منو
رایگان
ثبت
خانه  /  شوره سر/ لگاریتم یک به هر پایه برابر است. واحد لگاریتمی و صفر لگاریتمی. تعریف تابع لگاریتمی

لگاریتم یک به هر پایه برابر است. واحد لگاریتمی و صفر لگاریتمی. تعریف تابع لگاریتمی

لگاریتم یک عدد ن بر اساس آ توان نامیده می شود ایکس ، که باید به آن بسازید آ برای دریافت شماره ن

به شرطی که
,
,

از تعریف لگاریتم چنین بر می آید که
، یعنی
- این برابری هویت لگاریتمی اساسی است.

لگاریتم های پایه 10 را لگاریتم اعشاری می نامند. بجای
نوشتن
.

لگاریتم به پایه ه طبیعی نامیده می شوند و تعیین می شوند
.

ویژگی های اصلی لگاریتم ها

    لگاریتم یک در هر پایه برابر با صفر

    لگاریتم محصول برابر با مجموعلگاریتم عوامل

3) لگاریتم ضریب برابر است با اختلاف لگاریتم ها


عامل
مدول انتقال از لگاریتم به پایه نامیده می شود آ به لگاریتم در پایه ب .

با استفاده از ویژگی های 2-5، اغلب می توان لگاریتم یک عبارت پیچیده را به نتیجه عملیات ساده حسابی روی لگاریتم کاهش داد.

مثلا،

به چنین تبدیل های لگاریتمی لگاریتم می گویند. تبدیل معکوس به لگاریتم را تقویت می گویند.

فصل 2. عناصر ریاضیات عالی.

1. محدودیت ها

محدودیت عملکرد
یک عدد محدود A است اگر، به عنوان xx 0 برای هر از پیش تعیین شده
، چنین عددی وجود دارد
که به محض
، آن
.

تابعی که حدی دارد به مقدار بی نهایت کوچک با آن تفاوت دارد:
، جایی که- b.m.v.، i.e.
.

مثال. تابع را در نظر بگیرید
.

هنگام تلاش
، تابع y به سمت صفر میل می کند:

1.1. قضایای اساسی در مورد حدود

    حد یک مقدار ثابت برابر با این مقدار ثابت است

.

    حد مجموع (تفاوت) تعداد محدودی از توابع برابر است با مجموع (تفاوت) حدود این توابع.

    حد حاصلضرب تعداد محدودی از توابع برابر است با حاصلضرب حدود این توابع.

    حد نصاب دو تابع برابر است با نصاب حدود این توابع اگر حد مخرج صفر نباشد.

محدودیت های شگفت انگیز

,
، جایی که

1.2. مثال های محاسبه حد

با این حال، همه محدودیت ها به این راحتی محاسبه نمی شوند. اغلب، محاسبه حد به آشکار کردن عدم قطعیت از نوع ختم می شود: یا .

.

2. مشتق یک تابع

اجازه دهید یک تابع داشته باشیم
، پیوسته بر روی قطعه
.

بحث و جدل مقداری افزایش یافت
. سپس تابع یک افزایش دریافت می کند
.

مقدار استدلال با مقدار تابع مطابقت دارد
.

مقدار استدلال
با مقدار تابع مطابقت دارد.

از این رو، .

اجازه دهید حد این نسبت را در پیدا کنیم
. اگر این حد وجود داشته باشد، آن را مشتق تابع داده شده می نامند.

تعریف 3 مشتق تابع معین
با استدلال حد نسبت افزایش یک تابع به افزایش آرگومان، زمانی که افزایش آرگومان خودسرانه به صفر میل می کند، نامیده می شود.

مشتق از یک تابع
را می توان به صورت زیر تعیین کرد:

; ; ; .

تعریف 4عملیات یافتن مشتق تابع نامیده می شود تفکیک.

2.1. معنای مکانیکی مشتق.

بیایید حرکت مستقیم یک جسم صلب یا نقطه مادی را در نظر بگیریم.

اجازه دهید در یک نقطه از زمان نقطه متحرک
در فاصله ای بود از موقعیت شروع
.

بعد از مدتی
او فاصله ای را طی کرد
. نگرش =- سرعت متوسطنقطه مادی
. اجازه دهید با در نظر گرفتن آن، حد این نسبت را پیدا کنیم
.

در نتیجه، تعیین سرعت لحظه ای حرکت یک نقطه مادی به یافتن مشتق مسیر با توجه به زمان کاهش می یابد.

2.2. معنای هندسیمشتق

اجازه دهید یک تابع گرافیکی تعریف شده داشته باشیم
.

برنج. 1. معنای هندسی مشتق

اگر
، سپس اشاره کنید
، در امتداد منحنی حرکت می کند و به نقطه نزدیک می شود
.

از این رو
، یعنی مقدار مشتق برای مقدار معینی از آرگومان عددی برابر با مماس زاویه تشکیل شده توسط مماس در یک نقطه معین با جهت مثبت محور
.

