения их среднего возраста в сообществе.

По мере прохождения сукцессии все большая доля доступных питательных веществ накапливается в биомассе сообщества, и соответственно уменьшается их содержание в абиотическом компоненте экосистемы (в почве или воде).

Возрастает также количество образующегося детрита. Главными первичными консументами становятся не травоядные, а детритоядные организмы. Соответствующие изменения происходят и в трофических сетях. Детрит становится основным источником питательных веществ.

В ходе сукцессии увеличивается замкнутость биогеохимических круговоротов веществ. Примерно за 10 лет с момента начала восстановления растительного покрова разомкнутость круговоротов уменьшается со 100 до 10%, а далее она еще больше снижается, достигая минимума в климаксовой фазе. Правило увеличения замкнутости биогеохимического круговорота веществ в ходе сукцессии, со всей уверенностью можно утверждать, нарушается антропогенной трансформацией растительности и вообще естественных экосистем. Несомненно, это ведет к длинному ряду аномалий в биосфере и ее подразделениях.

Снижение разнообразия видов в климаксе не означает малой его экологической значимости. Разнообразие видов формирует сукцессию, ее направление, обеспечивает заполненность реального пространства жизнью. Недостаточное количество видов, составляющих комплекс, не могло бы сформировать сукцессионный ряд, и постепенно, с разрушением климаксовых экосистем произошло бы полное опустынивание планеты. Значение разнообразия функционально как в статике, так и в динамике. Следует отметить, что там, где разнообразие видов недостаточно для формирования биосферы, служащей основой нормального естественного хода сукцессионного процесса, а сама среда резко нарушена, сукцессия не достигает фазы климакса, а заканчивается узловым сообществом - параклимаксом, длительно или кратковременно производным сообществом. Чем глубже нарушенность среды того или иного пространства, тем на более ранних фазах оканчивается сукцессия.

При потере одного или группы видов в результате их уничтожения (антропогенное исчезновение местообитаний, реже вымирание) достижение климакса не является полным восстановлением природной обстановки. Фактически это новая экосистема, потому что в ней возникли новые связи, утеряны многие старые, сложилась иная «притертость» видов. В старое состояние экосистема вернуться не может, так как утерянный вид восстановить невозможно.

При изменении любого абиотического или биотического фактора, например, при устойчивом похолодании, интродукции нового вида, вид, который плохо приспособлен к новым условиям, ожидает один из трех путей (рис. 12.39).

Рис. 12.39. Эволюционная сукцессия (по Б. Небелу, 1993)

1. Миграция. Часть популяции может мигрировать, найти местообитания с подходящими условиями и продолжить там свое существование.

2. Адаптация. В генофонде могут присутствовать аллели, которые позволят отдельным особям выжить в новых условиях и оставить потомство. Через несколько поколений под действием естественного отбора возникает популяция, хорошо приспособленная к изменившимся условиям существования.

3. Вымирание. Если ни одна особь популяции не может мигрировать, опасаясь воздействия неблагоприятных факторов, а те уходят за пределы устойчивости всех индивидов, то популяция вымрет, а ее генофонд исчезает. Если одни виды вымирают, а выжившие особи других размножаются, адаптируются и изменяются под действием естественного отбора, можно говорить об эволюционной сукцессии.

Закон эволюционно-экологической необратимости гласит: экосистема, потерявшая часть своих элементов или сменившаяся другой в результате дисбаланса экологических компонентов, не может вернуться к первоначальному своему состоянию в ходе сукцессии, если в ходе изменений произошли эволюционные (микроэволюционные) перемены в экологических элементах (сохранившихся или временно утерянных). В том случае, когда какие-то виды утеряны в промежуточных фазах сукцессии, то данная потеря может быть функционально скомпенсирована, но не полностью. При снижении разнообразия за критический уровень, ход сукцессии искажается, и фактически климакс, идентичный прошлому, достигнут не может быть.

Для оценки характера восстановленных экосистем закон эволюционно-экологической необратимости имеет важное значение. При потере элементов это, по сути дела, совершенно экологически новые природные образования с вновь образовавшимися закономерностями и связями. Так, перенос в прошлом выбывшего из состава экосистемы вида в ходе его реакклиматизации не является механическим его возвращением. Это фактически внедрение нового вида в обновленную экосистему. Закон эволюционно-экологической необратимости подчеркивает направленность эволюции не только на уровне биосистем, но и на всех других иерархических уровнях сложения биоты.

В процессе жизнедеятельности биоценоза создается и расходуется органическое вещество, т. е. соответствующая экосистема обладает определенной продуктивностью биомассы. Биомассу измеряют в единицах массы или выражают количеством энергии, заключенной в тканях.

Понятия «продукция» и «продуктивность» хотя и выражены однокоренными словами, но в экологии (как и в биологии) имеют различный смысл. Продуктивность - это скорость производства биомассы в единицу времени, которую нельзя взвесить, а можно только рассчитать в единицах энергии или накопления органических веществ. В качестве синонима термина «продуктивность» Ю. Одум предложил использовать термин «скорость продуцирования».

