منو
رایگان
ثبت
خانه  /  انواع و محلی سازی جوش/ مشتق توابع بیرونی و درونی. قانون تمایز یک تابع پیچیده

مشتق از توابع بیرونی و درونی. قانون تمایز یک تابع پیچیده

اگر از تعریف پیروی کنید، مشتق یک تابع در یک نقطه حد نسبت افزایش تابع Δ است. yبه آرگومان افزایش Δ ایکس:

به نظر می رسد همه چیز روشن است. اما سعی کنید از این فرمول برای محاسبه مشتق تابع استفاده کنید f(ایکس) = ایکس 2 + (2ایکس+ 3) · ه ایکسگناه ایکس. اگر همه کارها را طبق تعریف انجام دهید، پس از چند صفحه محاسبات به سادگی می خوابید. بنابراین، راه های ساده تر و موثرتری وجود دارد.

برای شروع، ما توجه می کنیم که از کل توابع مختلف می توانیم به اصطلاح توابع ابتدایی را تشخیص دهیم. نسبی است عبارات ساده، که مشتقات آن مدت هاست محاسبه و در جدول آمده است. یادآوری چنین توابعی بسیار آسان است - همراه با مشتقات آنها.

مشتقات توابع ابتدایی

توابع ابتدایی همه آنهایی هستند که در زیر لیست شده اند. مشتقات این توابع را باید از روی قلب دانست. علاوه بر این ، به خاطر سپردن آنها اصلاً دشوار نیست - به همین دلیل آنها ابتدایی هستند.

بنابراین، مشتقات توابع ابتدایی:

نام تابع مشتق
ثابت f(ایکس) = سی, سیآر 0 (بله، صفر!)
قدرت با توان منطقی f(ایکس) = ایکس n n · ایکس n − 1
سینوسی f(ایکس) = گناه ایکس cos ایکس
کسینوس f(ایکس) = cos ایکس -گناه ایکس(منهای سینوس)
مماس f(ایکس) = tg ایکس 1/cos 2 ایکس
کوتانژانت f(ایکس) = ctg ایکس − 1/گناه 2 ایکس
لگاریتم طبیعی f(ایکس) = ورود ایکس 1/ایکس
لگاریتم دلخواه f(ایکس) = ورود آ ایکس 1/(ایکسلوگاریتم آ)
تابع نمایی f(ایکس) = ه ایکس ه ایکس(هیچ چیز تغییر نکرد)

اگر یک تابع ابتدایی در یک ثابت دلخواه ضرب شود، مشتق تابع جدید نیز به راحتی محاسبه می شود:

(سی · f)’ = سی · f ’.

به طور کلی، ثابت ها را می توان از علامت مشتق خارج کرد. مثلا:

(2ایکس 3)' = 2 · ( ایکس 3) = 2 3 ایکس 2 = 6ایکس 2 .

بدیهی است که توابع ابتدایی را می توان به یکدیگر اضافه کرد، ضرب کرد، تقسیم کرد - و موارد دیگر. به این ترتیب توابع جدید ظاهر می شوند، نه به ویژه ابتدایی، بلکه طبق قوانین خاصی متمایز می شوند. این قوانین در زیر مورد بحث قرار می گیرند.

مشتق جمع و تفاوت

اجازه دهید توابع داده شوند f(ایکس) و g(ایکس) که مشتقات آن برای ما معلوم است. به عنوان مثال، می توانید توابع ابتدایی مورد بحث در بالا را انتخاب کنید. سپس می توانید مشتق حاصل از مجموع و تفاضل این توابع را پیدا کنید:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

پس مشتق مجموع (تفاوت) دو تابع برابر با مجموع (تفاوت) مشتقات است. ممکن است شرایط بیشتری وجود داشته باشد. مثلا، ( f + g + ساعت)’ = f ’ + g ’ + ساعت ’.

به بیان دقیق، هیچ مفهومی از "تفریق" در جبر وجود ندارد. مفهوم "عنصر منفی" وجود دارد. بنابراین تفاوت fgرا می توان به صورت جمع بازنویسی کرد f+ (-1) g، و سپس فقط یک فرمول باقی می ماند - مشتق جمع.

f(ایکس) = ایکس 2 + گناه x; g(ایکس) = ایکس 4 + 2ایکس 2 − 3.

تابع f(ایکس) مجموع دو تابع ابتدایی است، بنابراین:

f ’(ایکس) = (ایکس 2 + گناه ایکس)’ = (ایکس 2)’ + (گناه ایکس)’ = 2ایکس+ cos x;

ما به طور مشابه برای تابع استدلال می کنیم g(ایکس). فقط سه اصطلاح وجود دارد (از نظر جبر):

g ’(ایکس) = (ایکس 4 + 2ایکس 2 − 3)’ = (ایکس 4 + 2ایکس 2 + (−3))’ = (ایکس 4)’ + (2ایکس 2)’ + (−3)’ = 4ایکس 3 + 4ایکس + 0 = 4ایکس · ( ایکس 2 + 1).

پاسخ:
f ’(ایکس) = 2ایکس+ cos x;
g ’(ایکس) = 4ایکس · ( ایکس 2 + 1).

مشتق محصول

ریاضیات یک علم منطقی است، بنابراین بسیاری از مردم معتقدند که اگر مشتق یک مجموع برابر با مجموع مشتقات باشد، پس مشتق حاصلضرب ضربه">برابر حاصلضرب مشتقات است. اما شما را خراب کنید! مشتق یک محصول با استفاده از یک فرمول کاملاً متفاوت محاسبه می شود. یعنی:

(f · g) ’ = f ’ · g + f · g

فرمول ساده است، اما اغلب فراموش می شود. و نه تنها دانش آموزان، بلکه دانش آموزان نیز. نتیجه مشکلات حل نادرست است.

