Меню
Бесплатно
Главная  /  Лечение ожогов  /  Самые большие скопления животных. Стайное поведение у животных Примеры миграций насекомых

Самые большие скопления животных. Стайное поведение у животных Примеры миграций насекомых

САМЫЕ БОЛЬШИЕ СКОПЛЕНИЯ ЖИВОТНЫХ

Самые многочисленные миграции беспозвоночных

Многие живые существа - явные индивидуалисты. Но даже они в определенное время года совершают многочисленные миграции. И касается это не только позвоночных животных, но и тех, у кого позвоночника нет.

Остров Рождества находится в Индийском океане, в трех сотнях километров от острова Ява. На этом пятачке суши, площадью всего 130 квадратных километров, обитает много удивительных существ с самыми неожиданными привычками и особенностями.

Однако «изюминкой» острова являются знаменитые красные крабы Gecarcoidea natalis. Их численность на этом небольшом пространстве просто невероятна: более ста миллионов довольно крупных 10-сантиметровых существ цвета созревших плодов шиповника.

Живут они в неглубоких норках в верхней части острова. Днем они обычно проводят время в своих убежищах. И только на рассвете и по вечерам, когда спадает жара и воздух становится более влажным, крабы выбираются наружу и приступают к трапезе. Питаются они в основном упавшими плодами и сочными побегами. Однако, когда выпадает такая возможность, не откажутся и от дохлой птички, и от ящерицы или улитки.

Когда же наступает самый сухой сезон, а это на острове Рождества случается зимой, красные крабы забираются в норки и, заткнув выход пучком травы, на 2-3 месяца впадают в спячку. Они словно исчезают из леса.

Красные крабы на острове Рождества

Но в ноябре, когда возвращается южное лето, они выбираются из норок и какое-то время откармливаются. Накопив в теле необходимое для размножения количество питательных веществ, миллионы крабов, охваченные неумолимым инстинктом продления рода, отправляются к побережью.

Сначала на лесных полянах и тропинках появляются одиночные красные крапинки, которые вскоре сливаются в большие пятна. Со временем они объединяются в извилистые ручейки, а к началу декабря уже целые потоки крабов стекают к океану. Именно здесь, на прибрежных камнях и песке, в приливной зоне прилива самки отложат икру. Завершив финальную часть путешествия к морю, крабы отправляются обратно к родным местам.

Эта «плывущая» многомиллионная армада красных крабов являет собой уникальное зрелище. Всюду, куда ни посмотреть, взгляд натыкается на движущуюся лавину из красных панцирей. Животные не обращают внимания ни на людей, ни на машины. И в течение нескольких дней немногочисленные пляжи острова Рождества заливает живая река из красных тел.

Огромное количество мелких, величиной с бусинку, китайских крабиков тоже совершают миграции: движутся они весной из Северного моря в реки Германии. Они всего лишь два месяца назад покинули тесную скорлупу икры, но за это время успели добраться до Гамбурга и Бремена, где и останутся зимовать на границе пресных и соленых вод. Когда же эти крабы в течение двух сезонов вырастут до пятисантиметровой длины, весной они оставят обжитые места и начнут перемещаться вверх по реке.

Огромными косяками передвигается и антарктический криль: исследования показали, что в одном кубометре воды находится примерно 25 тысяч особей. И движутся в такой громадной стае эти мелкие креветки не беспорядочно, а в шахматном порядке, так что особь, плывущая впереди, не мешает задней волной от своего движения.

В гигантские стаи объединяются нередко и многие другие морские беспозвоночные. Но, наверное, самые крупные скопления образуют насекомые, в частности, саранча.

«Был конец октября 1932 года, теплый, прекрасный, весенний день. Слабый ветер дул с юго-запада, и он принес беду. С высоты 40-80 метров, словно снежная вьюга, обрушились на землю бесконечные полчища саранчи, принесенные ветром. Часами весь первый, второй и третий дни нескончаемым был их поток. Уже в ближайшее утро все деревья и кусты стояли голые, такие же, как зимой!..

Через четыре недели вывелось потомство саранчи. Еще через месяц началось нашествие голодных стай саранчуков. Двух дней было достаточно, чтобы в полях и садах не осталось ни одного зеленого листочка. Еще через два дня то же случилось и в джунглях; даже кора на двухлетних деревьях была вся съедена!»

Вот такое описание нашествия южноамериканской саранчи оставил один из очевидцев.

Громадные полчища этих прямокрылых для многих стран, особенно в прошлые века, становились страшным экономическим, да и социальным бедствием.

Например, из исторических хроник известно, что в 125 году до н. э. несметные стаи саранчи обрушились на поля в североафриканских римских провинциях Киренаике и Нумидии. В результате посевы пшеницы и ячменя были полностью уничтожены, и 800 тысяч жителей этих стран умерли от голода.

Естественно, что такие невероятные по масштабам опустошения растительности могли принести только те стаи саранчи, в которых насчитывалось огромное количество особей. И действительно, в научных и статистических сводках по этому отряду насекомых в некоторых случаях приводятся просто фантастические цифры численности саранчи.

Так, однажды была зафиксирована стая, закрывшая собой небо на площади примерно в 250 квадратных километров: по приблизительным подсчетам, в ней находилось около 35 миллиардов насекомых, вес которых составлял порядка 50 тысяч тонн.

В сводках по этим насекомым описывается случай, когда опустившаяся на землю стая саранчи заняла площадь в 4200 квадратных километров. Это значит, что в ней как минимум находилось около 300-400 миллиардов особей.

А вот еще несколько любопытных фактов. В 1881 году жители Кипрауничтожили почти полтора миллиона тонн яиц саранчи. Но всего через два года саранча отложила в землю втрое больше яиц. Спустя десять лет население одного из районов Алжира истребило около 560 миллиардов яиц, примерно 1,5 триллиона личинок и огромное количество половозрелых самок, то есть в общей сложности - порядка 2,7 триллиона взрослой саранчи и ее молоди.

Безусловно, чтобы отдельные особи объединились в такие гигантские стаи, необходимы соответствующие условия. Однако установить их до 1915 года ученые не могли. Именно в это время русский исследователь Б.П. Уваров выяснил один очень важный факт.

Оказалось, что для перелетной саранчи, как и для других ее видов, характерно наличие двух фаз: стадной и одиночной, каждая из которых характеризуется характерными морфофизиологическими и экологическими особенностями. То есть, чтобы стать стадным насекомым, молодой саранче необходим целый комплекс факторов. Но сколько конкретно этих факторов требуется и каких именно, - пока ученые сказать не могут. Исследования, как говорят в таких случаях, продолжаются.

Кроме саранчи собираются в огромные стаи и совершают длительные миграции и другие насекомые.

Например, стрекозы. Так, один из видов стрекоз, обитающий на африканском континенте, регулярно совершает перелеты вдоль реки Нил. При этом летят стрекозы в точно выбранном направлении и любые встречные препятствия не огибают, а перелетают.

Нередко дальние путешествия совершают и мухи-журчалки. Обычно эти двукрылые отправляются в дальние странствия тогда, когда в местах их обитания сокращаются запасы тлей, которыми питаются их личинки. Массовые перелеты этих мух были отмечены на горных перевалах Пиренейских гор.

Очень часто мигрируют бабочки. Наиболее наглядным примером подобных путешествий чешуекрылых являются североамериканские данаиды - знаменитые монархи. Именно их миграционные пути наиболее изучены энтомологами.

Эти крупные и яркие бабочки нередко в осенний период формируют гигантские скопления и отправляются на юг. Одна такая «туча», состоящая из монархов, приземлилась однажды в штате Нью-Джерси, застелив своими телами территорию длиной 320 километров и более 5 километров шириной. Переждав ночь, на следующее утро бабочки отправились дальше.

Когда миграция у монархов завершается, они тысячами собираются на одних и тех же деревьях, не обращая внимания на стоящее рядом дерево того же вида.

Любопытно, что у этих бабочек в течение лета появляется два-три поколения. Однако в осеннее путешествие отправляется последнее из них. И, что самое поразительное, эти юные создания, не имеющие даже малейшего опыта дальних перелетов, безошибочно летят по определенному маршруту в места зимовок своих предков.

Вообще же многочисленные скопления бабочек в небе наблюдались многократно. Так, их нашествия отмечены в 1100, 1104, 1272, 1741, 1826 и 1906 годах. В целом же над Европой зарегистрировано более полутора сотен подобных случаев.

Любит путешествовать и бабочка-репейница. Эти чешуекрылые часто образуют гигантские стаи и совершают далекие путешествия, улетая за тысячи километров. Например, в 1942 году над некоторыми штатами США пролетала стая репейниц, состоящая, как считается, приблизительно из трех триллионов бабочек!

Миграции позвоночных животных

Об огромнейших стаях птиц, стадах животных или косяках рыб, которые в какой-то момент срываются из обжитых мест и отправляются в дальние дороги, людям известно давно. Животных гонят в подобные путешествия самые разные причины: перемена климата, голод, древние инстинкты продления рода и т. д.

Порой сообщества мигрирующих организмов достигают невероятной численности. Взять хотя бы рыб. В это трудно поверить, но однажды в океане был замечен косяк сельди, в котором насчитывалось около 3 000 000 000 особей.

Сельди нередко перемещаются огромными косяками

Сельдь во время миграции в полярных морях может перемещаться, погрузившись на значительную глубину, то находиться почти у самой поверхности. И движутся рыбы столь плотными косяками, что некоторые рыбы, выдавливаемые плывущими в общей стае своими сородичами, выскакивают из воды. Очевидцы уверяют, что если воткнуть весло в этот косяк, то оно останется стоять вертикально.

Огромными косяками перемещается и горбуша, идущая на нерест в реки.

«При солнечной и тихой погоде, - пишет советский исследователь М.Ф. Правдин, - с середины реки разнёсся и долетел до берега необыкновенный шум. Население кинулось на берег, и здесь все долго любовались, как огромнейший косяк горбуши с сильным шумом и с беспрерывным выпрыгиванием отдельных рыб шёл вверх по реке, словно новая река ворвалась в реку Большую. Полоса шумящей рыбы тянулась не менее как на версту, так что без преувеличения можно считать, что в этом косяке был не один миллион рыб».

Иногда в огромные стаи на поверхности водной глади собираются и морские змеи. Так, в 1932 году в Малаккском проливе было замечено огромное количество беспорядочно сплетенных змеиных тел. Живая лента, которую образовали рептилии, при ширине три метра растянулась приблизительно на 110 километров. В этом скоплении находилось примерно около миллиона змей. Что послужило причиной для такого массового скопления змей? -сказать трудно. Но, скорее всего, то было брачное сборище.

Огромные стаи образуют и птицы, особенно во время осенних и весенних миграций. Нередко в них насчитываются сотни тысяч особей. Особенно это касается мелких птиц. Впрочем, вряд ли когда-нибудь будут побиты рекорды, которые в позапрошлом веке устанавливали американские странствующие голуби.

Эти птицы обитали на территории США и Южной Канады. Когда стая этих птиц появлялась в небе, то становилось так темно, словно наступали ранние сумерки. И длилось это «затмение» порой довольно долго, поскольку птицы своими телами закрывали весь небосвод от края до края в течение нескольких часов.

Американский орнитолог Вильсон описывает стаю голубей, которая растянулась на 360 километров. По приблизительным подсчетам зоолога, в этом птичьем сообществе находилось около 2 230 000 000 голубей. Другой орнитолог - Одюбон - сообщает о стае этих птиц, которая объединяла приблизительно 1 115 000 000 особей!

Но не только птицы собираются в огромные стаи. В миграционный период гигантские сообщества образуют и многие млекопитающие. Так, однажды на Таймыре с вертолета было замечено стадо оленей численностью в 300 тысяч особей.

Впрочем, это не такое уж и большое стадо диких млекопитающих. Когда-то по американскому северу кочевали стада карибу, насчитывающие миллионы особей. Например, одно стадо в течение четырех суток беспрерывной лавиной двигалось мимо изумленных охотников. Впоследствии очевидцы этого «марш-броска» животных говорили, что в стаде находилось около двадцати пяти миллионов оленей.

В огромные стада в поисках пастбищ собираются антилопы гну, обитающие в Танзании. Животные перемещаются бесконечным потоком, в котором иногда насчитывается до полутора миллионов особей.

А в 1929 году один путешественник встретил в Калахари смешанное стадо гну и зебр, в котором, по его словам, было примерно десять миллионов животных!

Когда-то по бескрайним просторам степей и полупустынь Южной Африки были широко распространены так называемые горные скакуны. В дождливый сезон, когда земля покрывалась обильной зеленью, а реки и озера наполнялись живительной влагой, эти животные небольшими группами кочевали от пастбища к пастбищу. И так продолжалось до тех пор, пока не наступала засуха.

Тогда горные скакуны покидали родные места и, собираясь в огромные стада, двигались по выжженной беспощадным солнцем саванне в поисках еды и воды. В некоторых из таких стад было до миллиона животных.

Порой голод, а возможно, и какие-то внутренние факторы, заставляют сбиваться в огромные «орды» и белок. Так, в конце XIX века небывалому нашествию этих зверьков подвергся город Нижний Тагил.