2.3. جدول فرمول های تمایز پایه.

تابع توان

تابع نمایی

تابع لگاریتمی

تابع مثلثاتی

تابع مثلثاتی معکوس

2.4. قوانین تمایز.

مشتق از

مشتق مجموع (تفاوت) توابع


مشتق حاصل ضرب دو تابع


مشتق ضریب دو تابع


2.5. مشتق از تابع پیچیده.

اجازه دهید تابع داده شود
به گونه ای که بتوان آن را در قالب نمایش داد

و
، جایی که متغیر پس یک استدلال میانی است

مشتق تابع مختلط با حاصلضرب مشتق تابع داده شده نسبت به آرگومان میانی و مشتق آرگومان میانی نسبت به x برابر است.

مثال 1.

مثال 2.

3. تابع دیفرانسیل.

بذار باشه
، در برخی فاصله ها قابل تمایز است
رهایش کن در این تابع یک مشتق دارد

,

سپس می توانیم بنویسیم

(1),

جایی که - یک کمیت بی نهایت کوچک،

از کی تا حالا

ضرب تمام شرایط برابری (1) در
ما داریم:

جایی که
- b.m.v. مرتبه بالاتر.

اندازه
دیفرانسیل تابع نامیده می شود
و تعیین شده است

.

3.1. مقدار هندسی دیفرانسیل

اجازه دهید تابع داده شود
.

شکل 2. معنی هندسی دیفرانسیل

.

بدیهی است که دیفرانسیل تابع
برابر است با افزایش مختصات مماس در یک نقطه معین.

3.2. مشتقات و دیفرانسیل از سفارشات مختلف.

اگر آنجا
، سپس
مشتق اول نامیده می شود.

مشتق مشتق اول را مشتق مرتبه دوم می گویند و نوشته می شود
.

مشتق از مرتبه n تابع
مشتق مرتبه (n-1) ام نامیده می شود و نوشته می شود:

.

دیفرانسیل دیفرانسیل یک تابع را دیفرانسیل دوم یا دیفرانسیل مرتبه دوم می گویند.

.

.

3.3 حل مسائل بیولوژیکی با استفاده از تمایز.

وظیفه 1. مطالعات نشان داده است که رشد یک کلنی از میکروارگانیسم ها از قانون پیروی می کند
، جایی که ن - تعداد میکروارگانیسم ها (به هزار) تی - زمان (روزها).

ب) آیا جمعیت کلنی در این مدت افزایش می یابد یا کاهش می یابد؟

پاسخ. اندازه کلنی افزایش خواهد یافت.

وظیفه 2. آب دریاچه به طور دوره ای برای نظارت بر محتوای باکتری های بیماری زا آزمایش می شود. از طریق تی روز پس از آزمایش، غلظت باکتری ها با نسبت تعیین می شود

.

چه زمانی این دریاچه دارای حداقل غلظت باکتری خواهد بود و آیا می توان در آن شنا کرد؟

راه حل: یک تابع زمانی به max یا min می رسد که مشتق آن صفر باشد.

,

بیایید تعیین کنیم حداکثر یا حداقل در 6 روز خواهد بود. برای انجام این کار، بیایید مشتق دوم را در نظر بگیریم.


پاسخ: پس از 6 روز حداقل غلظت باکتری وجود خواهد داشت.

1.1. تعیین توان برای یک توان عدد صحیح

X 1 = X
X 2 = X * X
X 3 = X * X * X

X N = X * X * … * X - N بار

1.2. درجه صفر

طبق تعریف، به طور کلی پذیرفته شده است که توان صفر هر عددی 1 است:

1.3. درجه منفی.

X -N = 1/X N

1.4. توان کسری، ریشه.

X 1/N = N ریشه X.

به عنوان مثال: X 1/2 = √X.

1.5. فرمول اضافه کردن قدرت

X (N+M) = X N *X M

1.6.فرمول تفریق توانها.

X (N-M) = X N / X M

1.7. فرمول ضرب توان

X N*M = (X N) M

1.8. فرمول افزایش کسری به توان.

(X/Y) N = X N /Y N

2. شماره e.

مقدار عدد e برابر با حد زیر است:

E = lim(1+1/N)، به صورت N → ∞.

با دقت 17 رقمی عدد e 2.71828182845904512 می باشد.

3. برابری اویلر.

این تساوی پنج عدد را که در ریاضیات نقش ویژه ای دارند به هم متصل می کند: 0، 1، e، pi، واحد خیالی.

E (i*pi) + 1 = 0

4. تابع نمایی exp(x)

exp(x) = e x

5. مشتق تابع نمایی

تابع نمایی یک خاصیت قابل توجه دارد: مشتق تابع با خودش برابر است. تابع نمایی:

(exp(x))" = exp(x)

6. لگاریتم.

6.1. تعریف تابع لگاریتمی

اگر x = b y، لگاریتم تابع است

Y = Log b(x).

لگاریتم نشان می دهد که یک عدد باید به چه قدرتی افزایش یابد - پایه لگاریتم (b) برای به دست آوردن یک عدد معین (X). تابع لگاریتم برای X بزرگتر از صفر تعریف شده است.

به عنوان مثال: Log 10 (100) = 2.

6.2. لگاریتم اعشاری

این لگاریتم پایه 10 است:

Y = Log 10 (x) .

با Log(x) نشان داده می شود: Log(x) = Log 10 (x).

مثال استفاده لگاریتم اعشاری- دسی بل

6.3. دسی بل

مورد در یک صفحه جداگانه دسیبل برجسته شده است

6.4. لگاریتم باینری

این لگاریتم پایه 2 است:

Y = Log 2 (x).

نشان داده شده با Lg(x): Lg(x) = Log 2 (X)

6.5. لگاریتم طبیعی

این لگاریتم برای پایه e است:

Y = Log e (x) .

با Ln(x) نشان داده می شود: Ln(x) = Log e (X)
لگاریتم طبیعی - تابع معکوسبه تابع نمایی exp(X).

6.6. نکات مشخصه

لوگا (1) = 0
Log a (a) = 1

6.7. فرمول لگاریتم محصول

Log a (x*y) = Log a (x)+Log a (y)

6.8. فرمول لگاریتم ضریب

Log a (x/y) = Log a (x)-Log a (y)

6.9. فرمول لگاریتم توان

Log a (x y) = y*Log a (x)

6.10. فرمول تبدیل به لگاریتم با پایه متفاوت

Log b (x) = (Log a (x))/Log a (b)

مثال:

Log 2 (8) = Log 10 (8)/Log 10 (2) =
0.903089986991943552 / 0.301029995663981184 = 3

7. فرمول های مفید در زندگی

اغلب مشکلات تبدیل حجم به مساحت یا طول و مشکل معکوس - تبدیل مساحت به حجم وجود دارد. به عنوان مثال، تخته ها به صورت مکعب (متر مکعب) فروخته می شوند، و ما باید محاسبه کنیم که چه مقدار مساحت دیوار را می توان با تخته های موجود در یک حجم مشخص پوشاند، به محاسبه تخته ها مراجعه کنید، چند تخته در یک مکعب است. یا اگر ابعاد دیوار مشخص است، باید تعداد آجرها را محاسبه کنید، محاسبه آجر را ببینید.


استفاده از مطالب سایت به شرط نصب لینک فعال به منبع مجاز است.

همانطور که می دانید، هنگام ضرب عبارات با توان، نشان دهنده های آنها همیشه با هم جمع می شوند (a b *a c = a b+c). این قانون ریاضی توسط ارشمیدس استخراج شد و بعدها، در قرن هشتم، ریاضیدان ویراسن جدولی از توانای اعداد صحیح ایجاد کرد. این آنها بودند که برای کشف بیشتر لگاریتم ها خدمت کردند. نمونه‌هایی از استفاده از این تابع را می‌توان تقریباً در همه جا یافت که باید ضرب دست و پا گیر را با جمع ساده ساده کنید. اگر 10 دقیقه برای خواندن این مقاله وقت بگذارید، ما به شما توضیح خواهیم داد که لگاریتم چیست و چگونه با آنها کار کنید. به زبانی ساده و در دسترس.

تعریف در ریاضیات

لگاریتم عبارتی از شکل زیر است: log a b=c، یعنی لگاریتم هر عدد غیر منفی (یعنی هر مثبت) "b" به پایه آن "a" توان "c" در نظر گرفته می شود. ” که پایه “a” باید به آن افزایش یابد تا در نهایت مقدار “b” به دست آید. بیایید لگاریتم را با استفاده از مثال ها تجزیه و تحلیل کنیم، فرض کنید یک عبارت log وجود دارد 2 8. چگونه پاسخ را پیدا کنیم؟ خیلی ساده است، باید توانی پیدا کنید که از 2 به توان مورد نیاز 8 بگیرید. پس از انجام محاسباتی در ذهن شما، عدد 3 را به دست می آوریم! و این درست است، زیرا 2 به توان 3 پاسخ 8 را می دهد.

انواع لگاریتم

برای بسیاری از دانش آموزان و دانشجویان، این موضوع پیچیده و غیرقابل درک به نظر می رسد، اما در واقع لگاریتم ها چندان ترسناک نیستند، نکته اصلی درک معنای کلی آنها و به خاطر سپردن ویژگی ها و برخی قوانین است. سه وجود دارد گونه های منفردعبارات لگاریتمی:

  1. لگاریتم طبیعی ln a، که در آن پایه عدد اویلر است (e = 2.7).
  2. اعشاری a که پایه آن 10 است.
  3. لگاریتم هر عدد b تا مبنای a>1.

هر یک از آنها به روشی استاندارد از جمله ساده سازی، کاهش و کاهش متعاقب آن به یک لگاریتم واحد با استفاده از قضایای لگاریتمی حل می شوند. برای به دست آوردن مقادیر صحیح لگاریتم ها، هنگام حل آنها باید ویژگی های آنها و دنباله اقدامات را به خاطر بسپارید.

قوانین و برخی محدودیت ها

در ریاضیات چندین قاعده-قید وجود دارد که به عنوان بدیهیات پذیرفته شده است، یعنی موضوع بحث نیست و حقیقت است. به عنوان مثال، تقسیم اعداد بر صفر غیرممکن است و همچنین نمی توان یک ریشه زوج را از آن استخراج کرد اعداد منفی. لگاریتم ها نیز قوانین خاص خود را دارند که به دنبال آن می توانید به راحتی کار با عبارات لگاریتمی طولانی و بزرگ را یاد بگیرید:

  • پایه "a" باید همیشه بزرگتر از صفر باشد و مساوی 1 نباشد، در غیر این صورت این عبارت معنای خود را از دست می دهد، زیرا "1" و "0" به هر درجه ای همیشه با مقادیر خود برابر هستند.
  • اگر a > 0، سپس a b > 0، معلوم می شود که "c" نیز باید بزرگتر از صفر باشد.

چگونه لگاریتم ها را حل کنیم؟

به عنوان مثال، وظیفه یافتن پاسخ معادله 10 x = 100 داده می شود. این کار بسیار آسان است، شما باید یک توان را با بالا بردن عدد ده انتخاب کنید که به عدد 100 می رسیم. البته این 10 2 = است. 100.

حال بیایید این عبارت را به شکل لگاریتمی نشان دهیم. ما log 10 100 = 2 را دریافت می کنیم. هنگام حل لگاریتم، همه اقدامات عملاً همگرا می شوند تا توانی را که برای به دست آوردن یک عدد معین وارد کردن پایه لگاریتم لازم است، پیدا کنیم.

برای تعیین دقیق مقدار یک درجه مجهول، باید نحوه کار با جدول درجات را یاد بگیرید. به نظر می رسد این است:

همانطور که می بینید، اگر ذهن فنی و دانش جدول ضرب داشته باشید، می توان برخی از توان ها را به طور مستقیم حدس زد. با این حال برای ارزش های بزرگشما به جدول درجات نیاز دارید. حتی برای کسانی که اصلاً در مورد موضوعات پیچیده ریاضی چیزی نمی دانند، می توان از آن استفاده کرد. ستون سمت چپ شامل اعداد (مبنای a) است، ردیف بالای اعداد مقدار توان c است که عدد a به آن افزایش می یابد. در محل تقاطع، سلول ها حاوی مقادیر عددی هستند که پاسخ هستند (a c =b). به عنوان مثال، اولین خانه را با عدد 10 در نظر می گیریم و مربع آن را مربع می کنیم، مقدار 100 را می گیریم که در محل تقاطع دو خانه ما نشان داده شده است. همه چیز به قدری ساده و آسان است که حتی واقعی ترین انسان گرا هم می فهمد!

معادلات و نابرابری ها

معلوم می شود که تحت شرایط معین، توان لگاریتم است. بنابراین، هر عبارت عددی ریاضی را می توان به عنوان یک برابری لگاریتمی نوشت. به عنوان مثال، 3 4 = 81 را می توان به عنوان لگاریتم پایه 3 81 برابر با چهار نوشت (log 3 81 = 4). برای توان های منفی قوانین یکسان است: 2 -5 = 1/32 آن را به صورت لگاریتم می نویسیم، log 2 (1/32) = -5 را دریافت می کنیم. یکی از جذاب ترین بخش های ریاضیات، موضوع "لگاریتم" است. ما بلافاصله پس از مطالعه خواص معادلات، نمونه ها و حل معادلات را در زیر بررسی خواهیم کرد. حال بیایید ببینیم که نابرابری ها چگونه هستند و چگونه آنها را از معادلات متمایز کنیم.

با توجه به شکل زیر: log 2 (x-1) > 3 - آن است نابرابری لگاریتمی، زیرا مقدار مجهول "x" زیر علامت لگاریتم است. و همچنین در عبارت دو کمیت با هم مقایسه می شود: لگاریتم عدد مورد نظر به پایه دو بزرگتر از عدد سه است.

مهمترین تفاوت بین معادلات لگاریتمی و نابرابری ها این است که معادلات با لگاریتم (مثال - لگاریتم 2 x = √9) دلالت بر یک یا چند مقدار عددی خاص در پاسخ دارند، در حالی که هنگام حل نابرابری ها به عنوان یک منطقه تعریف می شوند. ارزش های قابل قبولو نقاط شکست این تابع. در نتیجه، پاسخ یک مجموعه ساده از اعداد منفرد نیست، مانند پاسخ به یک معادله، بلکه یک سری یا مجموعه ای از اعداد پیوسته است.