Продуктивность экосистемы говорит о ее «богатстве». В богатом или продуктивном сообществе больше организмов, чем в менее продуктивном, хотя иногда бывает и наоборот, когда организмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, урожая травы на корню богатого пастбища, выедаемого скотом, может быть гораздо меньше, чем на менее продуктивном пастбище, на которое не выгоняли скот.

Различают также продуктивность текущую и общую. Например, в некоторых конкретных условиях I га соснового леса способен за период своего существования и роста образовать 200 м 3 древесной массы - это его общая продуктивность. Однако за один год этот лес создает всего лишь около 2 м 3 древесины, что является текущей продуктивностью или годовым приростом.

Первичная продуктивность экосистемы, сообщества или любой их части определяется как скорость, с которой энергия Солнца усваивается организмами-продуцентами (в основном зелеными растениями) в ходе фотосинтеза или химического синтеза (хемопродуцентами). Эта энергия материализуется в виде органических веществ, тканей продуцен- # тов.

Принято выделять четыре последовательные ступени (или стадии) процесса производства органического вещества:

валовая первичная продуктивность - общая скорость накопления органических веществ продуцентами (скорость фотосинтеза), включая те, что были израсходованы на дыхание и секреторные функции. Растения на процессы жизнедеятельности тратят примерно 20% производимой химической энергии;

чистая первичная продуктивность - скорость накопления органических веществ за вычетом тех, что были израсходованы при дыхании и секреции за изучаемый период. Эта энергия может быть использована организмами следующих трофических уровней;

чистая продуктивность сообщества - скорость общего накопления органических веществ, оставшихся после потребления гетеротрофами-консументами (чистая первичная продукция минус потребление гетеротрофами). Она обычно измеряется за какой-то период; например, вегетационный период роста и развития растений или за год в целом;

вторичная продуктивность - скорость накопления энергии консуменгами. Ее не делят на «валовую» и «чистую», так как консументы потребляют лишь ранее созданные (готовые) питательные вещества, расходуя их на дыхание и секреторные нужды, а остальное превращая в собственные ткани.

Продуктивность экосистемы - это накопление экосистемой органического вещества в процессе ее жизнедеятельности. Продуктивность экосистемы измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади.

Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией , а прирост за единицу времени массы консументов - вторичной продукцией .

Первичная продукция подразделяется на два уровня - валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли - около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т.е. используют ранее созданную продукцию.

Рассчитывают вторичную продукцию отдельно для каждого трофического уровня, так как она формируется за счет энергии, поступающей с предшествующего уровня.

Все живые компоненты экосистемы - продуценты, консументы и редуценты - составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах - в калориях, джоулях и т.п, что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

По величине биологической продуктивности экосистемы подразделяют на 4 класса:

1) экосистемы очень высокой продуктивности - >2 кг/м2 0 в год (тропические леса, коралловые рифы);

2) экосистемы высокой продуктивности – 1-2 кг/м2 в год (липово-дубовые леса, прибрежные заросли рогоза или тростника на озерах, посевы кукурузы и многолетних трав при орошении и внесении высоких доз удобрений);

3) экосистемы умеренной продуктивности - 0,25-1 кг/м2 в год (сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера);

4) экосистемы низкой продуктивности - < 0,25 кг/м2 в год (пустыни, тундра, горные степи, большая часть морских экосистем). Средняя биологическая продуктивность экосистем на планете равна 0,3 кг/м2 в год.

  1. Классификация и особенности экосистем (Биомы:степи (чаппарали, гарриги, эспинали), пустыни, тундра, джунгли, хвойные леса, зоны морских (аппвелинга, коралловые рифы, аутвеллинга) и пресноводных (лотические: перекаты, плесы) лентические (озера и их стратификация) экосистем).

При классификации наземных экосистем принято использовать признаки растительных сообществ и климатические признаки, например, лес хвойный, лес тропический, холодная пустыня и т.п.

Гари́га , или гарри́га (фр. garrigue и окс. garriga ) - разрежённые заросли низкорослых вечнозелёных кустарников, главным образом дуба кустарникового (Quercus dumosa ) и пальмы хамеропс (Chamaerops ). Также могут быть тимьян (Thymus ), розмарин (Rosmarinus ), дрок (Genista ) и другие растения. Можно встретить в Средиземноморье, в менее сухом климате, чем фригана, на каменистых склонах, на месте сведённых, перевыпасом и палами, лесов из дуба каменного.

Чапара́ль (чапарраль, чапаррель, чапарель , исп. chaparral , от chaparro - заросли кустарникового дуба) - тип субтропической жестколистной кустарниковой растительности. Распространён в узкой полосе Тихоокеанского побережья Калифорнии и на Севере Мексиканского нагорья, на высоте 600-2400 м.

Подобные биомы находятся и в четырех других регионах Средиземноморского климата во всем мире, в том числе Средиземноморского бассейна (где он известен как маквис, маккия, maquis), центральной части Чили (где он называется Matorral), в Капской области ЮАР (мыс Доброй Надежды) (известен там как финбош) и на юго-востоке и юго-западе Австралии.