«Белки шли то в одиночку, - пишет известный русский библиограф и писатель Н.А. Рубакин, - то кучками, шли все прямо и прямо, бежали по улицам, перескакивали через заборы и изгороди, забирались в дома, наполняли дворы, прыгали по крышам».

Белки двигались, не обращая внимания ни на людей, ни на собак, которые их загрызли в огромном количестве. Люди тоже набили их немало. И, несмотря на опасность, они все равно шли. Нашествие длилось до самого вечера. На ночь зверьки попрятались, но, как только небо посветлело, они продолжили свой путь. Три дня белки осаждали Тагил.

За городом текла быстрая и широкая река Чусовая. Но она не остановила бесчисленную массу зверьков. Они бросались в холодные волны и, задрав вверх хвостики, плыли к другому берегу.

Уже потом выяснилось, что в Нижний Тагил попала лишь небольшая часть белок. Основная их масса прошла в восьми километрах от города. В этой беличьей армаде предположительно находилось несколько миллионов особей.

Массовые миграционные марши совершают удивительные, весом от 70 до 100 граммов, зверюшки, обитающие в арктической тундре. И хотя это уж и не такие редкие млекопитающие, тем не менее увидеть их можно лишь в особые годы.

И связано это с тем, что численность леммингов периодически меняется, причем в совершенно невероятных пределах: три-четыре года зверьков днем с огнем не сыскать, а потом вдруг - «демографический взрыв». Лемминги кишат повсюду, словно рыба в неводе. Загадка? Конечно! Впрочем, также как и их внезапные марш-броски, когда лемминги вдруг собираются в огромные стаи и отправляются в далекие путешествия. Причем в пути эти миролюбивые комочки шерсти превращаются в весьма агрессивных грызунов.

С этими путешествиями леммингов связано немало легенд. Например, миф о коллективном самоубийстве грызунов. Якобы, когда число леммингов возрастает, они, сбившись в огромные стаи, направляются к морю и дружно бросаются с обрыва в пучину. Сегодня биологи уверены: самоубийства леммингов - выдумка, хотя, возможно, некие неизвестные доселе механизмы и провоцируют это явление.

А вот то, что лемминги вовсе не боятся воды, - правда. По крайней мере, давно замечено, что во время миграции зверьков не останавливают ни холодные быстрые реки, ни широкие озера. Они без особых усилий проплывают два-три километра и, выбравшись на сушу, уверенно продолжают свой поход в неизвестность. Но так плывут эти крохотные существа только по спокойной воде: когда же налетает ветер и поднимаются волны, грызуны тонут. Кстати, следует иметь в виду, что в данном случае речь идет о норвежских леммингах, в отличие от которых канадские, например, не мигрируют вовсе.

И встречаются норвежские лемминги исключительно в Скандинавии и на Кольском полуострове, где под трехметровым слоем и зимуют, находясь практически в полной безопасности, так как врагам трудно добраться до их гнезд.

Лемминги не впадают в зимнюю спячку и поэтому размножаются даже на морозе. Запах самки, готовой родить потомство, самцы чуют на расстоянии более ста метров. И как только они его уловят, сразу же со всех сторон устремляются к ней и начинают ожесточенную борьбу за право обладания «невестой».

Однако счастливчикторжествует недолго: после короткого спаривания самка сразу выгоняет его за порог норы. А уже в конце февраля у нее появляется первый выводок, в котором всего три-четыре детеныша. Зато летом их вдвое больше, и родить в этот период самка может до пяти выводков.

Но так ведут себя лемминги в годы обычной численности популяции. Когда же зверьков становится много, их характер резко меняется. Зверьки собираются в стаи и начинают мигрировать. В поисках корма они преодолевают расстояния в сотни километров. В этих походах по тундре самки испытывают такой стресс, что им не удается забеременеть.

В поведении леммингов появляется агрессивность: встав на задние лапки, они с яростным писком и хрюканьем бросаются на все, что движется - будь то человек, животное или машина. Укусы разъяренного грызуна очень болезненны.

Лемминги ужасно прожорливы. Причина такого аппетита - в бедности рациона, состоящего в основном из мхов и различных трав. Другой пищи для грызунов в тундре нет. Две трети съеденного леммингами - это просто «балласт», который даже не переваривается. Именно в «меню» зверьков некоторые ученые видят регулятор загадочных взрывов численности леммингов. Недостаток корма задерживает рост и созревание леммингов - выводки становятся меньше. Когда же травы и мха много, число леммингов стремительно возрастает. Другие же зоологи считают, что численность леммингов зависит от количества их главных врагов - горностая, белой совы и полярной лисицы.

Есть и еще одна гипотеза, которая связывает взлеты популяции леммингов с механизмами защиты у тундровых растений хлопчатника и осоки, составляющих основу их рациона. Эти растения синтезируют особые вещества, которые блокируют действие пищеварительного сока лемминга. Но пока зверьки поглощают хлопчатник и осоку умеренно, растения не выделяют яд в критических количествах.

Когда же лемминги съедают все вокруг подчистую, - а такое случается, когда численность возрастает в десятки и сотни раз, - растения начинают синтезировать вещества-блокаторы беспрерывно. В результате лемминги не в состоянии переварить съеденную траву.

В ответ организм лемминга начинает производить все больше и больше желудочного сока и в результате истощается гораздо быстрее, чем от обычного голода. И чем больше лемминг ест, тем голоднее становится. Итогом подобного сбоя и являются, по мнению ряда ученых, массовые миграции.

Самые длинные миграции

Кроме многочисленности особей в одной миграционной стае, поражает человеческое воображение и протяженность пути, по которому перемещаются отправившиеся в далекое путешествие виды животных.

Взять, например, полярных крачек. Эти небольшие белые птицы с «беретиками» на макушке головы гнездятся на севере Канады, Аляски, Сибири и Европы, а также в Гренландии. Иногда они селятся настолько близко к полюсу, что во время высиживания с неба порой падают хлопья снега. И тогда птицы, чтобы защитить птенцов от холода, вокруг гнезд нагребают в кучи снег.

С наступлением осени крачки неожиданно покидают обжитые места и отправляются в теплые края. Хотя назвать те места, куда они держат путь, теплыми тоже довольно сложно, поскольку зимуют эти птицы в. Антарктиде.

Два раза в год полярные крачки перелетают из канадской тундры до Антарктиды и обратно

Если крачки летят из Канады и Гренландии, то их маршрут пролегает сначала через Европу. У Британских островов они встречаются с сибирскими и европейскими родственниками, и уже вместе вдоль побережья Франции и Португалии движутся в Африку. Добравшись до Сенегала или Гвинеи, стаи крачек делятся на два рукава: одни летят к Огненной Земле, другие - в холодные моря Росса и Уэдделла.

Два раза в год эти неуемные птицы из канадской тундры до Антарктиды в общей сложности пролетают по 19 тысяч километров, то есть их путь в обе стороны равен кругосветному путешествию вокруг экватора - почти 40 тысячам километров.

Еще более длинные перелеты совершают крачки, обитающие на Чукотке. Сначала они летят вдоль сибирских берегов Ледовитого океана на запад. Затем, обогнув Скандинавию, сворачивают к берегам африканского континента. И только после этого долгого зигзагообразного перелета устремляются к Антарктиде. При этом пролетают птицы в одну сторону 30 тысяч километров, и столько же - в обратную. И вот что любопытно в этом уникальном перелете: крачки, оказывается, летят над холодными океаническими течениями, в которых больше разной живности. Ее-то они и ловят, бросаясь в холодные воды с высоты. Кстати, по этим же, правда, водным маршрутам передвигаются и усатые киты.

Буревестник Уильсона тоже огибает Землю от полюса до полюса, только в обратном направлении. Зиму он проводит около Северной Шотландии и Ньюфаундленда, а птенцов выращивает в суровом климате антарктических островов.

Известные нам ласточки и стрижи тоже совершают немалые перелеты: их протяженность около десяти тысяч километров. При этом свои воздушные «марш-броски» стрижей беспосадочные: птицы не только утоляют в полете голод и жажду, но и даже спят на лету.

А вот чернозобые гагары в далекий путь отправляются вплавь. Причем плывут они на север, хотя и убегают от зимы. Парадокс? Отнюдь! Дело в том, что доплыв по рекам Сибири к северному побережью острова Таймыр, птицы входят в Карское море, где сразу поворачивают на запад. Затем, добравшись до Карских ворот, попадают в Баренцево море, которое пересекают, огибая Скандинавию. После этого броска они попадают в Северное море, а уж потом и на запад Балтийского, где и проводят зимовку. Приличный кусок пути преодолевают птицы - 6 тысяч километров. И почти все время вплавь.

Уникальный результат демонстрируют ржанки, которые обитают на Аляске и Чукотке, но зимуют на Гавайях. Между этими двумя точками Земли суши нет, но птицы за двадцать два часа беспересадочного полета преодолевают это расстояние, равное трем тысячам километров!

Поразительные по протяженности миграции совершают и неуклюжие на вид морские котики, размножение у которых происходит на островах Прибылова и Командорских. Как только у животных подрастут детеныши, котики с Командор отправляются в плавание в югозападном направлении, добираясь иногда даже до Японии, а «прибыловские» котики устремляются на юго-восток, к Калифорнии. При этом длина пути, проплываемого животными в оба конца, составляет примерно 10 000 километров.

Обычно при красочности коралловых рифов и многообразии его обитателей, в водах открытого океана тропиков живых организмов очень мало, поскольку эти воды бедны кормовыми ресурсами. По этой причине в этих местах практически не встречаются и огромные усатые киты, питающиеся мелкими ракообразными - крилем.

И только Карибское море, а также моря вокруг Галапагосских островов кишат планктоном и рыбой, и столь обильная кормовая база приманивает сюда многих китообразных: дельфинов, кашалотов, голубых и горбатых китов.

Приплывают же они в эти обильные кормами места из полярных морей, преодолевая порой расстояние в 6400 и более километров. Причем во время столь длительного путешествия они почти не питаются. Хотя некоторые самки в этот период находятся в состоянии беременности или выкармливают молоком новорожденных.

Тщательные и многолетние исследования морских черепах удивили ученых многими своими поведенческими особенностями. Например, эти рептилии совершают поистине грандиозные по своей длине океанические путешествия. Так, в период между 2006 и началом 2008 года со спутника постоянно регистрировалось перемещение кожистых черепах из мест своего гнездования на пляжах Папуа до берегов американского штата Орегон, то есть к другой стороне планеты. Это путешествие заняло 647 дней. И за это время животные преодолели расстояние, равное 20 560 километрам.

Во время миграций многие тысячи километров оставляют за собой и некоторые рыбы. Так, чавыча поднимается вверх по реке Юкон на 3,5 тысячи километров. Плывут рыбы со скоростью двадцать, а в отдельные периоды и пятьдесят километров в сутки.

Но если лососевые рыбы на нерест плывут в родные реки, то змееподобные угри, наоборот, из рек - в моря, преодолевая расстояние в 6000 километров. Причем плывут они в одно место в Мировом океане - в Саргассово море. Именно здесь они мечут икру. Взрослые рыбы после нереста погибают, а назад в реки года через три возвращается молодь.

Конечно, столь огромная протяженность миграций крупных животных поражает. Но еще большее удивление вызывают миграции насекомых, преодолевающих порой не сотни, а тысячи километров по воздуху, пролетая над бескрайними морями и высочайшими горами.

Например, стая саранчи, зародившись в Африке, уже через неделю может оказаться в Европе, преодолев за это время почти две с половиной тысячи километров.

Бабочки-монархи, обитающие на юго-востоке Канады, летят на зимовку в Мексику, оставляя за собой путь почти в три тысячи километров.

Конечно, упомянуть обо всех «кругосветных» путешествиях рыб, птиц, зверей или же насекомых практически невозможно, но и этой информации вполне хватает, чтобы понять, сколь длинны расстояния, преодолеваемые многими живыми организмами во время миграций.

Рекордные колонии беспозвоночных

Нередко одиночные виды животных объединяются в сообщества, причем в довольно многочисленные. Вообще же присутствие колониальных форм жизни характерно для многих типов и классов беспозвоночных животных: начиная от простейших и заканчивая пауками и насекомыми. Правда, в большинстве случаев в этих сообществах число особей невелико.

Кроме того, даже если такие сообщества многочисленны, они нередко представляют собой лишь сборище десятков, сотен или тысяч особей на небольшом участке земной поверхности или на дне водоема.

Безусловно, обо всех организмах, которые живут большими колониями или сообществами, рассказать в небольшом очерке практически невозможно, поэтому остановимся лишь на некоторых, на наш взгляд, наиболее интересных.

Например, на радиоляриях. О том, что эти одноклеточные объединяются в колонии, ученые знали давно. Но истинных размеров этих сообществ они себе, видимо, не представляли. Однако в теплых водах Флоридского течения океанологи порой натыкались на колонии, которые имели длину от нескольких сантиметров до метра и более. Можно только предполагать, сколько миллионов одноклеточных существ, диаметром в сотые доли миллиметра, находилось в таких огромных сообществах.

Но такие гигантские колонии, конечно же, и питаются в соответствии со своими размерами. В их рационе обычными компонентами являются фитопланктон, личинки моллюсков, одиночные радиолярии, маленькие гидромедузы и другие организмы. В качестве источника пищи они используют продукты фотосинтеза своих симбионтов, а также их самих.

Как выяснилось, колонии радиолярий представляют собой достаточно сложную биологическую структуру. Так, наблюдения показали, что в колонии осуществляется контроль над водорослями-симбионтами. Их расположение меняется в зависимости от светового режима: в темноте водоросли собираются вокруг центральной капсулы, на свету они равномерно распределяются по всей студенистой массе колонии. И осуществляют радиолярии это перемещение симбионтов с помощью собственных псевдоподий.

Различные виды радиолярий

На концах некоторых колоний, особенно тех, что активно питаются личинками моллюсков, имеются специальные образования, где концентрируются, а затем выводятся из колонии раковины съеденных личинок. Осуществляют сбор и транспортировку остатков к месту утилизации собранные в пучки специальные псевдоподии.

Огромные по размерам колонии образуют некоторые кишечнополостные животные. Появление таких структур связано с размножением этих животных почкованием, когда в результате этих процессов из старых полипов образуются новые, что и приводит к увеличению размеров колонии. А поскольку у многих кораллов колонии растут во всех направлениях, то порой они достигают весьма внушительных размеров: например, колонии некоторых видов рода Porites имеют объем более 100 кубических метров. Если учесть, что размер одного полипа равен приблизительно 1-1,5 миллиметра, то в таком объеме находятся как минимум десятки миллионов полипов. И появляется такая колония-гигант в результате почкования всего одного-единственного полипа.

Образуют колонии и некоторые виды коловраток. Но сообщества этих животных небольшие: они объединяют всего 2500-3000 особей.

Еще одна группа животных, склонных к формированию колоний, - мшанки. Да и вообще в своем большинстве - это колониальные организмы. И их сообщества нередко состоят из громадного числа особей. Например, кусочек колонии Flustrafoliacea весом 1 грамм содержит около 1330 отдельных организмов. Разрастается же эта мшанка иногда до нескольких метров, достигая килограммового веса.

А некоторые виды мшанок покрывают своими телами площади свыше 200 квадратных метров. При этом высота колоний достигает порой 12 сантиметров.

Известно о существовании колоний и у таких индивидуалистов, как пауки. Паучьи общины зарегистрированы у пауков вида Theridion nigroannulatum. Живут они в гнёздах, в которых иногда собирается несколько сотен, ато и тысяч особей.

Когда пауки охотятся, из своего жилища они протягивают нити к листьям и ждут появления жертвы. Пока вроде все происходит по обычному паучьему сценарию. А вот дальше пауки демонстрируют уже нечто новое и оригинальное.

В тот момент, когда насекомое касается нити и попадает в ловушку, из убежища выскакивает большая группа пауков и затягивает жертву липкой паутиной, при этом еще и впрыскивая ей изрядную порцию яда.

Причем, охотясь, пауки контактируют друг с другом не только во время нападения на жертву, но и потом. Например, если добыча оказывается слишком тяжелой, то они тащат её, по очереди сменяя друг друга.

Но нападением на жертву согласованные действия пауков не ограничиваются. Когда эта ватага восьминогих охотников притащит добычу в жилище, здесь тоже соблюдаются принципы коллективизма: каждый из обитателей гнезда получает свою порцию еды.

Но и это ещё не все «странности» этого вида.

Говоря о тысячах особей в одной колонии, следует подчеркнуть, что это - редкие исключения. Как правило, в одном гнезде проживает всего несколько десятков особей. Если же сообщество и впрямь состоит из многих и многих сотен пауков, то иногда такие огромные поселения по неизвестной пока причине вдруг за считанные дни рассыпаются на небольшие группки. Кстати, этот вид был открыт ещё в 1884 году. О его же социальном устройстве зоологи узнали лишь спустя более ста лет.

Южноафриканские пауки из рода стегодифус тоже предпочитают жить большими сообществами. Они вместе и общежитие, на мешок похожее, строят, и ловчие нити от него во все стороны протягивают, и на добычу кидаются вместе. Более того, даже обедают за одним столом без «перебранок и драк».

Более того, эти пауки настолько гостеприимны, что даже гусениц некоторых бабочек не гонят, не убивают, а великодушно терпят, точно ленивых домочадцев. Но и гусеницы в долгу не остаются. Подбирая за пауками их объедки, они тем самым следят за чистотой в паучьей общине. Оценив такое великодушие и доверие, бабочки, появившиеся из гусениц, тоже не торопятся покидать доброжелательных стегодифусов.

Населяют общественные пауки обычно теплые области земного шара. Их можно встретить в лесах Амазонии, в Африке и в Австралии, отдельные виды обитают в Мексике и в Индии.

А вот среди насекомых есть несколько групп, которые иной жизни, кроме как жизнь в больших сообществах, вряд ли представляют. К этим крылатым существам в первую очередь относятся общественные насекомые: пчелы, шмели, многие виды ос, муравьи, термиты. А самые же большие по численности колонии образуют две последние группы.

Так, в малых по объему муравейниках насчитывается от 100 до 200 тысяч насекомых, в средних - 400-700 тысяч. А в гигантских гнездах рыжих лесных муравьев и американских муравьев-листорезов рода Atta нередко насчитывается около пяти миллионов насекомых.

Однако никто из насекомых, наверное, по количеству особей в колонии не сравнится с термитами. Но поскольку разные виды термитов имеют разную плодовитость, то и количество населения в одном термитнике - жилище этих насекомых - может существенно отличаться. Исходя же из плодовитости матки, можно приблизительно подсчитать и численность населения одной семьи термитов.

Так, матка туринамского термита несет примерно 100 яиц в час, а самка Termes bellicosus кладет 30 000 яиц в день, а в год - примерно десять миллионов девятьсот пятьдесят тысяч.

При этом «производством» яиц она занимается непрерывно днем и ночью. Учитывая же размеры термитников, достигающих 6, 10 и даже 12 метров в высоту, можно предположить с высокой степенью уверенности, что в них обитает не один миллион особей.

Впрочем, конкуренцию муравьям и термитам в борьбе за пьедестал может составить и один из видов ракообразных - пустынная мокрица, которая в пустыне, на благоприятных для жизни участках, образует огромные колонии. И хотя у каждой семьи, в общем-то, земельные наделы небольшие - величиной с ладонь, однако облюбованная мокрицами территория занимает подчас огромную площадь, населенную несколькими миллионами этих странных ракообразных.

Любопытные семейно-колониальные отношения существуют у карибских, или королевских, креветок-щелкунов, обитающих практически во всех крупных губках на барьерном рифе. Причем в каждой из них находится от 150 до 300 рачков. Но при этом в каждом «семействе» имеется лишь одна плодовитая самка. А остальные же его обитатели представлены молодью и самцами, один из которых, если «царица» вдруг погибнет, вероятно, превращается в самку. То есть этих ракообразных, как пчел, муравьев и термитов, с полным правом можно назвать социальными животными. Если же говорить о количественном составе всех креветок-щелкунов, проживающих в губках барьерного рифа, то их число даже трудно представить: по крайней мере, их здесь не один миллион.

Большие колонии позвоночных

Многие виды позвоночных животных на период размножения и в местах с обильными пищевыми ресурсами собираются в огромные сообщества. Но среди этих организмов видов, длительное время проживающих большими колониями, не так уж и много.

Среди рыб примером такого сообщества можно назвать несколько видов трубчатых угрей. Эти змеевидные рыбки имеют среднюю длину около 50 сантиметров. Обитают они на морском дне в особых, самими же построенных трубкообразных норах. Стенки этих сооружений так крепко укреплены клейким веществом, которое вырабатывают кожные железы угрей, что никогда не обрушиваются, хотя рыба втягивает свое тело в норку быстрым и резким движением.

Когда вокруг все спокойно, в норке скрывается нижняя часть угря, в то время как верхняя торчит над донной поверхностью. Угорь в это время плавно раскачивается, захватывая мелкие организмы. Но как только появляется угроза жизни рыбам, они тотчас скрываются в своих убежищах.

Норки угрей обычно находятся одна от другой на расстоянии примерно двадцать -шестьдесят сантиметров. При этом площадь, занимаемая поселениями этих рыб, исчисляется многими сотнями квадратных метров. Это значит, что на такой площади может располагаться несколько десятков тысяч угрей.

Личинки речной миноги - пескоройки

Почти такой же образ жизни, как и трубчатые угри, ведут личинки речной миноги -пескоройки. Они тоже зарываются в илистое дно, цементируя стенки своих норок клейкими выделениями. При этом пескоройки местами селятся настолько плотно, «что дно речной отмели, если посмотреть сверху, выглядит словно сито: все в мелких дырочках». Можно не сомневаться, что в таких колониях проживают десятки тысяч личинок.

Большими сообществами собираются порой птицы. Наверное, каждый слышал о птичьих базарах, где находятся сотни тысяч и даже миллионы чаек, крачек, пингвинов, альбатросов, олушей. Так, в некоторых гнездовых колониях пингвина Адели собирается несколько десятков тысяч птиц, а на острове Росса одно время существовала колония, в которой насчитывалось до полумиллиона особей.

Очень многочисленными группами собираются и знаменитые фламинго, обитающие в Восточной и Южной Африке. Иногда в их «компаниях» насчитывается несколько миллионов птиц. Нередко такие колонии можно наблюдать на восточноафриканских Великих озерах. Впрочем, особой дружбы у этих птиц нет. Иногда, правда, они большими компаниями пытаются изгнать из своих владений хищников.

Однако некоторые виды птиц живут хоть и небольшими, но настоящими общежитиями, где и кров и заботы общие. Так, южноамериканские кукушки из рода ани собираются немногочисленной компанией и строят большое глубокое гнездо. Затем все самки, участвовавшие в строительных работах, откладывают в это гнездо яйца. Обычно яиц 15-20, но иногда их набирается даже около полусотни. В насиживании яиц также одновременно участвует несколько птиц, которые периодически меняют друг друга на кладке. Когда на свет появляются птенцы, их тоже выкармливают всем миром. Причем самцы трудятся наравне с самками.

Уникальные колонии у поселенцев африканских саванн - белоклювых буйволовых птиц. Они сооружают в кроне одного дерева множество гнезд, между которыми укладывают колючие ветки. В результате получается общий «дом», в котором входы и отдельные «квартиры» находятся снизу. При этом такая «коммунальная квартира» может иметь 2-3 метра в диаметре.

Еще больших размеров достигают и коллективные гнезда общественного ткача. Сначала несколько птиц находят подходящее дерево и начинают строить на нем крышу из ветвей и сухой травы. Затем внутри этого каркаса каждая пара моногамных птиц сооружает собственную гнездовую камеру. Все гнездо напоминает заброшенную на дерево копну сена, пронизанную направленными вниз входными отверстиями.

Год за годом достраивают птицы свое гнездо, в результате чего возраст некоторых гнезд достигает иногда более ста лет. При этом в таких гнездах находится до 300 гнездовых камер. И размеры этих гнезд впечатляют. Например, длина одного из таких сооружений равнялась 7 метрам, ширина - 5 и высота - 3 метрам.

Строят коллективные гнезда и попугаи-монахи. У них тоже «дома» с общей крышей, но с отдельными комнатами для каждой семейной пары.

Из наших птиц многотысячные колонии характерны грачам, воронам, галкам, скворцам.

Для многих городов их поселения являются настоящим бедствием. Большие скопления образуют нередко цапли и бакланы. Особенно рядом с искусственными водоемами.

Например, на крупных рыбхозах число бакланов исчисляется тысячами.

Из млекопитающих, наверное, самые многочисленные колонии свойственны луговым собачкам. Внешне эти полуметровые животные похожи на обитателей степей - сурков, хотя и лают как собаки. У каждой семьи есть свой отдельный жилой дом-нора, снаружи соединенный с соседними жилищами узкими тропинками.

Сейчас этих грызунов поубавилось. А раньше они жили колониями невероятных размеров. Так, в 60-х годах XIX века в американском штате Техас обнаружили колонию луговых собачек, в которой насчитывалось приблизительно 400 миллионов животных. По занимаемой площади это поселение было в два раза больше территории нынешней Голландии.

Раньше большими колониями селились и сурки. Но вторжение человека в степи значительно сократило их численность. Тем не менее и в наше время отмечаются многочисленные поселения этих животных. Например, в Меловском районе колония сурков насчитывает около 8000 нор. А это значит, что в колонии в пик ее развития может обитать несколько десятков тысяч животных.

У зоологов имеются сведения и об огромных колониях летучих мышей. Например, совсем недавно на юге Филиппин в районе Минданао обнаружена пещера, в которой живут и размножаются около 1,8 миллиона крыланов.

Достопримечательностью американского города Остин является огромная колония летучих мышей, проживающих под мостом. Это поселение крылатых млекопитающих насчитывает примерно полтора миллиона.

Вблизи мексиканского города Сан-Антонио находится тоже замечательное место: это -пещера, которая для складчатогубых, или бульдоговых, рукокрылых является своеобразным родильным домом. Сюда на период размножения слетаются до 10 миллионов самок из многих уголков Мексики. А некоторым из них, чтобы оказаться в этом месте, приходится преодолевать расстояние в 1800 километров.

Каждая самка обычно рожает одного детеныша. В результате плотность малышей в этом подземном гроте достигает 3000 на 1 квадратный метр потолка. Это - самые населенные птичьи ясли в мире. И что удивительно: возвратившись с ночной охоты, мать примерно в 85 % случаев находит и кормит именно своего детеныша. А сделать это ей, вероятно, помогают великолепная память, удивительно острый слух и отличное обоняние.

Кстати, ученых давно интересовал вопрос, как умудряются прокормиться многомиллионные стаи летучих мышей, которые обитают в некоторых пещерах Америки. Ведь колония в 10 миллионов особей съедает около 100 тонн насекомых в сутки. В конце концов, не питаются же они воздухом. Тогда чем же?

И вот наконец загадка разрешилась. Выяснилось, что эти мыши кормятся. на высоте 2-3 километра от земли. Казалось бы, это явный парадокс: ведь очень трудно предположить, что на столь огромных высотах можно ежедневно найти такое обилие насекомых.

Но дело в том, что как раз на таких высотах перемещаются из Мексики огромные стаи бабочек. Причем такие полеты они совершают каждый день. И летучие мыши, «уловив» эту удивительную закономерность, в своем поведении стали следовать ей. Не правда ли, как все просто?

А вот голый землекоп - млекопитающее, проживающее в Африке, - хоть и не отличается многочисленностью колоний, но имеет ряд других любопытных особенностей. Например, эти зверьки почти полностью лишены волосяного покрова. Живут под землей, где на глубине около двух метров роют длинные, четыре сантиметра в диаметре, норы, соединяющие в одно общее хозяйство гнездовые камеры, уборные и кормовые участки. Протяженность этих тоннелей - 3-5 километров, а ежегодные выбросы земли при рытье - 3-4 тонны. В этом подземном королевстве иногда проживает до 250 особей.

Но самое любопытное даже не это. Намного интереснее тот факт, что колонии голых землекопов построены по тому же принципу, что и колонии общественных насекомых: у них существует разделение труда, а также одна постоянно плодящаяся матка.

Опасные животные-переселенцы

Выше уже было рассказано о тех группах и видах животных, которые постоянно живут многочисленными колониями или же собираются в огромные стада, стаи или косяки во время размножения или же когда мигрируют в поисках лучших мест обитания.

Но за пределами нашего внимания осталась еще группа организмов, которые дали рекордные по численности популяционные вспышки после того, как благодаря человеку переместились в новые для них места, где не встретили лимитирующих факторов окружающей среды.

1853 год. Американский ученый Аза Фитч на листьях винограда находит крошечное насекомое, оказавшееся тлей неизвестного вида. Впоследствии в реестры зоологической науки оно было занесено под именем Phylloxera vastatrix, или, проще говоря, филлоксеры.

Спустя 15 лет это насекомое неожиданно дало о себе знать во Франции. Крошечное существо поселялось на корнях виноградной лозы, высасывало из нее все соки, и куст погибал. В ходе этой внезапной атаки во Франции филлоксера свела на нет два с половиной миллиона акров виноградников. Ущерб, нанесенный экономике Франции филлоксерой, оказался невероятным: десять миллиардов золотых франков!

Виноградный лист, пораженный филлоксерой

Но не только Францию оккупировала скромная тля. В 1869 году она уже хозяйничала в окрестностях Женевы, затем перебралась в Германию и Австрию. А в 1880 году она посетила Крым, Кубань, Бессарабию, Ташкент.

Изменил ситуацию с виноградниками небольшой клещ, который тысячами уничтожал филлоксер. Этих крошек из Америки привезли в Европу и выпустили на виноградники. Они-то и. спасли положение.

Не менее головокружительных успехов в освоении европейского континента добился еще один «американец» - колорадский жук. Действительно, его родиной является запад Северной Америки, где он до появления культурного картофеля обитал на диких растениях семейства пасленовых.

Но вот в 1865 году вроде бы ничем не примечательный жучок появился на картофельных полях штата Колорадо и при этом нанес им серьезный ущерб. По месту своей родины он и получил теперешнее название. Чтобы предотвратить его дальнейшее распространение, были приняты соответствующие санитарные меры. Но они не помогли: вскоре вредитель уверенной «поступью» зашагал не только по Северной Америке, но и появился в Европе. Его пытались всеми доступными средствами сдерживать. Но окончательной победе человека над колорадским жуком помешала Первая мировая война.

В это время европейцам было не до санитарного контроля, и вскоре опасный вредитель надежно «окопался» на французском побережье. Затем, несмотря на усилия карантинных служб, колорадский жук, проявив недюжинную активность, быстро распространился по всем странам Центральной Европы.

В 1933 году он объявился в Англии. Еще спустя три года хозяйничал на полях Бельгии, Голландии, Швейцарии. Затем продемонстрировал свой непомерный аппетит в Чехословакии, Польше, Венгрии.

Из книги 100 великих рекордов стихий автора

Самые большие градины В ноябре 1988 года во многих газетах Западной Европы и даже СССР появилось сенсационное сообщение: «Жители посёлка Кадес на севере Испании наслаждались последними днями бабьего лета. Неожиданно они услышали нарастающий шум, как будто к ним

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Самые большие волны Волны, уподобляющиеся по размерам и виду могучему приливу, на самом деле - порождение подводных землетрясений, извержений вулканов или смещений земных пластов на дне океана. Волну, возникающую в результате этих причин, давно уже во всём мире называют

Из книги Справочник кроссвордиста автора Колосова Светлана

Самые большие пещеры (По материалам В. Мезенцева)Мир подземных пустот, образовавшихся естественным путём, не так уж мал. И знаем мы о нём ещё очень немного. В большей или меньшей мере изучены лишь те, которые имеют выход наружу - пещеры и гроты.Сказочные, фантастические

Из книги 3333 каверзных вопроса и ответа автора Кондрашов Анатолий Павлович

На какой планете Солнечной системы самые большие горы и на какой самые глубокие впадины? В обеих указанных «номинациях» рекордсменом в Солнечной системе является Марс. На этой планете расположена самая большая гора Солнечной системы – потухший вулкан Олимп. Он имеет

Из книги 100 великих рекордов живой природы автора Непомнящий Николай Николаевич

Какие бабочки самые большие? Самая крупная дневная бабочка – самка птицекрыла королевы Александры (Ornithoptera alexandrae), обитающая на юго-востоке Папуа (остров Новая Гвинея). Размах ее широких крыльев достигает 26 сантиметров. Еще более крупные экземпляры встречаются среди

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Самые большие суда в мире 5 «Нимиц» – авианосец: 322,9 м.6 «Тайфун» – класс подводной лодки: 170 м.7 «Олимпия» – автомобильный и пассажирский паром (Хельсинки-Стокгольм): 2500 пассажиров, 600 автомобилей.8 «Норвегия» – пассажирский лайнер (до 1979 г. назывался «Франция»):

Из книги 100 великих рекордов стихий [с иллюстрациями] автора Непомнящий Николай Николаевич

Самые большие в мире здания 7 «Треймор» – отель, США, Атлантик-Сити, штат Нью-Джерси.8 «Пентагон» – США, Арлингтон, штат

Из книги Мир животных автора Ситников Виталий Павлович

Где живут самые большие лягушки? Самые большие в мире лягушки – голиафы (Rana goliath) – обитают в порожистых реках джунглей Камеруна и Рио – Муни (континентальной части Экваториальной Гвинеи). Длина взрослого голиафа может достигать 32–42 сантиметров, масса–3,5 килограмма (по

Из книги автора

САМЫЕ БОЛЬШИЕ УШИ - У ДЛИННОУХОГО ТУШКАНЧИКА Тушканчик длинноухий (Euchoreutes naso) - зверек длиной 8–9 см, с хвостом до 16 см и ступнями в половину длины туловища. Примечательны его удлиненная коническая мордочка, громадные уши, достигающие задней части спины, и длинные

Из книги автора

Самые большие волны Волны, уподобляющиеся по размерам и виду могучему приливу, на самом деле – порождение подводных землетрясений, извержений вулканов или смещений земных пластов на дне океана. Волну, возникающую в результате этих причин, давно уже во всем мире называют

Из книги автора

Самые большие пещеры Мир подземных пустот, образовавшихся естественным путем, не так уж мал. И знаем мы о нем еще очень немного. В большей или меньшей мере изучены лишь те, которые имеют выход наружу – пещеры и гроты. Сказочные, фантастические картины открываются перед

Из книги автора

Где живут самые большие и самые ядовитые змеи? Существует поговорка: «У страха глаза велики». То же самое можно сказать обо всех легендах, которые существуют о змеях. Так, говорят, что где-то живут огромные змеи, длиной до 20 и более метров. Но никто в действительности таких

В группах второго типа иерархия и доминирование обычно от-сутствуют. Животные держатся вместе в силу инстинкта стайности. Если иерархические группы можно наблюдать почти у всех классов позвоночных, то стаи без доминирования в основном име-ют место и особенно распространены в классе рыб. В какой-то степени их можно предполагать в стаях воробьиных птиц. Однако наиболее пристально они изучались именно в классе рыб. Дело в том, что стайные рыбы представляют особую ценность в хозяй-ственном отношении. Кроме того, изучать стайное поведение, ме-ханизмы этого поведения наиболее удобно на стаях рыб, помещенных в аквариумы и бассейны, да и просто в водоемах с применением современной техники (аку-стическая локация, авианаблюдения, подводные наблюдения и ки-носъемка). Интенсивные исследования стайного поведения рыб проводил в лаборатории Д. В. Радаков, который на основе своих работ написал интересную моно-графию «Стайность рыб как экологическое явление» . В этой книге он дает свое определение стаи рыб как «времен-ной группы особей обычно одного вида, которые находятся (все или большей частью) в одной фазе жизненного цикла, активно поддерживают взаимный контакт и проявляют или могут прояв-лять в любой момент организованность действий, биологически полезную, как правило, для всех особей данной группы. Внеш-ний облик стаи может часто и сильно изменяться в зависимости от состояния рыб и условий, в которых они находятся».

Основные типы структу-ры стаи пелагических рыб доказаны на схеме. Большое внимание Радаков уделил механизмам согласо-ванности (или организован-ности) действий рыб в стае, что представляет интерес особенно в связи с отсутствием постоян-ных вожаков в стае рыб. В этом отношении стаю рыб, говоря языком кибернетики, следует рассматривать, как пример самоуправляемой си-стемы без центрального уп-равления. Опыты Радакова над некоторыми видами стайных рыб подтвердили вывод о том, что в стаях большин-ства рыб постоянные вожа-ки отсутствуют. При этом рыбы, идущие в головной части стаи, постоянно заме-няются новыми из основной массы данной стаи. Расшиф-ровка кадров киносъемки движущихся стай в экспериментальных бассейнах показала, как рыбы, движущиеся в головной части, даже при прямолинейном движении, постепенно отстают и оказываются в середине стаи, а при повороте на 180 градусов передние начинают поворот, но в поворот включаются все осо-би и в результате идущие в задней части оказываются впереди (см. рис.). Эти эксперименты также показали, что роль «вожака» на каждый данный момент выполняет достаточно большая по численности часть стаи. Так, для молоди сельди и карповых рыб было доказано, что изменение поведения и движения всей стаи определялось соответствующим изменением части стаи в том случае, если эта часть по своей численности составляла не менее 30-- 40% от общего количества особей стаи. Сигнализация в данном случае заключается в передаче особенностей поведения и скорости движения определенной части стаи, выполняющей в этот момент функцию инициатора поведенческой реакции, остальным членам стаи.

Кроме того, экспериментируя в бассейнах Института океано-логии Академии наук Республики Куба со стаями атериноморуса (Atherinomorus stipes Muller a. Troshel), Д. В. Радаков устано-вил при помощи киносъемки, что в случае локального испуга у рыб, составляющих незначительную часть стаи, по всей стае про-бегает «волна возбуждения». Это быстро перемещающаяся по стае сигнальная зона, в которой рыбы мгновенно реагируют на действия соседей измененном позы тела. Сами рыбы при этом почти не двигаются, но подгибают хвост, как бы готовясь к броску, а передвижение «волны возбуждения» достигает скорости 11,8-- 15,1 м/сек, т. е. она в 10--15 раз превышает максимальную (бросковую) скорость плавания атериноморусов (рис. 28). Таким образом, сигнал испуга обычно передается по стае атериноморуса быстрее, чем за секунду. Далее этот сигнал может или затухнуть или вызовет «поток движения» всей стаи или ее части. «Поток движения» наблюдался в стаях почти всех исследованных видов рыб. В свою очередь, возникнув у части стаи, он может затух-нуть или превратиться в «лавинообразный поток» всей стаи, что зависит от реактивности рыб, количества их в «потоке», скорости его движения и расстояния между «потоком» и остальными рыба-ми стаи. В большой степени общая реакция стаи зависит и от силы и направления пугающего раздражителя.

Защитное значение стаи.

Для животных, находящихся в естественных условиях, там, где они, как правило, окружены врагами, скопление в многочисленные группы, казалось бы, должно было увеличить их способность к обороне, если сами эти группы не имеют оборонительных способностей. Но по-скольку в группах (стаях, стадах, колониях) держатся (по вре-менам или постоянно) животные, относящиеся к весьма различ-ным таксонам, невольно приходит мысль о том, что именно такие группы представляют собой конвергентные оборонительные адап-тации, служащие для сохранения численности популяции вида.

И, действительно, исследования выявляют все больший «арсенал» оборонительных возможностей организованной группы животных. Прежде всего, группа животных, которая ведет «тактику кругово-го обзора», замечает своего врага на значительно большем рас-стоянии, чем одна особь. Поэтому хищнику намного труднее при-близиться к группе животных на расстояние броска. Одиноч-ные гольяны легче становились добычей щуки. В стаях большин-ства позвоночных животные могут более спокойно отдыхать или питаться, поскольку часть из них (случайно или даже специаль-но) выполняет роль «часовых» и при появлении опасности движе-ниями или звуками настораживает всю группу. Затем следуют различные оборонительные действия всей группы.

Животные ряда видов, объединившись в группы, активно обо-роняются от врагов и даже нападают на них. Такое поведение известно для копытных животных (быков, вилорогов и овцебыков). Эти животные при нападении волков и некоторых других хищ-ников часто образуют каре, и, спрятав телят в середину, стано-вятся рогами наружу, организуя круговую защиту. Морские чай-ки, так же как и вороны, объединившись в гнездовые колонии, часто нападают на хищников и прогоняют их. Следует вспомнить, что активные способы групповой защиты существуют и в ветви первичноротых, где ряд видов общественных перепончатокрылых активно защищают свои гнезда и колонии кол-лективно, нападая на врагов и пуская в ход свое «оружие».

Такая активная защита -- нападение характерна для тех животных, ведущих групповой образ жизни, которые по тем или иным причинам не могут спасаться от врагов бегством, будучи приуроченными к постоянным местам (гнезда с потомством, колонии перепончатокрылых, слабый молодняк) и в то же время имеют различные возможности нападения.

Многие стайные животные спасаются от хищников, убегая, улетая или уплывая от них тесной группой. Казалось бы, увели-ченное количество особей в стае увеличивает возможность их поимки хищником, но данные научных исследований показывают обратное: в ряде случаев рыбы, птицы и млекопитающие, так же как и некоторые другие животные, держась в стаях, оказывают-ся менее доступными или даже совсем недоступными для хищ-ников. Даже рыбы, питаясь беспозвоночными (например, даф-ниями) , находящимися в плотных скоплениях, поедают их менее интенсивно, чем при более разреженных концентрациях. Такое явление называют «эффектом смущения» хищ-ника многочисленностью жертв. В погоне за стаей рыб днев-ной хищник как бы «дезориентируется» большим количеством мелькающих рыбешек, его погоня становится менее целеустрем-ленной, броски следуют один за другим и их подавляющее боль-шинство оканчивается промахами. В то же время погоня за од-ной рыбкой проходит очень направленно и завершается одним удачным броском». Это дало основание назвать описываемое явление «дезориентацией хищника» вследствие многочисленности жертв.

Дезориентация хищника еще более увеличивается в результа-те особых защитных «маневров» стаи. Эти маневры неоднократно наблюдал и фиксировал Д. В. Рада-ков киносъемкой для целого ряда морских и пресноводных рыб, как в отношении жи-вых хищников, так и их моделей. «Маневрирование» заключается в том, что при броске хищника на стаю, находящуюся в состоя-нии кругового обзора, рыбы ближайшей части стаи рассыпаются от хищника веером вперед и в стороны, создавая перед мордой хищника постоянную «пустоту», и, немного проплывая, тут же заворачивают к хвосту хищника против направления его броска. При этом часто стая, разделившись на две части, снова соеди-няется и следит за удаляющимся хищником. Этот маневр, если его нанести на бумагу, похож на букву Ф, причем путь хищника составляет вертикальную часть этой буквы (см. рис.А). За это сходство называют такой маневр стаи условно «Ф-маневром». Такое маневрирование было зафиксировано для целого ряда рыб в экспериментах в больших бассейнах. Они были отмечены при погоне кефали и морского налима за стаями атерины (Atherina mochon pontica Euch.), саргана (Belone belone (L.)) за стаями хамсы (Engraulis encrasicholus (L.)), ставриды (Trachurus mediterraneus ponticus Aleev), за стаями мальков кефали, щуки, за стаями верховок и в ряде других случаев.

для стаи песчанки (Ammodytidae), преследуемой пловцом. В момент внезапного испуга (например, бросок хищника) стая мелких рыб часто рассыпается веером, что также дезориентирует хищника. Рассеявшаяся таким образом стая обычно снова быстро восстанавливается. Следует заметить, что картина реагирования стаи пелагических рыб на хищника и специфика ее маневрирования в значительной степени зависят также от соотношения направлении движения стаи и движения хищника.

Указанные особенности стайного поведения рыб в условиях дневной освещенности значительно затрудняют охоту хищников за рыбами, находящимися в стае. Эксперименты, проведенные Д. В. Радаковым и его сотрудниками, показали примерно одно и то же: рыбы в стаях при нападении хищников оказывались для них значительно менее доступными, чем одиночные особи, и истреблялись в 5--6 раз медленнее. Это было доказано как на морских, так и на пресноводных рыбах. Как пишет Радаков, «хищник, нападая на стаю, не преследует какой-нибудь одной рыбки до тех пор, пока не поймает ее. Погнавшись сначала за одной и упустив се, он устремляется за другой, за третьей, пока, наконец, ему удается схватить одну из жертв. В результате, на ее поимку уходит больше времени, чем, если в аквариуме находится одиночная рыбка, погоня за которой получается более целеустремленной».

Обычно голодные хищники, помещенные при достаточной освещенности вместе со стайкой рыб-жертв, в первые минуты начинали энергичную погоню и за это время иногда успевали схватить несколько рыбок. За эти первые минуты в результате пугающего воздействия хищника стая уплотнялась, принимая «оборонительную» структуру (см. рис. Б). Это в еще большей степени снижало эффективность охоты, соответственно его пищевая активность уменьшалась, а в ряде случаев прекращалась совсем. Можно считать, что прекращение охоты связано с том, что энергия, затрачиваемая хищником на погоню, оказывается значительно большей, чем энергия, получаемая от пищи. Таким образом, охота становится энергетически невыгодной.

При изучении оборонительного значения стайного поведения рыб особый интерес представляет их химическая защитная сигна-лизация. Впервые эту сигнализацию обнаружил Фриш , уста-новивший, что при ранении одного гольяна вся стайка становилась испуганной, разбегалась или уходи-ла в сторону. Фриш показал, что такое же действие оказывает на стаю экстракт из кожи только что убитого гольяна. Эти ис-следования, продолженные Фришем и другими исследователями, показали, что в коже целого ряда видов рыб находятся специаль-ные колбовидные клетки, не имеющие связи с поверхностью и со-держащие вещества, которые при ранении кожи выходят в воду и немедленно вызывают у рыб данного вида сильнейшую реакцию испуга. Это вещество названо «веществом испуга», и установлено, что оно воспринимается при помощи обоняния даже в очень небольших концентрациях. Фриш в опытах с гольянами подсчитал, что пороговая концентрация этого вещества в воде равнялась примерно 1,4 *10 10 г/л. «Вещество испуга» (иногда его называют «феромоном тревоги») и соответствующие реакции были обнаружены у подавляющего большинства рыб отряда кар-пообразных (Cyprinifornies) и у некоторых видов из других отря-дов. Это действие у рыб разных эко-логических групп проходило по-разному: рыбы, обитающие в зарослях и у других укрытий, состаивались и четко ориентирова-лись на источник запаха, а затем затаивались или уходили в ук-рытия; придонные рыбы после кратковременного состаивания и броска от источника запаха затаивались у дна на длительное время; рыбы, обитающие в толще воды и у поверхности, реаги-ровали уходом или бросками, а затем снижали активность с об-разованием плотной защитной стайки. Таким образом, можно сделать вывод, что при воздействии «ве-щества испуга» образуются определенные экологические стерео-типы оборонительного поведения рыб.

Весьма близко к указанной сигнализации стоит явление «за-паха страха», установленное для грызунов. Запах, оставленный раненой живой домовой мышью, отпугивает от дан-ного места се сородичей. Было отмечено, что поскольку пятна крови и остатки шерсти мышью не оказывают такого отпугивающего действия на других мышей, то можно думать, что «запах страха» выделяется соответствую-щими железами испуганного зверька. Наличие таких сигналов, приносящих пользу всей стае, или популяции, еще раз под-черкивает правоту вывода Радакова о том, что групповая жизнь животных, и в частности стайное поведе-ние,-- это явление, характерное для надорганизменного уровня, это -- групповая защитная адаптация, которая могла создаться в результате группового, а не индивидуального отбора.

Защитное значение стаи известно и для ряда птиц. Ориентолог В. Э. Якоби пишет, что плотные и быстроманеврирующие стаи скворцов, а также некоторых болотных птиц мешают хищникам, и в частности соколу-сапсану, прицельно и успешно атаковать и схватить определенную птицу. Поэтому хищные птицы при нападении на стаю, прежде всего, стараются отбить от стаи одну особь, а потом уже хватают ее. Часто же при нападении ястреба на стаю мелких птиц он не может схватить ни одной из них.

Для некоторых копытных животных стайное скопление имеет определенное защитное значение также по отношению к кровосо-сущим насекомым. Летом при обилии гнуса (оводов, комаров, кровососущих мух) северные олени собираются в плотное стадо. Кровососы обычно облепляют оленей, находящихся в наружных рядах, и почти не проникают в глубь стада. Поэтому животные в центре стада спокойно стоят или лежат, а внешние ряды оленей ведут себя беспокойно и постепенно передвигаются вокруг центра стада. Чем активнее ве-дут себя кровососы, тем больше внешних рядов стада оленей на-ходятся в движении, но их число обычно не превышает пяти. Время от времени крайние олени, измученные гнусом, силой прорываются в центр, расталкивая соседей. Учитывая количество оленей в стаде и количество оленей во внешних (беспокойных) рядах, подсчитано, что при 500 оленях в ста-де, защищено от кровососов 56% стада, при 2000--77%, а при 4000-83%.

Говоря о защитном значении группового поведения, следует отметить и защиту животных от неблагоприятных абиотических факторов среды. В целом ряде работ можно найти данные о том, что животные, собравшись в группу, тем самым как бы влияют здесь на микроклимат и потому легче переносят ветры, метели, чрезмерную низкую или высокую температуру. Взаимное обогревание и коллективную регуляцию температуры в группах живот-ных самых разных таксонов отмечали большое количество иссле-дователей. Оно известно и в колониях общественных насекомых (пчелы, муравьи), и при ночевках некоторых птиц и для ряда стадных млекопитающих. Неоднократно описаны скопления пинг-винов во время морозных ураганов. Эти антарктические птицы образуют плотные тысячные стаи, в которых птицы со стороны постепенно передвигаются на подветренную. При этом огромная их масса постоянно «ползет», подгоняемая ветром. Такое движущееся скопление пингвинов иногда называют «чере-пахой». Сходно ведут себя во время снежных буранов стада овец, лошадей, антилоп и северных оленей. В степях и пустынях в летние жаркие дни овцы также образуют скопле-ния, пряча свои головы в тени, отбрасываемой сочленами стада. Наконец, многие рыбы, змеи и некоторые млекопитающие, впа-дая в зимнюю спячку, также образуют большие зимовочные скоп-ления, в которых значительно снижается уровень обмена веществ.

Значение стаи при питании.

Значение стаи (пли вообще группирования) животных при пита-нии также довольно разнообразно. Прежде всего, в группах живот-ные легче находят скопления пищи. Как показали опыты, проведенные с молодью сайды, та часть рыб из стаи, которая обнаружила корм и броса-лась к нему, увлекала за собой других рыб стаи, которые не мог-ли видеть корма (он был от этих рыб скрыт непрозрачной пе-регородкой), а те в свою очередь увлекали еще более отдален-ных сочленов стаи (См. рис3.1) . Таким образом, стадность облегчала рыбе поиск пищи, и в считанные секунды вся стая собиралась на скоплении кормовых организмов, обнаруженных лишь частью ее сочленов.

Велико значение стаи и при поимке добычи у тех хищников, которые применя-ют тактику «коллективной охоты». Выше было показа-но, что рыбы, держащиеся оборонительными стаями, становятся почти недоступ-ными для одиночных хищни-ков. Однако в качестве коадаптации у некоторых хищ-ников выработался стайный способ охоты за стайными жертвами. Крупные окуни стаей окружают стайку молоди карповых рыб, отгоняют ее от укрытий и поедают Примерно также описано подобное явление для хищ-ных рыб тропических морей. Д. В. Радаков приводит два своих наблюдения: днем у Западной Африки на поверхности воды, было замечено несколько стай анчоусов, преследуемых снизу тупцами и акулами, а сверху серыми буревестниками. Над стаями стояла пена и брызги. Стаи имели около 5 м в диаметре. Вскоре стаи были уничтожены, и на их месте можно было видеть лишь медленно погружающуюся чешую. Второе наблюдение было произведено в Черном море около Карадагской биологической станции, где Д. В. Радакову удалось приблизиться в подводной маске к стае ставрид, напавших на стаю песчанки. Песчанка держалась в очень плотной стае около полуметра в поперечнике и преследуе-мая снизу ставридами, была «буквально прижата к поверхности поды». Численность этой стайки быстро уменьшалась. Исходя из этих наблюдений, Д. В. Радаков заключает, что стая хищных рыб прижимает стаю своей добычи к поверхности воды снизу, в результате чего рыбы этой стаи не могут ни спастись бегством в стороны, ни скрыться в глубину. Далее этот автор делает общий вывод, что стайное пове-дение хищных рыб представляет собой адаптацию, способствующую поимке добычи, поскольку стая хищников может:

1) легче обнаружить стаю жертв и приблизиться к ней;

2) окружить добы-чу, препятствуя ее бегству;

3) оттеснить добычу от обычных укрытий и, в частности, «прижать» ее снизу к поверхности воды;

4) дезориентировать стаю жертв и внести в ее поведение элемен-ты паники. Таким образом, стайное, организованное поведение рыб хищников оказывается полезным для всей группы в отношении питания. Это верно именно для стай, отличающихся взаимо-обусловленным, согласованным поведением, тогда как для просто-го скопления индивидуумов без согласованного поведения вполне подходит заключение «чем больше ртов, тем меньше на долю каждого».

Широко известна «коллективная» стайная охота хищников из семейства собачьих, при которой употребляются самые разные приемы: «оцепление», «гоньба», «нагон», «подстанавливание» и т. п. Они описаны для волков, гиеновых собак, австралийских динго и некоторых других хищников. Коллективная охота описана и для касаток. Эти китообразные охотятся всегда стадом, причем при охоте и на моржей и на дельфинов их приемы были сходны: «сначала следовало окружение стада, а затем расправа с жертвами.

Значение стаи при миграциях и размножении.

Большая часть мигрирующих животных совершает миграции, со-бираясь в большие стаи, объединяющиеся в передвигающиеся скопления. Исходя из этого, можно полагать, что групповое по-ведение представляет собой важную адаптацию и при миграциях животных. По всей вероятности, стайность и групповое поведе-ние и в этом случае важны, прежде всего, в защитном и пище-вом отношениях. Для животных, передвигающихся по неосвоеннным ими пространствам, защита от врагов и обнаружение мест скопления пищи и мест отдыха должны иметь первоочередное зна-чение. Возможно, в стаях животные легче ориентируются при ми-грациях. Наконец, весьма вероятно, что стайные миграции рыб имеют прямое отношение к гидродинамическим расчетам, которые показали, что стая рыб, плывущая опреде-ленным строем, затрачивает значительно меньшую энергию. В общем же следует заметить, что значение стайного поведения животных при миграциях изучено совершенно недостаточно и нуждается в дальнейших исследованиях.

Еще меньше изучено значение группового поведения животных при размножении. Некоторые позвоночные образуют в этот период скопления типа гнездовых колоний (у птиц и рыб) или лежбищ (у ластоногих). Многие рыбы, подходя к нерестилищу боль-шими скоплениями стай, размножаются, продолжая оставаться в этих скоплениях. Так, например, баренцевоморская треска нерестует у берегов Норве-гии, собравшись в большие косяки. Измеренный при помощи эхо-лота нерестовый косяк имел протяжение и ширину более кило-метра, а толщина его составляла 10--15 м. Такое скопление состояло, по произведенным подсчетам, из нескольких миллионов особей

Следует отметить, что массовые скопления при размножении отмечены и у некоторых беспозвоночных. Так, неоднократно опи-саны подъемы от дна к поверхности моря нереид, которые време-нами образуют у поверхности огромные скопления. Интересный случай произошёл летом 1944 г на Белом море, вблизи берегов внезапно появилась масса нереисов (Nereis virens). Они плавали на поверхности моря, изгибаясь, как змеи. Тела их были длиной 30--40 см. В тихую погоду вода буквально кишела этими животными. Рыбаки даже были вынуждены прекратить лов рыбы и сообщить, что на море появились «морские змеи». Обычно эти черви живут на дне, а когда начи-нают созревать половые продукты, всплывают к поверхности воды для размножения. Тысячи нереид внезапно появляются в воде и «роятся» -- плавают, змеевидно изгибаясь, до тех пор, пока половые продукты не выйдут в воду.

Можно предполагать, что все указанные группировки и скоп-ления животных также полифункциональные и могут иметь значе-ние как для интенсификации и синхронизации процессов размно-жения, так и для защиты от уничтожения хищниками произво-дителей. Возможно также, что собравшиеся животные вносят свою молодую генерацию в больших концентрациях в наиболее опти-мальные для нее условия.

Непостоянство стайности.

Следует еще упомянуть об относительном непостоянстве, изменчивости несемейных групп группового поведения животных. У многих видов животных группы (стаи,. стада) образуются лишь на определенных этапах жизненного цикла (миграции, зимовки н т. д.), а при размножении они распа-даются на пары и семейные группы. Так обстоит дело у многих птиц и у некоторых рыб. Кроме того, у образовавшихся стай очень часто меняется их состав в результате перемешивания. Так что нельзя со всей уверенностью сказать, что группы - явление постоянное.

У кого какая семья? Внутри популяций животные устраи­ваются по-разному. Некоторые, например медведи, тигры, лисы, живут в одиночку и встречаются с себе подобными только в пе­риоды свадеб и выращивания потомства. Другие, например сус­лики, сурки, другие грызуны, живут большими семьями, в которых все члены семьи состоят в родственных отношениях. Несколько семей селятся поблизости друг к другу и образуют колонию. А третьи, например, многие виды птиц и рыб, пар­нокопытные животные, волки, обезьяны живут в больших коллективах. Не обязательно, что все члены коллектива состоят в близких родственных отношениях. У парнокопытных живот­ных, слонов и некоторых других такие коллективы называются стадом. У птиц, рыб и зверей - стаей. Заглянем в семью и стаю и посмотрим, как и для чего образуются такие коллективы животных одного вида.

Как поживает семья сурка?

Есть на свете интересные пред­ставители грызунов - маленькие зверьки сурки. Они предпочита­ют жить в норах, которые роют в степях и лесостепях. Семья у сурка большая, как раньше бывало в деревнях: жена, сыновья, дочери, внуки и внучки. Всем в норе места хватает. Но поэтому и хлопот немало. А вот поспать сурок любит - жуткое дело! Зим­няя спячка у сурка длится до 9 месяцев в году! Недаром же гово­рят: «Спит, как сурок»! Спят в норе всей семьей, свернувшись в большой клубок. Самые толстые во главе с папашей ложатся с краю, а мамаша-сурок - в середине. Когда спит, сурок делает один вдох в 4 минуты - экономит кислород. Да и оставшееся ото сна время сурок тоже не ходуном ходит. Ученые, вообще, счита­ют, что вне норы сурок находится 1/20 часть жизни! Остальное время проводит в норе, где или спит, или просто лежит с откры­тыми глазами и думает. О чем думает - одному Богу известно. Питаются сурки нежными зелеными побегами растений. И вот что поразительно. Сурки не пьют воду. Им вполне хватает воды, содержащейся в побегах растений. Между собой сурки не грызут­ся. Но зачем же сурку такая большая семья? Почему он их всех не разгонит? Оказывается, не все так просто. У сурка есть враги - лисы, волки, дикие кошки, ястребы. Поэтому, когда в свободное ото сна время сурки отъедаются, едят они по очереди. Пока ест папаша, остальные члены семьи занимают круговую оборону и наблюдают, нет ли поблизости хищников. В случае чего - по­дадут сигнал тревоги! Потом сурки по очереди меняются ролями. Да и спать в компании теплее! Вот такая вот семейка!

В гостях у волка. Как-то не принято говорить хорошее о волках. А ведь волк - одно из самых сложных на Земле живот­ных. Обычно живут волки в стаях по 10-30 особей. Наверное, поэтому у волков прекрасно развито чувство коллектива. У каж­дой стаи своя территория, которую они метят и тщательно охра­няют. В стае всегда два вожака - самец и самка. В минуты опас­ности или при принятии важных решений они берут на себя всю полноту ответственности. Кстати, волки с удовольствием питаются нашими знакомыми - сурками. А нападения волков на овец отмечаются начиная с конца августа - сразу же после того, как сурки впадают в спячку! В то время, как основная масса волков сеет панику в стаде овец, вожаки разрабатывают стратегию нападения. По их же команде из резерва вводятся свежие силы. Кстати, охотятся волки чаще на больных и сла­бых животных - ведь их легче поймать! Вожаки умеют исполь­зовать каждого из членов стаи по способностям. Слабых и тру­сов из стаи не изгоняют. Им поручают менее сложные и ответ­ственные задания - например, выслеживание мелких грызунов и дичи. Прибыль всегда распределяется справедливо. Между самками и самцами в стае царит равноправие, но важные реше­ния всегда принимают вожаки! Волки постоянно и тщательно изучают людей и делают правильные выводы. Если охотникам удается загнать стаю, волки никогда не убегают гуртом, как, например, олени, слоны или дикие лошади. Волки убегают врас­сыпную! Не знаешь, за кем и гнаться!

Волки очень редко нападают на людей. Тем не менее, люди часто списывают на волков свои промахи. А вот одна легенда утверждает, что в древней Италии в VIII веке до нашей эры волчица вскормила своим молоком двух мальчиков. Ведь вол­ки - млекопитающие животные. Так вот, один из вскормлен­ных мальчиков, по имени Ромул, основал прекрасный город Рим.

И еще заглянем к воронам. Великий русский баснописец Иван Андреевич Крылов приписал вороне то, что с ней никогда не случается. Даже слово появилось обидное - проворонил! Но ока­зывается, ни при каких обстоятельствах ворона не упустит добычу, а тем более кусочек сыру! Известный московский нату­ралист Юрий Соколов описывает такой случай. В одном месте в Москве продавали пирожки. И местные вороны смекнули, что качество пирожков не очень-то устраивает людей, которые ки­дают эти пирожки недоеденными где попало. А вороны, наобо­рот, считают, что пирожки вполне съедобные, особенно если с душком. Поэтому бегут за человеком, купившим пирожок, точ­но зная, что еще метров 20 и он его, молодец, бросит! Другую историю поведал большой друг Природы Борис Калашников.

Перед посаженной на цепь собакой стояла миска с харчами. Две вороны решили поживиться. Одна из них начала дразнить соба­чонку и уводить в сторону от миски. В это время вторая ворона спокойно обедала собачьими харчами. Потом вороны поменя­лись местами, а бедный песик, обнаружив пустую миску, так, похоже, ничего и не понял. Живут вороны в больших стаях. У каждого в стае свои обязанности: есть наблюдатели, разведчики и другие. Вороны начали селиться вблизи людей 10-12 тысяч лет назад. Они поняли, что человек более сообразительный до­бытчик и если держаться поблизости, можно получить свою долю. Но близость к человеку таит в себе и некоторые опасности. Поэ­тому ворона очень точно ощущает и регламентирует дистанцию до опасных объектов. Она, например, совершенно не боится и близко подпускает стариков, маленьких детей и беременных женщин. Ворона знает, что эта публика малоподвижна и вообще не склонна гонять ворон. Другое дело подростки, которые и кам­нем швырнут, и бегают быстро. И уж совсем внимательно ворона относится к человеку с ружьем! Понаблюдайте! Кстати, воро­ны - одни из самых разговорчивых птиц. У них множество своих сигналов. И больше того, вороны могут копировать до 200-250 слов!

Зачем жить в стае?

Подведем некоторые итоги. Оказывает­ся, что многие животные живут в семьях, стадах или стаях. Размеры этих коллективов могут быть различными: от несколь­ких особей до нескольких сот или тысяч особей. Кстати, перво­бытные люди тоже жили в стадах по 100-200 человек. И вот что удивительно. У каждого из нас и сейчас не более 100-200 родственников, друзей и знакомых, с которыми мы поддержи­ваем отношения! Подсчитайте на досуге! Так что в плане круга общения мы недалеко ушли от древних людей! Так зачем же животным жить в семьях, стаях или стадах? Оказывается, все очень просто. Коллективная жизнь безопасней и выгодней!


Знаете ли вы, почему происходит миграция животных? 7 класс узнаёт об этом на уроках биологии. И уже тогда, во время знакомства с тайнами биологической науки, сознание детей начинают приучать к пониманию обыденного факта: мигрируют люди, мигрируют животные. И если хорошо разобраться, причины у всех одинаковые.

Миграция животных (лат. migratio) - регулярное перемещение группы животных со сменой основной среды обитания по определенному маршруту. Наиболее распространены подобные явления у птиц (все мы наблюдаем осенью миграции аистов, гусей, уток, скворцов и других пернатых) и рыб. Перемещения зверей изучены меньше. Связано это с тем, что они ведут в основном скрытный образ жизни, проследить за ними часто бывает невозможно.

Миграции имеют ярко выраженный адаптивный характер, эта особенность представителей животного мира наблюдается у самых разных видов и возникла в процессе эволюции.

Сезонные миграции характерны больше для птиц, обитателей умеренных широт. Также они присущи некоторым млекопитающим: меняют место обитания антилопы гну, северные олени, некоторые разновидности летучих мышей, рыбы (осетр, европейский угорь), пресмыкающиеся (морская черепаха), ракообразные (лангуст), насекомые (бабочка-монарх).