وظیفه. مشتقات توابع را پیدا کنید: f(ایکس) = ایکس 3 cos x; g(ایکس) = (ایکس 2 + 7ایکس− 7) · ه ایکس .

تابع f(ایکس) حاصل دو تابع ابتدایی است، بنابراین همه چیز ساده است:

f ’(ایکس) = (ایکس 3 cos ایکس)’ = (ایکس 3)” cos ایکس + ایکس 3 (Cos ایکس)’ = 3ایکس 2 cos ایکس + ایکس 3 (- گناه ایکس) = ایکس 2 (3cos ایکسایکسگناه ایکس)

تابع g(ایکس) عامل اول کمی پیچیده تر است، اما طرح کلیاین تغییر نمی کند بدیهی است که اولین عامل تابع g(ایکس) چند جمله ای است و مشتق آن مشتق جمع است. ما داریم:

g ’(ایکس) = ((ایکس 2 + 7ایکس− 7) · ه ایکس)’ = (ایکس 2 + 7ایکس− 7)» · ه ایکس + (ایکس 2 + 7ایکس− 7) · ( ه ایکس)’ = (2ایکس+ 7) · ه ایکس + (ایکس 2 + 7ایکس− 7) · ه ایکس = ه ایکس· (2 ایکس + 7 + ایکس 2 + 7ایکس −7) = (ایکس 2 + 9ایکس) · ه ایکس = ایکس(ایکس+ 9) · ه ایکس .

پاسخ:
f ’(ایکس) = ایکس 2 (3cos ایکسایکسگناه ایکس);
g ’(ایکس) = ایکس(ایکس+ 9) · ه ایکس .

لطفا توجه داشته باشید که در مرحله آخر مشتق فاکتور می شود. به طور رسمی، این کار نیازی به انجام ندارد، اما بیشتر مشتقات به تنهایی محاسبه نمی شوند، بلکه برای بررسی تابع محاسبه می شوند. این بدان معنی است که در ادامه مشتق برابر با صفر می شود، علائم آن مشخص می شود و غیره. برای چنین موردی بهتر است یک عبارت فاکتوریزه شود.

اگر دو عملکرد وجود دارد f(ایکس) و g(ایکس) و g(ایکس) ≠ 0 در مجموعه ای که به آن علاقه داریم، می توانیم یک تابع جدید تعریف کنیم ساعت(ایکس) = f(ایکس)/g(ایکس). برای چنین تابعی می توانید مشتق را نیز پیدا کنید:

ضعیف نیست، درسته؟ منهای از کجا آمد؟ چرا g 2؟ و مثل این! این یکی از بیشترین است فرمول های پیچیده- بدون بطری نمی توانید آن را بفهمید. بنابراین، بهتر است آن را مطالعه کنید نمونه های خاص.

وظیفه. مشتقات توابع را پیدا کنید:

صورت و مخرج هر کسر حاوی توابع ابتدایی است، بنابراین تنها چیزی که ما نیاز داریم فرمول مشتق ضریب است:


طبق سنت، بیایید شمارنده را فاکتورسازی کنیم - این پاسخ را بسیار ساده می کند:

یک تابع پیچیده لزوما یک فرمول به طول نیم کیلومتر نیست. برای مثال کافی است تابع را بگیرید f(ایکس) = گناه ایکسو متغیر را جایگزین کنید ایکس، بگو ، در ایکس 2 + ln ایکس. نتیجه خواهد داد f(ایکس) = گناه ( ایکس 2 + ln ایکس) - این یک تابع پیچیده است. یک مشتق نیز دارد، اما یافتن آن با استفاده از قوانینی که در بالا توضیح داده شد ممکن نخواهد بود.

باید چکار کنم؟ در چنین مواردی، جایگزینی متغیر و فرمول مشتق کمک می کند تابع پیچیده:

f ’(ایکس) = f ’(تی) · تی'، اگر ایکسجایگزین می شود تی(ایکس).

به عنوان یک قاعده، وضعیت درک این فرمول حتی غم انگیزتر از مشتق ضریب است. بنابراین بهتر است آن را نیز با مثال های مشخص، با توصیف همراه با جزئیاتهر قدم.

وظیفه. مشتقات توابع را پیدا کنید: f(ایکس) = ه 2ایکس + 3 ; g(ایکس) = گناه ( ایکس 2 + ln ایکس)

توجه داشته باشید که اگر در تابع f(ایکس) به جای عبارت 2 ایکس+ 3 آسان خواهد بود ایکس، سپس یک تابع ابتدایی دریافت می کنیم f(ایکس) = ه ایکس. بنابراین، ما یک جایگزین می کنیم: اجازه دهید 2 ایکس + 3 = تی, f(ایکس) = f(تی) = ه تی. ما مشتق یک تابع مختلط را با استفاده از فرمول جستجو می کنیم:

f ’(ایکس) = f ’(تی) · تی ’ = (ه تی)’ · تی ’ = ه تی · تی

و اکنون - توجه! ما جایگزینی معکوس را انجام می دهیم: تی = 2ایکس+ 3. دریافت می کنیم:

f ’(ایکس) = ه تی · تی ’ = ه 2ایکس+ 3 (2 ایکس + 3)’ = ه 2ایکس+ 3 2 = 2 ه 2ایکس + 3

حالا بیایید به تابع نگاه کنیم g(ایکس). بدیهی است که باید تعویض شود ایکس 2 + ln ایکس = تی. ما داریم:

g ’(ایکس) = g ’(تی) · تی= (گناه تی)’ · تی= cos تی · تی

تعویض معکوس: تی = ایکس 2 + ln ایکس. سپس:

g ’(ایکس) = cos ( ایکس 2 + ln ایکس) · ( ایکس 2 + ln ایکس)’ = cos ( ایکس 2 + ln ایکس) · (2 ایکس + 1/ایکس).

همین! همانطور که از آخرین عبارت مشاهده می شود، کل مسئله به محاسبه مجموع مشتق تقلیل یافته است.

پاسخ:
f ’(ایکس) = 2 · ه 2ایکس + 3 ;
g ’(ایکس) = (2ایکس + 1/ایکس) cos ( ایکس 2 + ln ایکس).

اغلب در درس‌هایم، به‌جای اصطلاح «مشتق»، از کلمه «اول» استفاده می‌کنم. مثلاً یک عدد اول از مقدار برابر با مجموعسکته های مغزی این واضح تر است؟ خوب، این خوب است.

بنابراین، محاسبه مشتق به خلاص شدن از شر همین سکته ها طبق قوانینی که در بالا توضیح داده شد، ختم می شود. به عنوان مثال آخر، اجازه دهید به توان مشتق با توان گویا برگردیم:

(ایکس n)’ = n · ایکس n − 1

تعداد کمی از مردم آن را در نقش می دانند nممکن است به خوبی عمل کند یک عدد کسری. به عنوان مثال، ریشه است ایکس 0.5. اگر چیزی فانتزی زیر ریشه باشد چه؟ باز هم، نتیجه یک عملکرد پیچیده خواهد بود - آنها دوست دارند چنین ساختارهایی را به آنها بدهند تست هاو امتحانات

وظیفه. مشتق تابع را پیدا کنید:

ابتدا، بیایید ریشه را به عنوان یک توان با توان گویا بازنویسی کنیم:

f(ایکس) = (ایکس 2 + 8ایکس − 7) 0,5 .

حالا ما یک جایگزین می کنیم: اجازه دهید ایکس 2 + 8ایکس − 7 = تی. ما مشتق را با استفاده از فرمول پیدا می کنیم:

f ’(ایکس) = f ’(تی) · تی ’ = (تی 0.5) · تی' = 0.5 · تی−0.5 · تی ’.

بیایید جایگزینی معکوس را انجام دهیم: تی = ایکس 2 + 8ایکس− 7. داریم:

f ’(ایکس) = 0.5 · ( ایکس 2 + 8ایکس− 7) −0.5 · ( ایکس 2 + 8ایکس− 7) = 0.5 · (2 ایکس+ 8) ( ایکس 2 + 8ایکس − 7) −0,5 .

در نهایت به ریشه ها بازگردیم:

سطح اول

مشتق یک تابع راهنمای جامع (2019)

بیایید یک جاده مستقیم را تصور کنیم که از یک منطقه تپه ای عبور می کند. یعنی بالا و پایین می رود اما به راست و چپ نمی پیچد. اگر محور به صورت افقی در امتداد جاده و به صورت عمودی هدایت شود، خط جاده بسیار شبیه به نمودار یک تابع پیوسته خواهد بود:

محور سطح معینی از ارتفاع صفر است؛ در زندگی ما از سطح دریا به عنوان آن استفاده می کنیم.

همانطور که در طول چنین جاده ای به جلو حرکت می کنیم، به سمت بالا یا پایین نیز حرکت می کنیم. همچنین می‌توان گفت: وقتی آرگومان تغییر می‌کند (حرکت در امتداد محور آبسیسا)، مقدار تابع تغییر می‌کند (حرکت در امتداد محور مختصات). حالا بیایید در مورد چگونگی تعیین "شیب" جاده خود فکر کنیم؟ این چه نوع ارزشی می تواند باشد؟ خیلی ساده است: با حرکت به سمت جلو در یک مسافت مشخص، ارتفاع چقدر تغییر می کند. در واقع، در بخش‌های مختلف جاده، با حرکت به سمت جلو (در امتداد محور x) به اندازه یک کیلومتر، صعود یا سقوط خواهیم کرد. مقادیر مختلفمتر نسبت به سطح دریا (در امتداد محور اردینات).

بیایید پیشرفت را نشان دهیم («دلتا x» را بخوانید).

حرف یونانی (دلتا) معمولاً در ریاضیات به عنوان پیشوند به معنای "تغییر" استفاده می شود. یعنی - این یک تغییر در کمیت است - یک تغییر. پس آن چیست؟ درست است، یک تغییر در بزرگی.

مهم: یک عبارت یک کل واحد، یک متغیر است. هرگز "دلتا" را از "x" یا هر حرف دیگری جدا نکنید! یعنی مثلا .

بنابراین، ما به صورت افقی به جلو حرکت کرده ایم. اگر خط جاده را با نمودار تابع مقایسه کنیم، چگونه خیز را نشان می دهیم؟ قطعا، . یعنی هرچه جلو می رویم بالاتر می رویم.

محاسبه مقدار آسان است: اگر در ابتدا در یک ارتفاع بودیم و پس از حرکت خود را در ارتفاع یافتیم، پس. اگر نقطه پایان پایین تر از نقطه شروع باشد، منفی خواهد بود - این بدان معنی است که ما صعودی نیستیم، بلکه در حال نزول هستیم.

بیایید به "شیب" برگردیم: این مقداری است که نشان می دهد هنگام حرکت یک واحد فاصله به جلو، ارتفاع چقدر (تند) افزایش می یابد:

فرض کنید در بخشی از جاده، وقتی یک کیلومتر به جلو می روید، جاده یک کیلومتر بالا می رود. سپس شیب در این مکان برابر است. و اگر جاده در حالی که با متر جلو می رود، کیلومتر کاهش یافته است؟ سپس شیب برابر است.

حالا بیایید به بالای یک تپه نگاه کنیم. اگر ابتدای قطعه را نیم کیلومتر قبل از قله و انتهای آن را نیم کیلومتر بعد از آن طی کنید، می بینید که ارتفاع تقریباً یکسان است.

یعنی طبق منطق ما معلوم می شود که شیب اینجا تقریباً برابر با صفر است که به وضوح درست نیست. فقط در فاصله کیلومتری خیلی چیزها می توانند تغییر کنند. برای ارزیابی مناسب تر و دقیق تر از شیب، لازم است مناطق کوچکتری در نظر گرفته شود. به عنوان مثال، اگر تغییر ارتفاع را با یک متر حرکت اندازه گیری کنید، نتیجه بسیار دقیق تر خواهد بود. اما حتی این دقت ممکن است برای ما کافی نباشد - بالاخره اگر یک تیر در وسط جاده وجود داشته باشد، می توانیم به سادگی از آن عبور کنیم. آن وقت چه فاصله ای را انتخاب کنیم؟ سانتی متر؟ میلی متر؟ کمتر بهتر است!

که در زندگی واقعیاندازه گیری فاصله تا نزدیکترین میلی متر بیش از حد کافی است. اما ریاضیدانان همیشه برای کمال تلاش می کنند. بنابراین، این مفهوم ابداع شد بی نهایت کوچکیعنی قدر مطلق از هر عددی که بتوانیم نام ببریم کمتر است. مثلا می گویید: یک تریلیونم! چقدر کمتر؟ و این عدد را تقسیم بر - و حتی کمتر خواهد شد. و غیره. اگر بخواهیم بنویسیم که یک کمیت بی نهایت کوچک است، به این صورت می نویسیم: (می خوانیم x تمایل به صفر دارد). درک آن بسیار مهم است که این عدد صفر نیست!ولی خیلی بهش نزدیکه این به این معنی است که شما می توانید بر آن تقسیم کنید.

مفهوم مخالف بینهایت کوچک بی نهایت بزرگ است (). احتمالاً زمانی که روی نابرابری‌ها کار می‌کردید با آن برخورد کرده‌اید: این عدد مدول‌هایی بزرگ‌تر از هر عددی است که فکرش را بکنید. اگر به بزرگترین عدد ممکن رسیدید، کافی است آن را در دو ضرب کنید و یک عدد حتی بزرگتر به دست خواهید آورد. و بی نهایت هنوز علاوه بر اینچه اتفاقی خواهد افتاد. در واقع بی نهایت بزرگ و بی نهایت کوچک معکوس یکدیگر هستند یعنی at و بالعکس: در.

حالا بیایید به جاده خود برگردیم. شیب محاسبه‌شده ایده‌آل، شیبی است که برای یک بخش بی‌نهایت کوچک از مسیر محاسبه می‌شود، یعنی:

توجه می کنم که با جابجایی بینهایت کوچک، تغییر ارتفاع نیز بی نهایت کوچک خواهد بود. اما اجازه دهید یادآوری کنم که بی نهایت به این معنا نیست برابر با صفر. اگر اعداد بینهایت کوچک را بر یکدیگر تقسیم کنید، می توانید یک عدد کاملا معمولی به دست آورید، به عنوان مثال، . یعنی یک مقدار کوچک می تواند دقیقاً چند برابر بزرگتر از مقدار دیگر باشد.

این همه برای چیست؟ جاده، شیب زیاد... ما در رالی اتومبیلرانی نمی رویم، اما در حال آموزش ریاضیات هستیم. و در ریاضیات همه چیز دقیقاً یکسان است، فقط متفاوت نامیده می شود.

مفهوم مشتق

مشتق تابع نسبت افزایش تابع به افزایش آرگومان برای افزایش بی نهایت کوچک آرگومان است.

به صورت فزایندهدر ریاضیات به آن تغییر می گویند. میزان تغییر آرگومان () در حین حرکت در امتداد محور نامیده می شود افزایش آرگومانچقدر تابع (ارتفاع) هنگام حرکت به سمت جلو در امتداد محور با فاصله تغییر کرده است. افزایش تابعو تعیین شده است.

بنابراین، مشتق یک تابع نسبت به زمانی است. مشتق را با همان حرف تابع، فقط با علامت اول در بالا سمت راست نشان می دهیم: یا به سادگی. بنابراین، بیایید فرمول مشتق را با استفاده از این نمادها بنویسیم:

همانطور که در قیاس با جاده، در اینجا وقتی تابع افزایش می یابد، مشتق مثبت است و زمانی که کاهش می یابد، منفی است.

آیا مشتق برابر با صفر است؟ قطعا. به عنوان مثال، اگر در یک جاده افقی صاف رانندگی کنیم، شیب صفر است. و درست است، ارتفاع به هیچ وجه تغییر نمی کند. در مورد مشتق نیز همینطور است: مشتق تابع ثابت (ثابت) برابر با صفر است:

زیرا افزایش چنین تابعی برابر با صفر برای هر کدام است.

بیایید مثال بالای تپه را به یاد بیاوریم. معلوم شد که می توان انتهای بخش را در طرفین مخالف راس به گونه ای مرتب کرد که ارتفاع در انتها یکسان شود، یعنی قطعه موازی با محور باشد:

اما بخش های بزرگ نشانه ای از اندازه گیری نادرست است. قطعه خود را به موازات خودش بالا می بریم، سپس طول آن کاهش می یابد.

در نهایت، زمانی که ما بی نهایت به بالا نزدیک می شویم، طول قطعه بی نهایت کوچک می شود. اما در عین حال موازی با محور باقی مانده است، یعنی اختلاف ارتفاع در انتهای آن برابر با صفر است (به سمت آن تمایل ندارد، بلکه برابر است). پس مشتق

این را می‌توان به این صورت درک کرد: وقتی در بالاترین نقطه ایستاده‌ایم، یک جابجایی کوچک به چپ یا راست قد ما را به طرز چشمگیری تغییر می‌دهد.

یک توضیح کاملاً جبری نیز وجود دارد: در سمت چپ راس تابع افزایش می یابد و در سمت راست کاهش می یابد. همانطور که قبلا متوجه شدیم، وقتی یک تابع افزایش می‌یابد، مشتق مثبت و زمانی که کاهش می‌یابد منفی است. اما به آرامی و بدون پرش تغییر می کند (زیرا جاده هیچ جا شیب خود را به شدت تغییر نمی دهد). بنابراین بین منفی و ارزش های مثبتقطعا باید وجود داشته باشد این جایی خواهد بود که تابع نه افزایش می یابد و نه کاهش می یابد - در نقطه راس.

همین امر در مورد فرورفتگی نیز صادق است (ناحیه ای که تابع سمت چپ کاهش می یابد و در سمت راست افزایش می یابد):

کمی بیشتر در مورد افزایش.

بنابراین استدلال را به قدر تغییر می دهیم. از چه مقداری تغییر می کنیم؟ اکنون (برهان) چه شده است؟ ما می‌توانیم هر نقطه‌ای را انتخاب کنیم، و حالا از آن می‌رقصیم.

نقطه ای را با مختصات در نظر بگیرید. مقدار تابع در آن برابر است. سپس همان افزایش را انجام می دهیم: مختصات را افزایش می دهیم. حالا بحث چیست؟ بسیار آسان: . حالا ارزش تابع چقدر است؟ جایی که آرگومان می رود، تابع: . در مورد افزایش تابع چطور؟ چیز جدیدی نیست: این مقداری است که تابع تغییر کرده است:

تمرین یافتن افزایش ها:

  1. افزایش تابع را در نقطه ای پیدا کنید که افزایش آرگومان برابر است.
  2. همین امر در مورد تابع در یک نقطه نیز صدق می کند.

راه حل ها:

در نقاط مختلف با افزایش آرگومان یکسان، افزایش تابع متفاوت خواهد بود. این به این معنی است که مشتق در هر نقطه متفاوت است (ما در همان ابتدا در این مورد بحث کردیم - شیب جاده در نقاط مختلف متفاوت است). بنابراین، وقتی مشتق می نویسیم، باید مشخص کنیم که در چه نقطه ای:

تابع توان.

تابع قدرت تابعی است که در آن آرگومان تا حدی است (منطقی، درست است؟).

علاوه بر این - به هر میزان: .

ساده ترین حالت زمانی است که توان به صورت زیر باشد:

بیایید مشتق آن را در یک نقطه پیدا کنیم. بیایید تعریف مشتق را به یاد بیاوریم:

بنابراین استدلال از به تغییر می کند. افزایش تابع چقدر است؟

افزایش این است. اما یک تابع در هر نقطه با آرگومان آن برابر است. از همین رو:

مشتق برابر است با:

مشتق برابر است با:

ب) اکنون در نظر بگیرید تابع درجه دوم (): .

حالا بیایید آن را به خاطر بسپاریم. این بدان معنی است که ارزش افزایش را می توان نادیده گرفت، زیرا بی نهایت کوچک است، و بنابراین در پس زمینه اصطلاح دیگر ناچیز است:

بنابراین، ما به یک قانون دیگر رسیدیم:

ج) سری منطقی را ادامه می دهیم: .

این عبارت را می توان به روش های مختلفی ساده کرد: اولین براکت را با استفاده از فرمول ضرب اختصاری مکعب حاصل از مجموع باز کنید یا کل عبارت را با استفاده از فرمول تفاوت مکعب ها فاکتور کنید. سعی کنید خودتان این کار را با استفاده از هر یک از روش های پیشنهادی انجام دهید.

بنابراین، من موارد زیر را دریافت کردم:

و دوباره این را به خاطر بسپاریم. این بدان معنی است که ما می توانیم از تمام اصطلاحات حاوی:

ما گرفتیم: .

د) قوانین مشابهی را می توان برای قدرت های بزرگ به دست آورد:

ه) معلوم می شود که این قانون را می توان برای یک تابع توان با یک توان دلخواه تعمیم داد، نه حتی یک عدد صحیح:

(2)

این قاعده را می توان اینگونه فرموله کرد: "درجه به عنوان یک ضریب به جلو آورده می شود و سپس کاهش می یابد."

این قاعده را بعداً (تقریباً در پایان) اثبات خواهیم کرد. حال بیایید به چند نمونه نگاه کنیم. مشتق توابع را پیدا کنید:

  1. (به دو صورت: با فرمول و با استفاده از تعریف مشتق - با محاسبه افزایش تابع).
  1. . باور کنید یا نه، این یک تابع قدرت است. اگر سوالی دارید مانند "این چطور است؟ مدرک کجاست؟»، موضوع «» را به خاطر بسپارید!
    بله، بله، ریشه هم درجه است، فقط کسری: .
    این بدان معنی است که جذر ما فقط یک توان با یک توان است:
    .
    با استفاده از فرمول اخیراً آموخته شده به دنبال مشتق می گردیم:

    اگر در این مرحله دوباره نامشخص شد، موضوع "" را تکرار کنید!!! (در مورد یک درجه با توان منفی)

  2. . حال توان:

    و اکنون از طریق تعریف (آیا هنوز فراموش کرده اید؟):
    ;
    .
    اکنون، طبق معمول، از اصطلاحی که شامل:
    .

  3. . ترکیب موارد قبلی: .

توابع مثلثاتی

در اینجا ما از یک واقعیت از ریاضیات عالی استفاده خواهیم کرد:

با بیان.

شما مدرک را در سال اول موسسه یاد خواهید گرفت (و برای رسیدن به آنجا، باید آزمون یکپارچه دولتی را به خوبی پشت سر بگذارید). حالا من فقط آن را به صورت گرافیکی نشان می دهم:

می بینیم که وقتی تابع وجود ندارد - نقطه روی نمودار قطع می شود. اما هرچه به مقدار نزدیکتر باشد، تابع به آن نزدیکتر است. این همان چیزی است که "هدف" دارد.

علاوه بر این، می توانید این قانون را با استفاده از یک ماشین حساب بررسی کنید. بله، بله، خجالتی نباشید، یک ماشین حساب بگیرید، ما هنوز در آزمون یکپارچه دولتی نیستیم.

بنابراین، بیایید سعی کنیم: ;

فراموش نکنید که ماشین حساب خود را به حالت Radians تغییر دهید!

و غیره. می بینیم که هر چه کوچکتر باشد، مقدار نسبت به آن نزدیکتر است.

الف) تابع را در نظر بگیرید. طبق معمول، بیایید افزایش آن را پیدا کنیم:

بیایید اختلاف سینوس ها را به محصول تبدیل کنیم. برای این کار از فرمول استفاده می کنیم (موضوع “” را به خاطر بسپارید): .

حال مشتق:

بیایید جایگزین کنیم: . سپس برای بینهایت کوچک نیز بی نهایت کوچک است: . عبارت for به شکل زیر است:

و اکنون ما آن را با بیان به یاد می آوریم. و همچنین، اگر بتوان یک کمیت بی نهایت کوچک را در مجموع (یعنی در) نادیده گرفت چه می شود.

بنابراین، قانون زیر را دریافت می کنیم: مشتق سینوس برابر با کسینوس است:

اینها مشتقات اساسی ("جدولی") هستند. در اینجا آنها در یک لیست قرار دارند:

بعداً چند مورد دیگر را به آنها اضافه خواهیم کرد، اما اینها مهمترین آنها هستند، زیرا بیشتر مورد استفاده قرار می گیرند.

تمرین:

  1. مشتق تابع را در یک نقطه پیدا کنید.
  2. مشتق تابع را بیابید.

راه حل ها:

  1. ابتدا بیایید مشتق در را پیدا کنیم نمای کلیو سپس مقدار آن را جایگزین کنید:
    ;
    .
  2. در اینجا ما چیزی شبیه به تابع توان. بیایید سعی کنیم او را به خود بیاوریم
    نمای عادی:
    .
    عالی، حالا می توانید از فرمول استفاده کنید:
    .
    .
  3. . اییییییی….. این چیه؟؟؟؟

خوب، حق با شماست، ما هنوز نمی دانیم چگونه چنین مشتقاتی را پیدا کنیم. در اینجا ما ترکیبی از چندین نوع توابع را داریم. برای کار با آنها، باید چند قانون دیگر را یاد بگیرید:

نما و لگاریتم طبیعی.

تابعی در ریاضیات وجود دارد که مشتق آن برای هر مقدار با مقدار خود تابع در همان زمان برابر است. به آن "نما" می گویند و یک تابع نمایی است

اساس این تابع یک ثابت است - بی نهایت است اعشاری، یعنی عدد غیر منطقی (مانند). به آن "عدد اویلر" می گویند، به همین دلیل است که با یک حرف نشان داده می شود.

بنابراین، قانون:

خیلی راحت به خاطر سپردن

خوب، بیایید دور نرویم، بیایید فوراً به آن نگاه کنیم تابع معکوس. کدام تابع معکوس تابع نمایی است؟ لگاریتم:

در مورد ما، پایه عدد است:

چنین لگاریتمی (یعنی لگاریتمی با پایه) "طبیعی" نامیده می شود و ما از نماد خاصی برای آن استفاده می کنیم: به جای آن می نویسیم.

با چه چیزی برابر است؟ البته، .

مشتق از لگاریتم طبیعیهمچنین بسیار ساده:

مثال ها:

  1. مشتق تابع را بیابید.
  2. مشتق تابع چیست؟

پاسخ ها: لگاریتم نمایی و طبیعی از دیدگاه مشتق، توابع ساده منحصر به فردی هستند. توابع نمایی و لگاریتمی با هر پایه دیگری مشتق متفاوتی خواهند داشت که بعد از مرور قوانین تمایز آن را تحلیل خواهیم کرد.

قوانین تمایز

قوانین چی؟ بازم یه ترم جدید دیگه؟!...

تفکیکفرآیند یافتن مشتق است.

همین. این فرآیند را در یک کلمه چه چیز دیگری می‌توان نامید؟ نه مشتق... ریاضیدانان دیفرانسیل را همان افزایش یک تابع در می نامند. این اصطلاح از دیفرانسیل لاتین - تفاوت می آید. اینجا.

هنگام استخراج همه این قوانین، از دو تابع به عنوان مثال و. ما همچنین به فرمول هایی برای افزایش آنها نیاز خواهیم داشت:

در کل 5 قانون وجود دارد.

ثابت از علامت مشتق خارج می شود.

اگر - یک عدد ثابت (ثابت)، پس.

بدیهی است که این قانون برای تفاوت نیز کار می کند: .

بیایید ثابت کنیم. بگذارید باشد یا ساده تر.

مثال ها.

مشتقات توابع را پیدا کنید:

  1. در یک نقطه؛
  2. در یک نقطه؛
  3. در یک نقطه؛
  4. در نقطه

راه حل ها:

  1. (مشتق در همه نقاط یکسان است، زیرا این تابع خطی، یاد آوردن؟)؛

مشتق محصول

همه چیز در اینجا مشابه است: بیایید یک تابع جدید معرفی کنیم و افزایش آن را پیدا کنیم:

مشتق:

مثال ها:

  1. مشتقات توابع را پیدا کنید و
  2. مشتق تابع را در یک نقطه پیدا کنید.

راه حل ها:

مشتق تابع نمایی

اکنون دانش شما کافی است تا بیاموزید چگونه مشتق هر تابع نمایی را بیابید، و نه فقط نماها (آیا هنوز فراموش کرده اید که چیست؟).

بنابراین، برخی از شماره ها کجاست.

ما قبلاً مشتق تابع را می دانیم، بنابراین بیایید سعی کنیم تابع خود را به یک پایه جدید کاهش دهیم:

برای این ما استفاده خواهیم کرد قانون ساده: . سپس:

خوب، کار کرد. حالا سعی کنید مشتق را پیدا کنید و فراموش نکنید که این تابع پیچیده است.

اتفاق افتاد؟

در اینجا، خود را بررسی کنید:

فرمول بسیار شبیه به مشتق یک توان است: همانطور که بود، ثابت می ماند، فقط یک عامل ظاهر شد که فقط یک عدد است، اما یک متغیر نیست.

مثال ها:
مشتقات توابع را پیدا کنید:

پاسخ ها:

این فقط یک عدد است که بدون ماشین حساب نمی توان آن را محاسبه کرد، یعنی دیگر نمی توان آن را یادداشت کرد. به شکل ساده. لذا در جواب به این شکل می گذاریم.

مشتق تابع لگاریتمی

در اینجا مشابه است: شما قبلاً مشتق لگاریتم طبیعی را می دانید:

بنابراین، برای پیدا کردن یک لگاریتم دلخواه با پایه متفاوت، به عنوان مثال:

باید این لگاریتم را به پایه کاهش دهیم. چگونه پایه لگاریتم را تغییر می دهید؟ امیدوارم این فرمول را به خاطر بسپارید:

فقط اکنون به جای آن می نویسیم:

مخرج به سادگی یک ثابت است (عددی ثابت، بدون متغیر). مشتق بسیار ساده به دست می آید:

مشتقات نمایی و توابع لگاریتمیتقریباً هرگز در آزمون یکپارچه ایالت ظاهر نمی شوند، اما دانستن آنها ضرری ندارد.

مشتق تابع مختلط

"تابع پیچیده" چیست؟ نه، این یک لگاریتم نیست و نه یک تانژانت. درک این توابع ممکن است دشوار باشد (البته اگر لگاریتم را دشوار می‌دانید، مبحث "لگاریتم" را بخوانید و خوب خواهید شد)، اما از نظر ریاضی، کلمه "پیچیده" به معنای "دشوار" نیست.

یک تسمه نقاله کوچک را تصور کنید: دو نفر نشسته اند و با برخی از اشیا کارهایی را انجام می دهند. به عنوان مثال، اولی یک تخته شکلات را در یک بسته بندی می پیچد و دومی آن را با یک روبان می بندد. نتیجه یک شی ترکیبی است: یک شکلات که با روبان بسته شده و بسته شده است. برای خوردن یک شکلات، باید مراحل معکوس را انجام دهید به صورت برعکس.

بیایید یک خط لوله ریاضی مشابه ایجاد کنیم: ابتدا کسینوس یک عدد را پیدا می کنیم و سپس عدد حاصل را مربع می کنیم. بنابراین، یک عدد (شکلاتی) به ما داده می شود، من کسینوس آن را پیدا می کنم (لفاف بندی)، و سپس شما آنچه را که به دست آوردم مربع می کنید (آن را با یک روبان ببندید). چی شد؟ تابع. این مثالی از یک تابع پیچیده است: زمانی که برای یافتن مقدار آن، اولین عمل را مستقیماً با متغیر انجام می دهیم، و سپس یک عمل دوم را با آنچه که از اولی حاصل می شود، انجام می دهیم.

ما به راحتی می‌توانیم همان مراحل را به ترتیب معکوس انجام دهیم: ابتدا آن را مربع می‌کنید و من به دنبال کسینوس عدد حاصل می‌گردم: . به راحتی می توان حدس زد که نتیجه تقریباً همیشه متفاوت خواهد بود. یک ویژگی مهم توابع پیچیده: وقتی ترتیب اعمال تغییر می کند، تابع تغییر می کند.

به عبارت دیگر، تابع پیچیده تابعی است که آرگومان آن تابع دیگری است: .

برای مثال اول، .

مثال دوم: (همان چیز). .

اقدامی که آخرین بار انجام می دهیم نامیده می شود عملکرد "خارجی".، و عمل انجام شد - بر این اساس عملکرد "داخلی".(این اسامی غیر رسمی هستند، من از آنها فقط برای توضیح مطالب به زبان ساده استفاده می کنم).

سعی کنید خودتان تعیین کنید کدام تابع خارجی و کدام داخلی است:

پاسخ ها:جداسازی توابع داخلی و خارجی بسیار شبیه به تغییر متغیرها است: به عنوان مثال، در یک تابع

  1. ابتدا چه اقدامی را انجام خواهیم داد؟ ابتدا بیایید سینوس را محاسبه کنیم و فقط آن را مکعب کنیم. این بدان معنی است که یک عملکرد داخلی است، اما یک عملکرد خارجی.
    و کارکرد اصلی ترکیب آنهاست: .
  2. درونی؛ داخلی: ؛ خارجی: .
    معاینه: .
  3. درونی؛ داخلی: ؛ خارجی: .
    معاینه: .
  4. درونی؛ داخلی: ؛ خارجی: .
    معاینه: .
  5. درونی؛ داخلی: ؛ خارجی: .
    معاینه: .