Отсутствие деревьев не связано с деятельностью человека, хотя ряд исследователей рассматривает чапараль, подобно маквису, как стадиюдеградации дубовых вечнозелёных лесов. Заросли чапараля достигают в высоту 3-4 м.

Наиболее типичной для чапараля является аденостома (Adenostoma fasciculatus), образующая чистые естественные насаждения. Широко распространены заросли кустарниковых вечнозелёных дубов, толокнянок (18 видов), представителей родов сумах, цеанотус (25 видов) и другие. У верхней границы чапараль увеличивается доля листопадных видов дуба, ирги, церциса.

Пустыня – это территория, где испарение превышает количество осадков, причем их уровень составляет менее 250мм/г. В таких условиях произрастает скудная, разреженная и обычно низкорослая растительность. Преобладание ясной погоды и разряженная растительность способствуют быстрой потере теплоты ночью, накопленной почвой днем. Для пустыней характерно значительное различие между дневной и ночной температурами. Пустынные экосистемы занимают около 16% поверхности суши и расположены практически во всех широтах Земли.

Тропические пустыни. Это такие пустыни, как Южная Сахара, которые составляют около 20% общей площади пустынь. Температура там круглый год высокая, а количество осадков минимальное.

Пустыни умеренных широт. Такие пустыни, как пустыня Мохаве в южной Калифорнии, отличаются высокими дневными температурами летом и низкими - зимой.

Холодные пустыни. Для них характерна очень низкая температура зимой и средняя – летом.

Растения и животные всех пустынь приспособлены улавливать и сохранять дефицитную влагу.

Медленный рост растений и малое видовое разнообразие делают пустыни весьма уязвимыми. Уничтожение растительности в результате выпаса или езды вне дорог ведет к тому, что на восстановление утраченного требуются десятилетия.

Травянистые экосистемы

Тропические травянистые экосистемы или саванны.

Такие экосистемы характерны для районов с высокими средними температурами, двумя продолжительными сухими сезонами и обильными осадками в остальное время года. Они образуют широкие полосы по обе стороны экватора. Некоторые из этих биомов представляют собой открытое пространство, покрытое только травянистой растительностью.

Травянистые экосистемы умеренных широт. Они встречаются во внутренних районах материков, главным образом Северной и Южной Америки, Европы и Азии. Основные типы травянистых сообществ умеренного пояса: высокотравные и низкотравные прерии США и Канады, пампы Южной Америки, вельды Южной Африки и степи от Центральной Европы до Сибири. В этих экосистемах (биомах) почти постоянно дуют ветры, способствуя испарению влаги. Густая сеть корней травянистых растений обеспечивает стабильность почвы до тех пор, пока не начинается ее распашка.

Полярные травянистые экосистемы или арктические тундры.

Они расположены в районах прилегающих к арктическим ледяным пустыням. Большую часть года тундры находятся под воздействием штормовых холодных ветров и покрыты снегом и льдом. Зимы здесь очень холодные и темные. Осадков немного, и выпадают они в основном в виде снега.

Медленное разложение органических веществ, малая мощность почвы, низкие темпы прироста растительности делают арктическую тундру одной из наиболее уязвимых экологических систем земного шара.

Лесные экосистемы.

Влажные тропические леса. Эти леса располагаются в ряде приэкваториальных районов. Они характеризуются умеренно высокими среднегодовыми температурами, которые мало изменяются в течение суток и по сезонам, а также значительной влажностью и почти ежедневно выпадающими осадками. В таких биомах доминируют вечнозеленые деревья, сохраняющие большую часть листьев или хвои круглый год, что обеспечивает непрерывное круглогодичное протекание процессов фотосинтеза.

Так как климатические условия во влажных тропических лесах практически неизменны, влага и теплота не имеют лимитирующего значения, как в других экосистемах. Основным лимитирующим фактором становится содержание биогенов в часто бедных органическим веществом почвах.

Листопадные леса умеренных широт. Они произрастают в районах с невысокими средними температурами, значительно меняющимися по сезонам. Зимы здесь не очень суровы, летний период продолжителен, осадки выпадают равномерно в течение всего года. По сравнению с тропическими леса умеренного пояса быстро восстанавливаются после вырубки и, следовательно, более устойчивы к антропогенным нарушениям.

Северные хвойные леса. Эти леса, называемые также бореальными, или тайгой, распространены в районах субарктического климата. Зимы здесь продолжительны и засушливы, с коротким световым днем и небольшими снегопадами. Температурные условия меняются от прохладных до исключительно холодных. В тайге добывают значительную часть деловой древесины, большое значение имеет промысел пушнины.

Конец работы -

Эта тема принадлежит разделу:

Предметом экологии являются взаимоотношения организмов и надорганизменных систем с окружающих их органической и неорганической средой

Термин экология в г ввел немецкий эволюционист эрнст геккель э геккель считал что экология должна изучать различные формы борьбы за.. экология как и любая наука характеризуется наличием собственного объекта.. объектом экологии являются биологические системы надорганизменного уровня популяции сообщества экосистемы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях: