Menü
Ücretsiz
Kayıt
Ev  /  Dermatit/ Logaritmalarla örnekler nasıl çözülür? Problem B7 - Logaritmik ve Üstel İfadeleri Dönüştürme

Logaritmalarla örnekler nasıl çözülür? Problem B7 - Logaritmik ve Üstel İfadeleri Dönüştürme

İlkel düzey cebirin unsurlarından biri logaritmadır. Adı Yunanca'dan "sayı" veya "kuvvet" kelimesinden gelir ve son sayıyı bulmak için tabandaki sayının yükseltilmesi gereken kuvvet anlamına gelir.

Logaritma türleri

  • log a b – b sayısının a tabanına göre logaritması (a > 0, a ≠ 1, b > 0);
  • log b – ondalık logaritma (10 tabanına göre logaritma, a = 10);
  • ln b – doğal logaritma(e tabanına göre logaritma, a = e).

Logaritmalar nasıl çözülür?

B'nin a tabanına göre logaritması, b'nin a tabanına yükseltilmesini gerektiren bir üstür. Elde edilen sonuç şu şekilde telaffuz edilir: "b'nin a tabanına göre logaritması." Logaritmik problemlerin çözümü, sayıların verilen kuvvetini belirtilen sayılardan belirlemeniz gerektiğidir. Logaritmayı belirlemek veya çözmek ve gösterimin kendisini dönüştürmek için bazı temel kurallar vardır. Bunları kullanarak logaritmik denklemler çözülür, türevler bulunur, integraller çözülür ve diğer birçok işlem gerçekleştirilir. Temel olarak logaritmanın çözümü onun basitleştirilmiş gösterimidir. Aşağıda temel formüller ve özellikler verilmiştir:

Herhangi bir a için; a > 0; a ≠ 1 ve herhangi bir x için; y > 0.

  • a log a b = b – temel logaritmik özdeşlik
  • 1 = 0'ı günlüğe kaydet
  • log a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, k ≠ 0 için
  • log a x = log a c x c
  • log a x = log b x/ log b a – yeni bir tabana geçme formülü
  • log a x = 1/log x a


Logaritmalar nasıl çözülür - çözmek için adım adım talimatlar

  • İlk önce gerekli denklemi yazın.

Lütfen unutmayın: Taban logaritması 10 ise, giriş kısaltılır ve sonuçta ondalık logaritma elde edilir. Eğer buna değerse doğal sayı e, sonra bunu doğal logaritmaya indirgeyerek yazıyoruz. Bu, tüm logaritmaların sonucunun, b sayısını elde etmek için temel sayının yükseltildiği kuvvet olduğu anlamına gelir.


Çözüm doğrudan bu derecenin hesaplanmasında yatmaktadır. Bir ifadeyi logaritmayla çözmeden önce kurala göre yani formüller kullanılarak basitleştirilmesi gerekir. Yazıda biraz geriye giderek ana kimlikleri bulabilirsiniz.

İki farklı sayıya ancak aynı tabanlara sahip logaritmalar eklenirken ve çıkarılırken, sırasıyla b ve c sayılarının çarpımı veya bölümü olan bir logaritma ile değiştirin. Bu durumda başka bir üsse geçme formülünü uygulayabilirsiniz (yukarıya bakın).

Logaritmayı basitleştirmek için ifadeler kullanırsanız dikkate alınması gereken bazı sınırlamalar vardır. Ve bu şudur: logaritmanın tabanı a yalnızca pozitif bir sayıdır, fakat bire eşit. a gibi b sayısı da sıfırdan büyük olmalıdır.

Bir ifadeyi basitleştirerek logaritmayı sayısal olarak hesaplayamayacağınız durumlar vardır. Böyle bir ifadenin mantıklı olmadığı görülür çünkü kuvvetlerin çoğu irrasyonel sayılardır. Bu durumda sayının kuvvetini logaritma olarak bırakın.



Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor - onlar olmadan tek bir ciddi sorun çözülemez. logaritmik problem. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+günlük A sen= günlük A (X · sen);
  2. kayıt A X- günlük A sen= günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Not: önemli an Burada - aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçoğu bu gerçek üzerine inşa edilmiştir sınav kağıtları. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Bunu fark etmek kolaydır son kural ilk ikisini takip ediyor. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma günlüğü verilsin A X. Daha sonra herhangi bir sayı için Cöyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden logaritmanın tabanının ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller nadiren geleneksel olarak bulunur. sayısal ifadeler. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı gelse ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Güçleri çarpma kurallarını göz önünde bulundurarak aynı temel, şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. kayıt A A= 1 logaritmik bir birimdir. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfırdır. Temel A herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa - logaritma sıfıra eşit! Çünkü A 0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Talimatlar

Verilen logaritmik ifadeyi yazınız. İfade 10'un logaritmasını kullanıyorsa gösterimi kısaltılır ve şu şekilde görünür: lg b ondalık logaritmadır. Logaritmanın temelinde e sayısı varsa, şu ifadeyi yazın: ln b – doğal logaritma. Herhangi birinin sonucunun, b sayısını elde etmek için temel sayının yükseltilmesi gereken kuvvet olduğu anlaşılmaktadır.

İki fonksiyonun toplamını bulurken, tek tek türevlerini alıp sonuçları eklemeniz yeterlidir: (u+v)" = u"+v";

İki fonksiyonun çarpımının türevini bulurken, birinci fonksiyonun türevini ikinciyle çarpmak ve ikinci fonksiyonun türevinin birinci fonksiyonla çarpımını eklemek gerekir: (u*v)" = u"*v +v"*u;

İki fonksiyonun bölümünün türevini bulmak için, bölen fonksiyonu ile bölünen türevinin çarpımından bölen türevinin çarpımı ile bölünen fonksiyonun çarpımını çıkarmak ve bölmek gerekir. tüm bunlar bölen fonksiyonunun karesine göre. (u/v)" = (u"*v-v"*u)/v^2;

Eğer verilirse karmaşık fonksiyon o zaman türevini çarpmak gerekir dahili fonksiyon ve dıştakinin türevi. y=u(v(x)) olsun, sonra y"(x)=y"(u)*v"(x) olsun.

Yukarıda elde edilen sonuçları kullanarak hemen hemen her işlevi ayırt edebilirsiniz. O halde birkaç örneğe bakalım:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *X));
Bir noktadaki türevin hesaplanmasıyla ilgili problemler de vardır. y=e^(x^2+6x+5) fonksiyonu verilsin, x=1 noktasında fonksiyonun değerini bulmanız gerekiyor.
1) Fonksiyonun türevini bulun: y"=e^(x^2-6x+5)*(2*x +6).

2) Fonksiyonun değerini hesaplayın verilen nokta y"(1)=8*e^0=8

Konuyla ilgili video

Yararlı tavsiye

Temel türevler tablosunu öğrenin. Bu önemli ölçüde zaman tasarrufu sağlayacaktır.

Kaynaklar:

  • bir sabitin türevi

Peki arasındaki fark nedir rasyonel denklem rasyonelden mi? Bilinmeyen değişken işaretin altındaysa kare kök ise denklemin irrasyonel olduğu kabul edilir.

Talimatlar

Bu tür denklemleri çözmenin ana yöntemi her iki tarafı da oluşturma yöntemidir. denklemler bir kareye. Fakat. bu doğaldır, yapmanız gereken ilk şey tabeladan kurtulmaktır. Bu yöntem teknik olarak zor değildir ancak bazen sıkıntılara yol açabilmektedir. Örneğin denklem v(2x-5)=v(4x-7) şeklindedir. Her iki tarafın karesini alarak 2x-5=4x-7 elde edersiniz. Böyle bir denklemi çözmek zor değil; x=1. Ama 1 rakamı verilmeyecek denklemler. Neden? Denklemde x'in değeri yerine bir yazın, sağ ve sol taraflarda anlamsız ifadeler yer alacaktır, yani. Bu değer karekök için geçerli değildir. Bu nedenle 1 yabancı bir köktür ve bu nedenle bu denklemin kökleri yoktur.

Bu yüzden, irrasyonel denklem her iki parçasının karesinin alınması yöntemi kullanılarak çözülür. Denklemi çözdükten sonra yabancı kökleri kesmek gerekir. Bunu yapmak için bulunan kökleri orijinal denklemde değiştirin.

Başka bir tane düşünün.
2х+vх-3=0
Elbette bu denklem bir önceki denklemin aynısı kullanılarak çözülebilir. Bileşikleri Taşı denklemler Karekökü olmayan , sağ tarafa ve ardından kare alma yöntemini kullanın. Ortaya çıkan rasyonel denklemi ve köklerini çözer. Ama aynı zamanda daha zarif bir tane daha. Yeni bir değişken girin; vх=y. Buna göre 2y2+y-3=0 formunda bir denklem elde edeceksiniz. Yani olağan ikinci dereceden denklem. Köklerini bulun; y1=1 ve y2=-3/2. Sonra iki tanesini çöz denklemler vх=1; vх=-3/2. İkinci denklemin kökleri yoktur; ilkinden x=1 olduğunu buluruz. Kökleri kontrol etmeyi unutmayın.

Kimlikleri çözmek oldukça basittir. Bunu yapmak için yapmanız gerekenler kimlik dönüşümleri hedefe ulaşılıncaya kadar. Böylece, en basitinin yardımıyla Aritmetik işlemler eldeki görev çözülecektir.

İhtiyacın olacak

  • - kağıt;
  • - dolma kalem.

Talimatlar

Bu tür dönüşümlerin en basiti cebirsel kısaltılmış çarpmalardır (toplamın karesi (fark), kareler farkı, toplam (fark), toplamın küpü (fark) gibi). Ayrıca çok sayıda var ve trigonometrik formüller Bunlar aslında aynı kimliklerdir.

Nitekim iki terimin toplamının karesi, birincinin karesi artı birincinin ikinciyle çarpımının iki katı ve artı ikincinin karesine eşittir, yani (a+b)^2= (a+) b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Her ikisini de basitleştirin

Çözümün genel ilkeleri

Ders kitabına göre tekrarlayın matematiksel analiz veya yüksek Matematik belirli bir integraldir. Bilindiği gibi belirli bir integralin çözümü, türevi bir integral verecek olan bir fonksiyondur. Bu işlev antiderivatif denir. Bu prensibe dayanarak ana integraller inşa edilir.
Bu durumda tablo integrallerinden hangisinin uygun olduğunu integralin türüne göre belirleyin. Bunu hemen belirlemek her zaman mümkün olmuyor. Çoğu zaman, tablo biçimi ancak integrali basitleştirmek için yapılan birkaç dönüşümden sonra fark edilebilir hale gelir.

Değişken Değiştirme Yöntemi

İntegral fonksiyonu ise trigonometrik fonksiyon Argümanı bazı polinomlar içeren değişkeni değiştirme yöntemini kullanmayı deneyin. Bunu yapmak için integralin argümanındaki polinomu yeni bir değişkenle değiştirin. Yeni ve eski değişkenler arasındaki ilişkiye dayanarak entegrasyonun yeni sınırlarını belirleyin. Bu ifadenin türevini alarak yeni diferansiyeli bulun. Yani alacaksın yeni türönceki integralin herhangi bir tablodaki integrale yakın veya hatta karşılık gelen.

İkinci Tür İntegrallerin Çözülmesi

İntegral ikinci türden bir integral ise, integralin vektör biçimi ise, o zaman bu integrallerden skaler olanlara geçiş için kuralları kullanmanız gerekecektir. Böyle bir kural Ostrogradsky-Gauss ilişkisidir. Bu yasa, belirli bir vektör fonksiyonunun rotor akısından, belirli bir vektör alanının diverjansı üzerinden üçlü integrale geçmemize izin verir.

Entegrasyon sınırlarının değiştirilmesi

Antiderivatifi bulduktan sonra integralin limitlerini yerine koymak gerekir. İlk olarak, üst limitin değerini ters türev ifadesinde değiştirin. Bir numara alacaksınız. Daha sonra, elde edilen sayıdan alt limitten elde edilen başka bir sayıyı antiderivatife çıkarın. İntegral limitlerinden biri sonsuzluk ise, o zaman onu yerine koyarken antiderivatif fonksiyon sınıra gitmek ve ifadenin neyi hedeflediğini bulmak gerekiyor.
İntegral iki boyutlu veya üç boyutlu ise, integralin nasıl değerlendirileceğini anlamak için integralin sınırlarını geometrik olarak temsil etmeniz gerekecektir. Aslında, örneğin üç boyutlu bir integral durumunda, integralin sınırları, entegre edilen hacmi sınırlayan tüm düzlemler olabilir.

Problem B7 basitleştirilmesi gereken bazı ifadeler veriyor. Sonuç, cevap kağıdınıza yazılabilecek normal bir sayı olmalıdır. Tüm ifadeler geleneksel olarak üç türe ayrılır:

  1. Logaritmik,
  2. Gösterge niteliğinde,
  3. Kombine.

Saf haliyle üstel ve logaritmik ifadeler neredeyse hiç bulunmaz. Ancak bunların nasıl hesaplandığını bilmek kesinlikle gereklidir.

Genel olarak B7 problemi oldukça basit bir şekilde çözülür ve ortalama bir mezunun yetenekleri dahilindedir. Açık algoritmaların eksikliği, standardizasyonu ve monotonluğu ile telafi edilmektedir. Bu tür sorunları basit bir şekilde çözmeyi öğrenebilirsiniz. büyük miktar eğitim.

Logaritmik İfadeler

B7 problemlerinin büyük çoğunluğu şu veya bu şekilde logaritma içerir. Bu konu geleneksel olarak zor kabul edilir, çünkü çalışması genellikle final sınavlarına toplu hazırlık dönemi olan 11. sınıfta gerçekleşir. Sonuç olarak, pek çok mezun logaritma konusunda oldukça belirsiz bir anlayışa sahiptir.

Ancak bu görevde hiç kimse derin bir bilgiye ihtiyaç duymaz. teorik bilgi. Sadece en çok buluşacağız basit ifadeler Basit akıl yürütme gerektiren ve bağımsız olarak kolayca ustalaşılabilen konular. Logaritmalarla baş etmek için bilmeniz gereken temel formüller aşağıda verilmiştir:

Ek olarak, kökleri ve kesirleri rasyonel bir üslü kuvvetlerle değiştirebilmeniz gerekir, aksi takdirde bazı ifadelerde logaritma işaretinin altından çıkarılacak hiçbir şey olmayacaktır. Değiştirme formülleri:

Görev. İfadelerin anlamını bulun:
günlük 6 270 – günlük 6 7,5
günlük 5 775 – günlük 5 6,2

İlk iki ifade logaritmanın farkı olarak dönüştürülür:
log 6 270 − log 6 7,5 = log 6 (270: 7,5) = log 6 36 = 2;
log 5 775 – log 5 6,2 = log 5 (775: 6,2) = log 5 125 = 3.

Üçüncü ifadeyi hesaplamak için hem temelde hem de argümanda güçleri ayırmanız gerekecek. İlk önce iç logaritmayı bulalım:

Sonra - harici:

Log a log b x formunun yapıları karmaşık görünüyor ve çoğu kişi tarafından yanlış anlaşılıyor. Bu arada, bu sadece logaritmanın logaritması, yani. log a (log b x ). İlk olarak, iç logaritma hesaplanır (log b x = c koyun) ve ardından harici olan: log a c.

Gösterici İfadeler

A ve k sayılarının keyfi sabitler olduğu ve a > 0 olduğu a k formundaki herhangi bir yapıya üstel ifade diyeceğiz. Bu tür ifadelerle çalışma yöntemleri oldukça basittir ve 8. sınıf cebir derslerinde tartışılmaktadır.

Aşağıda kesinlikle bilmeniz gereken temel formüller bulunmaktadır. Bu formüllerin pratikte uygulanması kural olarak sorun yaratmaz.

  1. bir n · bir m = bir n + m;
  2. bir n / bir m = bir n - m;
  3. (bir n ) m = bir n · m;
  4. (a · b ) n = a n · b n;
  5. (a : b ) n = bir n : b n.

Güçleri olan karmaşık bir ifadeyle karşılaşırsanız ve ona nasıl yaklaşacağınız net değilse, evrensel bir teknik kullanın: basit faktörlere ayrıştırma. Sonuç olarak büyük sayılar Derece tabanlarındaki ifadeler yerini basit ve anlaşılır unsurlara bırakmıştır. O zaman geriye kalan tek şey yukarıdaki formülleri uygulamaktır - ve sorun çözülecektir.

Görev. İfadelerin değerlerini bulun: 7 9 · 3 11: 21 8, 24 7: 3 6: 16 5, 30 6: 6 5: 25 2.

Çözüm. Güçlerin tüm temellerini basit faktörlere ayıralım:
7 9 3 11: 21 8 = 7 9 3 11: (7 3) 8 = 7 9 3 11: (7 8 3 8) = 7 9 3 11: 7 8: 3 8 = 7 3 3 = 189.
24 7: 3 6: 16 5 = (3 2 3) 7: 3 6: (2 4) 5 = 3 7 2 21: 3 6: 2 20 = 3 2 = 6.
30 6: 6 5: 25 2 = (5 3 2) 6: (3 2) 5: (5 2) 2 = 5 6 3 6 2 6: 3 5: 2 5: 5 4 = 5 2 3 2 = 150 .

Birleşik görevler

Formülleri biliyorsanız, tüm üstel ve logaritmik ifadeler tam anlamıyla tek bir satırda çözülebilir. Ancak B7 Probleminde kuvvetler ve logaritmalar oldukça güçlü kombinasyonlar oluşturacak şekilde birleştirilebilir.

Bugün bunun hakkında konuşacağız logaritmik formüller ve gösterge niteliğinde vereceğiz çözüm örnekleri.

Logaritmanın temel özelliklerine göre çözüm modellerini kendileri ima ederler. Logaritma formüllerini çözüme uygulamadan önce size tüm özellikleri hatırlatalım:

Şimdi bu formüllere (özelliklere) dayanarak şunu göstereceğiz: logaritma çözme örnekleri.

Formüllere dayalı logaritma çözme örnekleri.

Logaritma pozitif sayı b'nin a tabanına oranı (log a b ile gösterilir), b > 0, a > 0 ve 1 olmak üzere b'yi elde etmek için a'nın yükseltilmesi gereken bir üstür.

Tanıma göre log a b = x, bu da a x = b'ye eşdeğerdir, dolayısıyla log a a x = x.

Logaritmalar, örnekler:

log 2 8 = 3, çünkü 2 3 = 8

log 7 49 = 2, çünkü 7 2 = 49

log 5 1/5 = -1, çünkü 5 -1 = 1/5

Ondalık logaritma- bu, tabanı 10 olan sıradan bir logaritmadır. lg olarak gösterilir.

log 10 100 = 2, çünkü 10 2 = 100

Doğal logaritma- aynı zamanda sıradan bir logaritma, bir logaritma, ancak e tabanıyla (e = 2,71828... - irrasyonel bir sayı). ln olarak gösterilir.

Logaritmanın formüllerini veya özelliklerini ezberlemeniz tavsiye edilir, çünkü daha sonra logaritmaları, logaritmik denklemleri ve eşitsizlikleri çözerken bunlara ihtiyacımız olacak. Örneklerle her formülü tekrar inceleyelim.

  • Temel logaritmik kimlik
    a günlüğü a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ürünün logaritması toplamına eşit logaritmalar
    log a (bc) = log a b + log a c

    günlük 3 8,1 + günlük 3 10 = günlük 3 (8,1*10) = günlük 3 81 = 4

  • Bölümün logaritması logaritmaların farkına eşittir
    log a (b/c) = log a b - log a c

    9 günlük 5 50 /9 günlük 5 2 = 9 günlük 5 50- günlük 5 2 = 9 günlük 5 25 = 9 2 = 81

  • Logaritmik bir sayının kuvvetinin ve logaritmanın tabanının özellikleri

    Logaritmik sayının üssü log a b m = mlog a b

    Logaritmanın tabanının üssü log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    eğer m = n ise log a n b n = log a b elde ederiz

    günlük 4 9 = günlük 2 2 3 2 = günlük 2 3

  • Yeni bir temele geçiş
    log a b = log c b/log c a,

    c = b ise log b b = 1 elde ederiz

    o zaman log a b = 1/log b a

    günlük 0,8 3*günlük 3 1,25 = günlük 0,8 3*günlük 0,8 1,25/günlük 0,8 3 = günlük 0,8 1,25 = günlük 4/5 5/4 = -1

Gördüğünüz gibi logaritma formülleri göründüğü kadar karmaşık değil. Artık logaritmik çözüm örneklerine baktıktan sonra logaritmik denklemlere geçebiliriz. Logaritmik denklemleri çözme örneklerine şu makalede daha ayrıntılı olarak bakacağız: "". Kaçırma!

Çözümle ilgili hala sorularınız varsa, bunları makalenin yorumlarına yazın.

Not: Seçenek olarak farklı bir sınıf eğitim almaya ve yurtdışında eğitim almaya karar verdik.