Почему животные совершают миграции?

Самая главная причина перемещений животных - изменение условий обитания, чаще всего в худшую сторону. Например, перемещаются с наступлением зимы из тундры в лесотундру в связи с нехваткой корма и трудностью его добычи в местности, занесенной снегом. А сезонные миграции микроскопических животных на мелководья из глубинных частей озер связаны с изменением температуры воды.

Не менее важная мотивация - размножение, когда животному нужна иная окружающая среда для продолжения рода. Еще одна причина миграций связана с природными катаклизмами. Каждую из причин мы постараемся рассмотреть в данной статье на примере.

Виды миграции животных

Условно можно выделить два вида миграции - активный и пассивный. В активной миграции животных выделяют несколько подвидов: перемещения бывают сезонные (суточные), периодические (горизонтальные и вертикальные), возрастные. Попробуем разобраться, что собой представляет каждая разновидность.

Итак, сезонная (суточная) миграция животных. Примеры подобных перемещений лучше всего рассматривать на рыбах и птицах. На сегодняшний день науке известно около 8500 видов пернатых, большинство которых ведут оседлый образ жизни, хотя и подвержены миграциям в пределах ареала обитания на время гнездования. Сезонные перемещения пернатых на зимовку больше присущи обитателям Арктики и умеренных широт: с приближением зимнего периода птицы перелетают в более мягкий, теплый климат.

Интересный факт: чем больше птица, тем на более дальние расстояния она перемещается, при этом самые мелкие птицы из мигрирующих могут находиться в воздухе беспрерывно до 90 часов, преодолевая маршрут до 4000 км.

Рыбы же мигрируют вертикально: во время дождя находятся практически на поверхности, в жару или зимой - стремятся к глубинам водоемов. Но только две рыбы меняют привычную среду обитания - это лосось и европейский угорь. Удивительно, но факт: смена водоёмов с соленой и пресной водой происходит у этих рыб два раза в жизни - на момент рождения и в период размножения, правда, это касается только самок, которые после кладки икры погибают.

Интересно, что в момент нереста лосося бурые медведи тоже мигрируют, покидая леса, обосновываясь на реках, кишащих лососем. Таким образом, получается, что они следуют за своей кормовой базой.

Как было отмечено раньше, периодические миграции животных можно разделить на два подвида: горизонтальный и вертикальный. Рассмотрим эти явления подробнее.

Горизонтальные миграции животных связаны с перемещением особей в поиске пищи. Так, например, к лету перемещается из Северного океана в Атлантический (субтропическая, тропическая часть), где в это время полно планктона - основной пищи кита.

Вертикальные миграции присущи высокогорным животным, которые в зимний период спускаются в лесополосу, а летом, по мере схождения снега и выгорания трав в низине, поднимаются обратно на гору.

Существует еще такое понятие, как возрастная миграция животных. Подобные перемещения раскрываются лучше на примере крупных хищников. Так, тигр, по своей сути, одиночное животное с собственной огромной территорией, которую он покидает только в период гона. Появившиеся на свет тигрята живут с самкой до достижения половозрелого возраста (обычно это 3-4 года), после чего самцы отделяются и уходят из семьи в поисках собственной территории.

Причины и примеры миграции

Мы уже поговорили о том, с чем связано такое явление, как миграция животных. Примеры на конкретных представителях рассмотрим далее.

Начнем знакомство с рыб, так как всего два их вида подвержены перемещениям. К ним относятся лосось и европейский угорь. Существуют и другие немногочисленные виды животных, совершающие миграции, но о них поговорим позже. Так почему же мигрируют рыбы? Что служит тому причиной?

Смена места обитания рыб

Анадромные рыбы - разновидность, которая живет в определенной среде обитания, но на время размножения кардинально ее меняет. С чем это связано?

Лосось (лат. Salmo salar) рождается в пресной воде, потом с речными потоками быстро перемещается в море-океан, где живет 5-7 лет в ожидании полового созревания. И вот настал долгожданный момент - особи выросли и готовы оставить потомство. Только вот незадача - соленая вода им нравится, однако малыши отказываются появляться в ней на свет. Рыба «помнит», что родилась в пресной воде, а это значит, что ей надо сменить соленые моря-океаны на реки, а еще лучше - на горные. Там самые благоприятные условия для воспроизводства. Только не все родители достигнут желаемой цели - здесь сидит хищник, который ловко вылавливает из горного потока рыбку, вспарывая брюхо и выедая исключительно икру. На такое способен лишь бурый медведь, который привязан к миграции животных - источнику кормовой базы.

Европейский угорь (лат. Anguilla anguilla) - полная противоположность лососям. Угорь рождается в соленой воде происходит это на глубине до 400 м. Самка производит на свет около полумиллиона икринок, которые переходят в личинку, похожую на ивовый листочек. Личинки за свое кардинальное отличие от своих родителей получили отдельное название - лептоцефал. На примере этих рыб мы можем рассмотреть детально вид пассивной миграции: личинки всплывают к поверхности, их подхватывает течение Гольфстрим, и так три года они перемещаются в теплой водичке к побережью европейской части Евразии. К этому времени лептоцефал обретает очертания угря, только уменьшенного - около 6 см. В этот момент угорь перебирается в устья рек, поднимаясь по течению вверх, рыба превращается во взрослую особь. Так проходит 9, а может, 12 лет (не больше), угри становятся половозрелыми, резко появляются половые различия в окраске. Пора на нерест - обратно в океан.

Миграции млекопитающих

Серый кит (от лат. Eschrichtius robustus) обитает в Северном Ледовитом океане, но, что парадоксально, самки и самцы с октября начинают продвигаться на юг вдоль побережья. К декабрю-январю пары достигают Калифорнийского залива, где в теплых водах приступают к спариванию и родам, после чего самцы возвращаются на север, а беременные самки и особи с детенышами возвращаются домой только в марте-апреле.

Беременность у китов длится около года, поэтому в теплых водах либо зачинают, либо выводят на свет новое потомство. Для молодняка это очень важно — в первые 2-3 недели жизни малыши в теплых водах набирают жировую прослойку, которая позволяет им возвращаться в суровый Ледовитый океан.

На примере лосей мы можем объяснить такое понятие, как пути миграции животных. Лось, в простонародье «сохатый» (от лат. Alces alces), распространен в лесной зоне Северного полушария. Как только появляется первый снег, реки покрываются льдом, лось начинает перемещение в южные районы, где сохраняется поросль травы, водоемы не замерзают. Интересно, что, мигрируя с октября по январь, лоси идут по натоптанной тропе: первыми следуют самки с молодняком, за ними движутся самцы. На обратном пути животные возвращаются той же дорогой, только теперь самцы идут впереди, расчищая тропу от разросшейся зелени. С приближением к месту обитания группы разбредаются - одинокие самки в одну сторону, самки с детенышами - в другую, самцы же - в третью.

Тигры (лат. Panthera tigris), самые крупные представители кошачьих, ведут одиночный образ жизни: для самки требуется до 50 км² личной территории, для самца - до 100 км². Встреча происходит в период размножения, чаще всего самка сама привлекает самца, оставляя различные метки. Оплодотворив тигрицу, самец возвращается на свою территорию или на поиски следующей самки.

Здесь мы видим пример миграции животных в пределах ареала обитания, но с нарушением территориальных границ. Новое потомство живет с матерью до тех пор, пока «малыши» не научатся охотиться, что занимает довольно длительное время. Так, детеныши находятся с тигрицей до наступления полового созревания, после чего уже выросшие особи идут завоевывать новые территории. К примерам возрастной миграции можно добавить и ранее описанного европейского угря.

Массовые миграции животных присущи многим видам, но перемещение летучих мышей - неописуемое зрелище. Вообще рукокрылые склонны к но если зверьки живут в умеренном поясе, то на зимовку вынуждены отправляться на юг. Если температура воздуха в зимний период держится в пределах 0 ºС, то летучие мыши могут перезимовать на чердаках зданий. В это время мыши впадают в зимний сон. При вынужденной миграции рукокрылые руководствуются инстинктами и перемещаются по тем маршрутам, которые используются из поколения в поколение.

Вспомним о вертикальной миграции и обратим внимание на жителей гор. В горах, на высоте тысяч метров, необыкновенное зооразнообразие: шиншиллы, снежные барсы, пумы, козлы, бараны, яки, арчевый дубонос, белый ушастый фазан, кеа. Для всех жителей высокогорья характерны густые шерсть и оперение, предотвращающие переохлаждение животных. Некоторые зверьки в зимний период в норах впадают в спячку, а птицы в расщелинах скал делают гнезда и греются группами. А вот представители копытных спускаются к подножию скал в поисках пищи, следом за ними идут хищники, преследующие свою добычу.

Интересный факт: горные козлы и бараны способны мигрировать по скалам, не ступая на горные тропы. А все благодаря особому строению копыт: мягкие подушечки быстро восстанавливаются, копыта имеют возможность широко раздвигаться, что немаловажно при передвижении по скалистой местности.

Причины смены места обитания птиц

Перелетные птицы наблюдаются как в Северном, так и в Южном полушарии. Чем резче меняется климат, тем ярче выражены перелеты. Так, привычные нам вороны и горлицы становятся перелетными, если обитают в северных районах, где суровые, снежные зимы лишают птиц возможности добычи пищи. Обитатели южной части Европы ведут оседлый образ жизни по причине отсутствия резких перепадов температуры. Интересно поведение пернатых в Африке: здесь одновременно можно наблюдать перемещения как с севера на юг, так и с юга на север. Причина таких миграций скрыта в предпочтении влажного или засушливого климата.

Птицы могут совершать довольно длительные перелеты. Например, ареал обитания (лат. Ciconia ciconia) — в Европе, а зимует птица в Африке, 2 раза в год преодолевая расстояние в 10-15 тыс. км. Но самая уникальная среди перелетных пернатых - полярная крачка (лат. Sterna paradisaea). Крачка гнездится в тундре, здесь же выводит птенцов. С наступлением осени она мигрирует в Южное полушарие, а весной возвращается обратно. Так, дважды в год эта птица преодолевает до 17 тыс. км. Интересно, что весной и осенью крачка летит разными маршрутами.

Перемещения пресмыкающихся

Разберем на примере морской черепахи (лат. Cheloniidae), в чем причина массовых миграций животных. Морские черепахи размножаются только в определенных местах. Так, ридлея атлантическая (лат. Lepidochelys kempii) размножается на одном-единственном острове в Мексике, где в 1947 г. учеными было зарегистрировано примерно 42 тыс. самок, которые приплыли для откладывания яиц.

Благодаря оливковой морской черепахе (лат. Lepidochelys olivacea) в науке появился термин «аррибида». Феномен заключается в том, что тысячи ридлей оливковых в один день собираются для спаривания, после чего, выбрав остров, самки практически одновременно делают кладки миллионов яиц.

Почему мигрируют ракообразные

Лангуст (лат. Achelata) тоже перемещается в определенное время. Причины миграции животных этого вида до сих пор наука не объясняет. Осенью лангусты собираются в колонну из тысяч особей и делают марш-бросок от острова Бимини к Большой Багамской банке. Пока существует только одно предположительное объяснение подобного поведения: осенью начинает сокращаться световой день, что и заставляет лангустов менять среду обитания.

Колючий лангуст (лат. Panulirus argus) тоже считается кочующим представителем ракообразных. В начале зимы он уходит в более глубокие воды. Ученые долгое время считали, что причина перемещения лангуста — размножение, но позже было выяснено, что кладка яиц происходит намного позже миграции, только через несколько месяцев. Ученые называют разные причины смены места обитания лангустов. Некоторые, например, считают, что миграция этих ракообразных — это пережиток ледникового периода, когда зимой они меняли холодные воды на более теплые глубокие.

Миграция лангустов — поистине удивительное зрелище! Несколько сот особей движутся колонами друг за другом. Что самое интересное, лангусты сохраняют между собой постоянный контакт. Так, тот, кто находится сзади, держит свои антенны на панцире того, кто идет впереди.

Примеры миграций насекомых

(лат. Danaus plexippus) - самая известная обитательница Северной Америки. В периоды миграции животных ее замечают на территории Украины, России, Азорских островов, Северной Африки. В Мексике, штате Мичоакан, даже есть заповедник бабочки-монарха.

В вопросе миграции это насекомое тоже отличилось: данаида - одна из немногих представительниц своего класса, способная пересечь Атлантический океан. Уже в августе монархи начинают мигрировать на южные территории. Продолжительность жизни этой бабочки - около двух месяцев, поэтому миграция животных происходит поколениями.

Диабаз - репродукционная фаза, в которую вступает данаида, родившаяся в конце лета, что позволяет бабочке прожить еще около 7 месяцев и достигнуть места зимовки. Бабочка-монарх обладает удивительным «солнечным датчиком», который позволяет третьему, четвертому поколениям вернуться на места зимовки предков. Интересно, что самый благоприятный климат для этих бабочек оказался на Бермудских островах, где некоторые насекомые остаются круглый год.

Мигрируют и европейские виды. Репейницы, например, зимуют и размножаются в Северной Африке, а уже их потомство перемещается на север и там выводит летнее поколение, после чего снова летит в Африку. Весной история повторяется.