قضایای اساسی در مورد لگاریتم

هنگام حل وظایف ابتدایی یافتن مقادیر لگاریتم، ممکن است ویژگی های آن مشخص نباشد. با این حال، هنگامی که صحبت از معادلات لگاریتمی یا نابرابری ها می شود، قبل از هر چیز، لازم است که به وضوح تمام ویژگی های اصلی لگاریتم ها را درک کرده و در عمل اعمال کنیم. در ادامه به نمونه‌هایی از معادلات خواهیم پرداخت؛ اجازه دهید ابتدا هر ویژگی را با جزئیات بیشتری بررسی کنیم.

  1. هویت اصلی به این صورت است: alogaB =B. فقط زمانی اعمال می شود که a بزرگتر از 0 باشد نه برابر یک و B بزرگتر از صفر باشد.
  2. لگاریتم محصول را می توان در فرمول زیر نشان داد: log d (s 1 * s 2) = log d s 1 + log d s 2. در این مورد، شرط اجباری است: d، s 1 و s 2 > 0; a≠1. شما می توانید برای این فرمول لگاریتمی با مثال و راه حل اثبات کنید. اجازه دهید log a s 1 = f 1 و log a s 2 = f 2، سپس a f1 = s 1، a f2 = s 2. به دست می آوریم که s 1 * s 2 = a f1 *a f2 = a f1+f2 (خواص درجه) و سپس طبق تعریف: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2 که باید ثابت شود.
  3. لگاریتم ضریب به این صورت است: log a (s 1/s 2) = log a s 1 - log a s 2.
  4. قضیه به شکل فرمول به شکل زیر است: log a q b n = n/q log a b.

این فرمول "ویژگی درجه لگاریتم" نامیده می شود. این شبیه خواص درجات معمولی است و جای تعجب نیست، زیرا تمام ریاضیات بر اساس فرضیه های طبیعی است. بیایید به اثبات نگاه کنیم.

اجازه دهید log a b = t، به نظر می رسد t =b. اگر هر دو قسمت را به توان m برسانیم: a tn = b n ;

اما از آنجایی که a tn = (a q) nt/q = b n، بنابراین log a q b n = (n*t)/t، سپس log a q b n = n/q log a b. قضیه ثابت می شود.

نمونه هایی از مشکلات و نابرابری ها

رایج ترین انواع مسائل در لگاریتم مثال هایی از معادلات و نابرابری ها هستند. آنها تقریباً در تمام کتاب های مسئله یافت می شوند و همچنین جزء ضروری امتحانات ریاضی هستند. برای ورود به دانشگاه یا قبولی در امتحانات ورودی ریاضی، باید بدانید که چگونه به درستی چنین کارهایی را حل کنید.

متأسفانه هیچ طرح یا طرح واحدی برای حل و تعیین مقدار مجهول لگاریتم وجود ندارد، اما قوانین خاصی را می توان برای هر نابرابری ریاضی یا معادله لگاریتمی اعمال کرد. اول از همه، باید دریابید که آیا عبارت را می توان ساده کرد یا منجر به آن شد ظاهر عمومی. اگر از خصوصیات آنها به درستی استفاده کنید، می توانید عبارات لگاریتمی طولانی را ساده کنید. بیایید سریع با آنها آشنا شویم.

هنگام تصمیم گیری معادلات لگاریتمی، باید تعیین کنیم که چه نوع لگاریتمی داریم: یک عبارت مثال ممکن است حاوی یک لگاریتم طبیعی یا یک اعشاری باشد.

در اینجا نمونه هایی از ln100، ln1026 آورده شده است. راه حل آنها به این واقعیت خلاصه می شود که آنها باید قدرتی را تعیین کنند که پایه 10 به ترتیب برابر با 100 و 1026 خواهد بود. برای راه حل ها لگاریتم های طبیعیشما باید هویت های لگاریتمی یا ویژگی های آنها را اعمال کنید. بیایید به نمونه هایی از حل مسائل لگاریتمی در انواع مختلف نگاه کنیم.

نحوه استفاده از فرمول های لگاریتمی: با مثال ها و راه حل ها

بنابراین، بیایید به نمونه هایی از استفاده از قضایای اساسی در مورد لگاریتم نگاه کنیم.

  1. از خاصیت لگاریتم یک محصول می توان در کارهایی که نیاز به گسترش است استفاده کرد پراهمیتاعداد b به عوامل ساده تر مثلاً log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. جواب 9 است.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1.5 - همانطور که می بینید با استفاده از چهارمین خاصیت توان لگاریتمی موفق به حل یک عبارت به ظاهر پیچیده و غیرقابل حل شدیم. شما فقط باید پایه را فاکتور بگیرید و سپس مقادیر توان را از علامت لگاریتم خارج کنید.

تکالیف از آزمون دولتی واحد

لگاریتم ها اغلب در امتحانات ورودی یافت می شوند، به ویژه بسیاری از مشکلات لگاریتمی در آزمون یکپارچه دولتی (امتحان دولتی برای همه فارغ التحصیلان مدرسه). معمولاً این وظایف نه تنها در بخش A (ساده ترین بخش تستامتحان)، بلکه در قسمت C (پیچیده ترین و حجیم ترین وظایف). آزمون نیاز به دانش دقیق و کامل از مبحث لگاریتم های طبیعی دارد.

مثال ها و راه حل های مشکلات از رسمی گرفته شده است گزینه های آزمون دولتی یکپارچه. بیایید ببینیم چنین وظایفی چگونه حل می شوند.

با توجه به log 2 (2x-1) = 4. راه حل:
بیایید عبارت را بازنویسی کنیم، آن را کمی ساده کنیم log 2 (2x-1) = 2 2، با تعریف لگاریتم دریافت می کنیم که 2x-1 = 2 4، بنابراین 2x = 17. x = 8.5.

  • بهتر است تمام لگاریتم ها را به یک پایه کاهش دهید تا راه حل دست و پا گیر و گیج کننده نباشد.
  • تمام عبارات زیر علامت لگاریتم مثبت نشان داده می شوند، بنابراین، هنگامی که توان یک عبارتی که زیر علامت لگاریتم است و به عنوان پایه آن به عنوان ضریب خارج می شود، عبارت باقی مانده در زیر لگاریتم باید مثبت باشد.

امروز در مورد آن صحبت خواهیم کرد فرمول های لگاریتمیو ما نشان خواهیم داد نمونه های راه حل.

آنها خود الگوهای حل را با توجه به ویژگی های اصلی لگاریتم ها دلالت می کنند. قبل از استفاده از فرمول های لگاریتمی برای حل، اجازه دهید تمام ویژگی های زیر را به شما یادآوری کنیم:

حال بر اساس این فرمول ها (خواص) نشان خواهیم داد نمونه هایی از حل لگاریتم.

نمونه هایی از حل لگاریتم بر اساس فرمول.

لگاریتمعدد مثبت b برای پایه a (که با log a b مشخص می شود) توانی است که a باید به آن افزایش یابد تا b به دست آید، با b> 0، a > 0 و 1.

طبق تعریف، log a b = x، که معادل x = b است، بنابراین log a a x = x.

لگاریتم ها، مثال ها:

log 2 8 = 3، زیرا 2 3 = 8

log 7 49 = 2، زیرا 7 2 = 49

log 5 1/5 = -1، زیرا 5 -1 = 1/5

لگاریتم اعشاری- این یک لگاریتم معمولی است که پایه آن 10 است. با lg نشان داده می شود.

log 10 100 = 2، زیرا 10 2 = 100

لگاریتم طبیعی- همچنین یک لگاریتم معمولی، یک لگاریتم، اما با پایه e (e = 2.71828 ... - یک عدد غیر منطقی). با ln مشخص می شود.

توصیه می شود فرمول ها یا خواص لگاریتم ها را به خاطر بسپارید، زیرا بعداً هنگام حل لگاریتم، معادلات لگاریتمی و نامساوی به آنها نیاز خواهیم داشت. بیایید هر فرمول را دوباره با مثال ها بررسی کنیم.

  • هویت لگاریتمی پایه
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • لگاریتم حاصلضرب برابر است با مجموع لگاریتم ها
    log a (bc) = log a b + log a c

    log 3 8.1 + log 3 10 = log 3 (8.1*10) = log 3 81 = 4

  • لگاریتم ضریب برابر است با اختلاف لگاریتم ها
    log a (b/c) = log a b - log a c

    9 log 5 50 / 9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • ویژگی های توان یک عدد لگاریتمی و پایه لگاریتم

    نماگر عدد لگاریتمی log a b m = mlog a b

    نماگر پایه لگاریتم log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    اگر m = n، log a n b n = log a b دریافت می کنیم

    log 4 9 = log 2 2 3 2 = log 2 3

  • انتقال به یک پایه جدید
    log a b = log c b/log c a,

    اگر c = b، log b b = 1 را دریافت می کنیم

    سپس log a b = 1/log b a

    log 0.8 3*log 3 1.25 = log 0.8 3*log 0.8 1.25/log 0.8 3 = log 0.8 1.25 = log 4/5 5/4 = -1

همانطور که می بینید، فرمول های لگاریتم آنقدرها که به نظر می رسد پیچیده نیستند. حال با نگاهی به نمونه هایی از حل لگاریتم می توانیم به سراغ معادلات لگاریتمی برویم. نمونه هایی از حل معادلات لگاریتمی را با جزئیات بیشتری در مقاله بررسی خواهیم کرد: "". از دست نده!

اگر هنوز سؤالی در مورد راه حل دارید، آنها را در نظرات مقاله بنویسید.

توجه: ما تصمیم گرفتیم که یک کلاس آموزشی متفاوت داشته باشیم و به عنوان یک گزینه در خارج از کشور تحصیل کنیم.

لگاریتم ها، مانند هر اعداد، از هر نظر قابل جمع، تفریق و تبدیل هستند. اما از آنجایی که لگاریتم ها دقیقاً اعداد معمولی نیستند، در اینجا قوانینی وجود دارد که نامیده می شوند خواص اصلی.

شما قطعاً باید این قوانین را بدانید - بدون آنها نمی توان یک مشکل جدی را حل کرد. مسئله لگاریتمی. علاوه بر این، تعداد بسیار کمی از آنها وجود دارد - می توانید همه چیز را در یک روز یاد بگیرید. پس بیایید شروع کنیم.

جمع و تفریق لگاریتم

دو لگاریتم با پایه های یکسان را در نظر بگیرید: log آ ایکسو وارد شوید آ y. سپس می توان آنها را جمع و تفریق کرد و:

  1. ورود به سیستم آ ایکس+ ثبت نام آ y= ثبت نام آ (ایکس · y);
  2. ورود به سیستم آ ایکس- ورود به سیستم آ y= ثبت نام آ (ایکس : y).

پس مجموع لگاریتم ها برابر لگاریتم حاصلضرب است و تفاوت آن برابر لگاریتم ضریب است. توجه داشته باشید: لحظه کلیدیاینجا - زمینه های یکسان. اگر دلایل متفاوت است، این قوانین کار نمی کند!

این فرمول ها به شما کمک می کند محاسبه کنید بیان لگاریتمیحتی زمانی که تک تک قطعات آن شمارش نشده باشد (به درس "لگاریتم چیست" مراجعه کنید). به نمونه ها دقت کنید و ببینید:

Log 6 4 + Log 6 9.

از آنجایی که لگاریتم ها پایه های یکسانی دارند، از فرمول جمع استفاده می کنیم:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

وظیفه. مقدار عبارت را پیدا کنید: log 2 48 − log 2 3.

پایه ها یکسان هستند، ما از فرمول تفاوت استفاده می کنیم:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

وظیفه. مقدار عبارت را پیدا کنید: log 3 135 − log 3 5.

باز هم پایه ها یکسان هستند، بنابراین داریم:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

همانطور که می بینید، عبارات اصلی از لگاریتم های "بد" تشکیل شده اند که به طور جداگانه محاسبه نمی شوند. اما پس از تبدیل ها اعداد کاملا نرمال به دست می آید. بسیاری بر این واقعیت بنا شده اند اوراق تست. بله، عبارات شبیه به آزمون با جدیت تمام (گاهی اوقات تقریباً بدون تغییر) در آزمون یکپارچه دولت ارائه می شود.

استخراج توان از لگاریتم

حالا بیایید کار را کمی پیچیده کنیم. اگر پایه یا آرگومان لگاریتم یک توان باشد چه؟ سپس توان این درجه را می توان طبق قوانین زیر از علامت لگاریتم خارج کرد:

به راحتی می توان متوجه آن شد آخرین قانوندو مورد اول را دنبال می کند. اما به هر حال بهتر است آن را به خاطر بسپارید - در برخی موارد میزان محاسبات را به میزان قابل توجهی کاهش می دهد.

البته، اگر ODZ لگاریتم رعایت شود، همه این قوانین منطقی هستند: آ > 0, آ ≠ 1, ایکس> 0. و یک چیز دیگر: یاد بگیرید که همه فرمول ها را نه تنها از چپ به راست، بلکه برعکس اعمال کنید، یعنی. می توانید اعداد قبل از علامت لگاریتم را در خود لگاریتم وارد کنید. این چیزی است که اغلب مورد نیاز است.

وظیفه. مقدار عبارت log 7 49 6 را بیابید.

بیایید با استفاده از فرمول اول از درجه در استدلال خلاص شویم:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

وظیفه. معنی عبارت را پیدا کنید:

[کپشن عکس]

توجه داشته باشید که مخرج شامل یک لگاریتمی است که پایه و آرگومان آن توان های دقیق هستند: 16 = 2 4 ; 49 = 7 2. ما داریم:

[کپشن عکس]

فکر می کنم مثال آخر نیاز به توضیح دارد. لگاریتم ها کجا رفته اند؟ تا آخرین لحظه ما فقط با مخرج کار می کنیم. ما پایه و استدلال لگاریتم ایستاده در آنجا را به شکل توان ارائه کردیم و توان ها را خارج کردیم - کسری "سه طبقه" به دست آوردیم.

حالا بیایید به کسر اصلی نگاه کنیم. صورت و مخرج دارای یک عدد هستند: log 2 7. از آنجایی که log 2 7 ≠ 0، می توانیم کسر را کاهش دهیم - 2/4 در مخرج باقی می ماند. با توجه به قواعد حساب، چهار را می توان به صورتگر منتقل کرد، کاری که انجام شد. نتیجه این شد: 2.

انتقال به یک پایه جدید

در مورد قوانین جمع و تفریق لگاریتم ها، من به طور خاص تأکید کردم که آنها فقط با پایه های مشابه کار می کنند. اگر دلایل متفاوت باشد چه؟ اگر آنها قدرت های دقیق یکسان نباشند چه؟

فرمول های انتقال به یک بنیاد جدید به کمک می آیند. اجازه دهید آنها را در قالب یک قضیه فرموله کنیم:

اجازه دهید لاگ لگاریتمی داده شود آ ایکس. سپس برای هر عددی جبه طوری که ج> 0 و ج≠ 1، برابری درست است:

[کپشن عکس]

به ویژه اگر قرار دهیم ج = ایکس، ما گرفتیم:

[کپشن عکس]

از فرمول دوم برمی‌آید که پایه و آرگومان لگاریتم را می‌توان عوض کرد، اما در این حالت کل عبارت «برگردانده می‌شود»، یعنی. لگاریتم در مخرج ظاهر می شود.

این فرمول ها به ندرت در معمولی یافت می شوند عبارات عددی. ارزیابی راحت بودن آنها فقط هنگام حل معادلات لگاریتمی و نابرابری ها امکان پذیر است.

با این حال، مشکلاتی وجود دارد که به هیچ وجه نمی توان آنها را حل کرد، مگر با حرکت به یک پایه جدید. بیایید به چند مورد از این موارد نگاه کنیم:

وظیفه. مقدار عبارت را پیدا کنید: log 5 16 log 2 25.

توجه داشته باشید که آرگومان های هر دو لگاریتم دارای توان های دقیق هستند. بیایید نشانگرها را برداریم: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

حالا بیایید لگاریتم دوم را "معکوس" کنیم:

[کپشن عکس]

از آنجایی که حاصلضرب هنگام تنظیم مجدد فاکتورها تغییر نمی کند، ما با آرامش چهار و دو را ضرب کردیم و سپس با لگاریتم ها برخورد کردیم.

وظیفه. مقدار عبارت را پیدا کنید: log 9 100 lg 3.

پایه و آرگومان لگاریتم اول توانهای دقیق هستند. بیایید این را بنویسیم و از شر شاخص ها خلاص شویم:

[کپشن عکس]

حالا بیایید با حرکت به یک پایه جدید از شر لگاریتم اعشاری خلاص شویم:

[کپشن عکس]

هویت لگاریتمی پایه

اغلب در فرآیند حل، لازم است یک عدد به عنوان لگاریتم به یک پایه معین نشان داده شود. در این مورد، فرمول های زیر به ما کمک می کند:

در مورد اول، شماره nنشانگر درجه ایستاده در استدلال می شود. عدد nمی تواند کاملاً هر چیزی باشد، زیرا فقط یک مقدار لگاریتمی است.

فرمول دوم در واقع یک تعریف بازنویسی شده است. این همان چیزی است که به آن می گویند: هویت لگاریتمی اساسی.

در واقع، چه اتفاقی خواهد افتاد اگر تعداد ببه چنان قدرتی برسانید که عدد ببه این توان عدد را می دهد آ? درست است: شما همین عدد را دریافت می کنید آ. این پاراگراف را دوباره با دقت بخوانید - بسیاری از مردم در آن گیر می کنند.

مانند فرمول های انتقال به یک پایه جدید، هویت لگاریتمی پایه گاهی اوقات تنها راه حل ممکن است.

وظیفه. معنی عبارت را پیدا کنید:

[کپشن عکس]

توجه داشته باشید که log 25 64 = log 5 8 - به سادگی مربع را از پایه و آرگومان لگاریتم گرفت. با در نظر گرفتن قوانین ضرب توان با پایه یکسان، به دست می آوریم:

[کپشن عکس]

اگر کسی نمی داند، این یک کار واقعی از آزمون دولتی واحد بود :)

واحد لگاریتمی و صفر لگاریتمی

در پایان، من دو هویت را ارائه خواهم داد که به سختی می توان آنها را ویژگی نامید - بلکه آنها پیامدهای تعریف لگاریتم هستند. آنها دائماً در مشکلات ظاهر می شوند و در کمال تعجب حتی برای دانش آموزان "پیشرفته" نیز مشکل ایجاد می کنند.

  1. ورود به سیستم آ آ= 1 یک واحد لگاریتمی است. یک بار برای همیشه به یاد داشته باشید: لگاریتم به هر پایه آاز همین پایه برابر با یک است.
  2. ورود به سیستم آ 1 = 0 صفر لگاریتمی است. پایه آمی تواند هر چیزی باشد، اما اگر آرگومان دارای یک باشد، لگاریتم برابر با صفر است! زیرا آ 0 = 1 نتیجه مستقیم تعریف است.

این همه خواص است. حتما تمرین کنید که آنها را عملی کنید! برگه تقلب را در ابتدای درس دانلود کرده و پرینت بگیرید و مشکلات را حل کنید.