Что интересно, летят репейницы группами и могут за один день преодолеть расстояние 500 км. Всего за время миграции они могут пролететь целых 5000 км! И скорость полета у них немаленькая - она составляет 25-30 км/час.

Некоторые бабочки мигрируют не постоянно, а только в зависимости от условий. К таким можно отнести крапивницу, махаона, траурницу, капустницу, адмирала. Все эти виды обитают в Северной и Средней Европе, но могут перемещаться на юг при неблагоприятных обстоятельствах.

А вот например, ежегодно совершает перемещение из Турции и Северной Африки в Восточную и Центральную Европу. Там эти бабочки размножаются, но, к сожалению, зимой большая часть их потомства погибает. Весной с юга мигрирует очередное поколение.

Небольшое заключение и выводы

Вот мы немного и разобрались в том, почему животные совершают миграции. Действительно, причины разнообразны, но хочется отметить две самые распространенные. Все мы помним историю Маугли, особенно тот момент, когда в джунглях настал период засухи. Все животные потянулись к единственной речушке, где должен был соблюдаться паритет: все равны, охота - табу. Такая миграция происходит, как правило, в пределах ареала обитания, когда животные (чаще обитатели степей, полупустынь, пустынь) в период засухи мигрируют в поисках пищи и воды с места на место, чаще всего это представители копытных. Однако перемещение табунов, стад влечет за собой и перемещение некоторых хищников (гиен, грифов), которым необходимо находиться недалеко от кормовой базы. Таким образом, пища и вода заставляют мигрировать большие группы животных нескольких видов.

Немаловажная причина - размножение. Активная миграция животных в период размножения, в частности, морских черепах, впечатляет и завораживает.

Перемещается много видов животных: одни в пределах ареала обитания, другие преодолевают тысячи километров, чтобы достичь благоприятного климата; третьи кардинально меняют среду обитания (помним про осетра и европейского угря).

Да, миграции различных животных имеют различный характер, разные причины, но объединяет всех одно - жажда жизни.

Правообладатель иллюстрации Thinkstock

Сейчас домашние кошки не видят никаких преимуществ в стадном существовании, однако обозреватель выяснил, что в будущем это может измениться. Или все-таки нет?

Насколько трудно заставить кошек объединиться в стаю?

Спросите у Дэниэла Миллса, профессора ветеринарной поведенческой медицины из Университета Линкольна (Великобритания).

В своем недавнем исследовании Миллс и его коллега Элис Поттер продемонстрировали, что кошки более независимы и больше любят одиночество, чем собаки.

Трудности, с которыми они столкнулись во время исследования, стали еще одним подтверждением неоднозначной репутации этих животных.

"Заставить их поступать так, как хотите вы, очень непросто, - говорит Миллс. - Они всегда все делают по-своему".

Любой владелец кошки с этим согласится. Но почему же кошки так не хотят сотрудничать ни с себе подобными, ни с человеком?

Или, если взглянуть на этот вопрос с другой стороны, почему столь многие животные, как дикие, так и домашние, совершенно не против жить в коллективе?

Правообладатель иллюстрации Thinkstock
Image caption Стадо зебр пересекает реку

В природе стадное существование распространено очень широко. Птицы сбиваются в стаи, антилопы гну - в стада, а рыба - в косяки. Да и хищники тоже часто охотятся вместе.

Даже родственники домашней кошки - львы - живут в прайдах.

Представители видов, рискующих стать жертвой хищника, поступают так ради безопасности.

Когда у членов группы появляется потомство, его воспитывают всем миром

"Это называется эффектом рассеивания", - говорит биолог Крейг Пакер из Университета Миннесоты в Сент-Поле (США).

"Хищник может схватить только одного, а если вас сотня, то шанс быть съеденным снижается до 1%. А когда ты один, то тебя схватят в любом случае", - объясняет он.

Еще одним преимуществом жизни в группе является так называемый эффект множества глаз: чем больше группа потенциальных жертв, тем больше вероятность того, что они заметят приближающегося хищника.

"А чем раньше вы обнаружите хищника, тем больше у вас времени на то, чтобы избежать встречи с ним", - говорит Йенс Краузе из Берлинского университета имени Гумбольдта (Германия).

Подобная коллективная бдительность имеет и другие преимущества. Так, отдельные особи могут потратить больше времени и энергии на поиск пищи.

Однако дело не только в избегании встреч с хищниками. Животным, живущим в группе, не нужно бродить в поисках подходящей пары, в то время как для одиночек, путешествующих на далекие расстояния, это может быть довольно серьезной проблемой.

Очевидно, что найти себе партнера в стаде или стае намного проще.

Сбившись в кучу, гораздо легче сохранить тепло и не замерзнуть

Когда у членов группы появляется потомство, его воспитывают всем миром: взрослые особи могут сотрудничать друг с другом, чтобы защитить молодняк или добыть для него пищу.

У многих видов птиц, в том числе у арабской дроздовой тимелии, обитающей в Израиле, птенцы остаются в семейных группах до тех пор, пока не будут готовы к размножению. Они танцуют вместе, купаются вместе и даже дарят друг другу подарки.

Стадное существование также помогает экономить энергию. Птицы в стаях и рыбы в косяках передвигаются более эффективно, чем особи-одиночки.

По тому же самому принципу во время Тур-де-Франс велосипедисты формируют пелотон. "Те, кто находится позади, тратят меньше энергии для того, чтобы развить такую же скорость", - говорит Краузе.

А еще (это подтвердят летучие мыши и императорские пингвины) сбившись в кучу, гораздо легче сохранить тепло и не замерзнуть.

Правообладатель иллюстрации Thinkstock
Image caption Пингвины обычно держатся поближе друг к другу

Учитывая все эти преимущества, кажется странным, что некоторые животные избегают компании себе подобных.

Тем не менее, как видно на примере домашних кошек, стадное существование привлекает далеко не всех.

Для некоторых животных никакие плюсы коллективной жизни не стоят того, чтобы делиться едой.

"Всегда наступает момент, когда непосредственная близость других особей приводит к снижению объема потребляемой пищи", - говорит Джон Фрайкселл, специалист в области интегративной биологии из Гуэлфского университета (Канада).

Поймав мышь, кошка меньше всего хочет видеть кого-то рядом с собой, ведь она собирается съесть ее сама

В этом случае ключевым фактором становится наличие достаточного количества пищи, что, в свою очередь, зависит от того, сколько пищи требуется конкретному животному.

А кошачьи в этом вопросе очень требовательны. Так, например, леопард съедает около 23 кг мяса раз в несколько дней.

Как правило, конкуренция за пищу среди диких кошек очень высока, и поэтому леопарды предпочитают жить и охотиться в одиночку.

Тем не менее из этого правила есть одно исключение - львы. По словам Пакера, который занимается изучением африканских львов на протяжении уже почти 50 лет, этим животным очень важно иметь собственную территорию.

В покрытой травой саванне имеются места, которые могут служить идеальным укрытием для ловли добычи, и у животных, которые контролируют эти территории, значительно больше шансов выжить.

"Они просто вынуждены вести социальный образ жизни, чтобы доминировать на своей территории и изгонять конкурентов. При этом выигрывает большая по размеру стая", - говорит Пакер.

Это успешное сосуществование возможно потому, что одной убитой львом жертвы - антилопы гну или зебры - достаточно для того, чтобы накормить сразу несколько самок.

"Размер добычи позволяет им жить в группах, однако на самом деле их к этому подталкивают географические особенности среды обитания", - считает Пакер.

Правообладатель иллюстрации Thinkstock
Image caption Домашней кошке ни к чему стая, ей и одной отлично среди людей

Однако домашние кошки находятся совершенно в другой ситуации, ведь они охотятся на мелких животных.

"Поймав мышь, кошка меньше всего хочет видеть кого-то рядом с собой, ведь она собирается съесть ее сама, - говорит Пакер. - Именно так она и поступает. Ей нечем делиться".

Эти эгоистичные мотивы столь глубоко укоренились в кошачьем поведении, что даже одомашнивание не смогло победить величайшую любовь этих животных к одиночеству.

Это вдвойне верно, если учесть, что человек не одомашнивал кошек. На самом деле, в свойственной для них манере, кошки одомашнили себя сами.

Все домашние кошки происходят от ближневосточных диких кошек (Felis silvestris), "лесных кошек". Люди не выманили этих первых кошек из леса; кошки сами пришли в наши амбары, где бесконтрольно кормилось множество мышей.

Если они вдруг столкнутся лицом к лицу, шерсть у них встает дыбом, а из мягких лапок показываются когти

Быстро положив конец этому безобразию, кошки заложили основу наших поистине симбиотических отношений.

Кошкам нравилось обилие еды в амбарах, а люди были рады избавиться от вредителей.

Домашние кошки не полностью асоциальны, но их общение друг с другом и с владельцами должно происходить только на их условиях.

"Они сохранили высокую степень независимости и проводят с нами время только тогда, когда сами захотят", - говорит Деннис Тернер, фелинолог и специалист в области поведения животных из Института прикладной этологии и зоопсихологии в Хоргене, Швейцария.

"У кошек развилось множество механизмов для того, чтобы держаться отдельно. Эти механизмы препятствуют их стадному существованию", - говорит Миллс.

Кошки помечают свою территорию, чтобы избежать нежелательных встреч друг с другом. Если они вдруг столкнутся лицом к лицу, шерсть у них встает дыбом, а из мягких лапок показываются когти.

Правообладатель иллюстрации Thinkstock
Image caption Кошки часто конфликтуют друг с другом

В определенных ситуациях может показаться, что домашние кошки все же смирились с жизнью в группах. Например, в сельской местности можно целую стаю кошек, которые живут вместе в амбаре.

Однако Фрайкселл говорит, что это впечатление обманчиво.

"Подобные сообщества кошек непостоянны и, по сути, группой не являются, - говорит он. - Они просто делят территорию, на которой выращивают потомство".

На самом же деле, даже перед лицом высочайшей опасности, которая часто заставляет животных объединиться ради собственной защиты, кошки вряд ли станут сотрудничать.

Оправдав свою репутацию одиночек-недотрог, они оказались нервными, импульсивными и непослушными

"Это просто нетипичное для них поведение, даже при наличии угрозы", - подчеркивает Моник Юделл, биолог из Университета штата Орегон. Кошки просто не верят в численное превосходство.

Все это объясняет, почему кошки заслужили репутацию животных, которых невозможно заставить жить в группе.

Тем не менее есть определенные свидетельства того, что презрение кошек к групповой жизни начинает ослабевать.

В исследовании, опубликованном в 2014 году в журнале Journal of Comparative Psychology, журналисты изучили черты характера домашних кошек. Оправдав свою репутацию одиночек-недотрог, те оказались нервными, импульсивными и непослушными.

Впрочем, интересен тот факт, что домашние кошки могут быть не такими несговорчивыми, как их дикие родственники.

Когда исследователи сравнили домашних кошек с четырьмя дикими - шотландскими дикими кошками, дымчатыми леопардами, снежными барсами и африканскими львами, - то по своему характеру домашние кошки оказались наиболее похожими на львов, живущих в группах.

Правообладатель иллюстрации Thinkstock
Image caption В отличие от других кошачьих, львы живут вместе

Справедливости ради стоит отметить, что домашние кошки намного лучше терпят компанию друг друга, чем их предки.

Несмотря на то, что группы кошек, живущих в амбарах, являются непостоянными сообществами, они все же очень неплохо уживаются в столь ограниченных пространствах.

В римском Колизее бок о бок живут примерно 200 кошек, а на японском острове Аосима число кошек в шесть раз превышает число людей.

Возможно, сотрудничество в этих колониях не развито, однако такой образ жизни разительно отличается от одиночного образа жизни их дальних предков.

В то же время ученым приходится идти на уступки, чтобы контролировать поведение кошек во время экспериментов.

Львам это удалось, поэтому не исключено, что соответствующая цепочка мутаций все же случится

Когда Юделл проводила свои первые эксперименты с участием кошек, ей было очень трудно заставить испытуемых выполнять приготовленные для них задания.

Раньше она работала с собаками, и те с радостью выполняли любые задания за угощение. Но кошкам угодить было намного труднее.

Юделл удалось достичь успеха только тогда, когда она начала давать кошкам возможность выбрать свое вознаграждение.

"Мне кажется, что нам трудно взаимодействовать с кошками, потому что мы мало о них знаем", - говорит она.

Если ученые смогут проникнуть в глубины кошачьего разума, на смену принудительному сплочению может прийти хитроумное воздействие.

Поведение животных, в том числе склонность или нежелание образовывать группы, во многом обусловлено строением их нейронной сети.

Правообладатель иллюстрации Thinkstock
Image caption Захочет ли ваш Барсик жить в коллективе? Очень сомнительно...

По словам Фрайкселла, даже думать не стоит о том, чтобы в один момент изменить то, что было создано за многие годы естественного отбора.

"Но кто знает? Львам это удалось, поэтому не исключено, что соответствующая цепочка мутаций все же случится, - говорит он. - И если они смогли проделать этот трюк, возможно, и объединение кошек в группы - не такая уж и сумасшедшая идея".