متغیرها را تغییر می دهیم و تابع می گیریم.

خوب، حالا شکلات‌مان را استخراج می‌کنیم و به دنبال مشتق آن می‌گردیم. روال همیشه برعکس است: ابتدا مشتق تابع بیرونی را جستجو می کنیم، سپس نتیجه را در مشتق تابع درونی ضرب می کنیم. در رابطه با نمونه اصلی، به این صورت است:

مثالی دیگر:

بنابراین، اجازه دهید در نهایت قانون رسمی را فرموله کنیم:

الگوریتم یافتن مشتق تابع مختلط:

ساده به نظر می رسد، درست است؟

بیایید با مثال ها بررسی کنیم:

راه حل ها:

1) داخلی:

خارجی: ;

2) داخلی:

(فقط سعی نکنید تا الان آن را قطع کنید! چیزی از زیر کسینوس بیرون نمی آید، یادتان هست؟)

3) داخلی:

خارجی: ;

بلافاصله مشخص است که این یک تابع پیچیده سه سطحی است: از این گذشته، این به خودی خود یک تابع پیچیده است و ما ریشه را نیز از آن استخراج می کنیم، یعنی عمل سوم را انجام می دهیم (شکلات را در یک بسته بندی و با یک روبان در کیف). اما دلیلی برای ترس وجود ندارد: ما همچنان این عملکرد را به همان ترتیب معمول "باز کردن" خواهیم کرد: از پایان.

یعنی ابتدا ریشه و بعد کسینوس و فقط بعد عبارت داخل پرانتز را متمایز می کنیم. و سپس همه را ضرب می کنیم.

در چنین مواردی، شماره گذاری اقدامات راحت است. یعنی آنچه را که می دانیم تصور کنیم. به چه ترتیبی اقداماتی را برای محاسبه مقدار این عبارت انجام خواهیم داد؟ بیایید به یک مثال نگاه کنیم:

هرچه این عمل دیرتر انجام شود، عملکرد مربوطه "خارجی" تر خواهد بود. توالی اقدامات مانند قبل است:

در اینجا لانه سازی به طور کلی 4 سطح است. بیایید مسیر عمل را مشخص کنیم.

1. بیان رادیکال. .

2. ریشه. .

3. سینوس. .

4. مربع. .

5. کنار هم گذاشتن همه:

مشتق. به طور خلاصه در مورد چیزهای اصلی

مشتق از یک تابع- نسبت افزایش تابع به افزایش آرگومان برای افزایش بی نهایت کوچک آرگومان:

مشتقات پایه:

قوانین تمایز:

ثابت از علامت مشتق خارج می شود:

مشتق جمع:

مشتقات محصول:

مشتق ضریب:

مشتق تابع مختلط:

الگوریتم یافتن مشتق تابع مختلط:

  1. ما تابع "داخلی" را تعریف کرده و مشتق آن را پیدا می کنیم.
  2. ما تابع "خارجی" را تعریف می کنیم و مشتق آن را پیدا می کنیم.
  3. نتایج نقطه اول و دوم را ضرب می کنیم.

از زمانی که به اینجا آمدید، احتمالاً قبلاً این فرمول را در کتاب درسی دیده اید

و چهره ای مانند این بسازید:

دوست، نگران نباش! در واقع، همه چیز به سادگی ظالمانه است. قطعا همه چیز را خواهید فهمید. فقط یک درخواست - مقاله را بخوانید به آرامی، سعی کنید هر مرحله را درک کنید. من تا حد امکان ساده و واضح نوشتم، اما هنوز باید ایده را درک کنید. و حتماً وظایف را از مقاله حل کنید.

تابع پیچیده چیست؟

تصور کنید که به آپارتمان دیگری نقل مکان می کنید و بنابراین وسایل را در جعبه های بزرگ بسته بندی می کنید. فرض کنید باید چند اقلام کوچک را جمع آوری کنید، به عنوان مثال، نوشت افزار مدرسه. اگر فقط آنها را در یک جعبه بزرگ بیندازید، در میان چیزهای دیگر گم می شوند. برای جلوگیری از این امر، ابتدا آنها را مثلاً در یک کیسه قرار می دهید، سپس آن را در یک جعبه بزرگ قرار می دهید و بعد آن را مهر و موم می کنید. این فرآیند "پیچیده" در نمودار زیر ارائه شده است:

به نظر می رسد، ریاضیات چه ربطی به آن دارد؟ بله، علیرغم این واقعیت که یک تابع پیچیده دقیقاً به همین روش تشکیل می شود! فقط ما نه دفترچه و خودکار، بلکه \(x\) "بسته بندی" می کنیم، در حالی که "بسته ها" و "جعبه ها" متفاوت هستند.

برای مثال، بیایید x را بگیریم و آن را در یک تابع "بسته" کنیم:


در نتیجه، مطمئناً \(\cos⁡x\) را دریافت می کنیم. این "کیف چیزهای" ماست. حالا بیایید آن را در یک "جعبه" قرار دهیم - آن را به عنوان مثال در یک تابع مکعبی بسته بندی کنیم.


در نهایت چه اتفاقی خواهد افتاد؟ بله، درست است، یک "کیسه چیز در یک جعبه" وجود خواهد داشت، یعنی "کسینوس مکعب X".

طراحی به دست آمده یک عملکرد پیچیده است. از این جهت با ساده تفاوت دارد چندین "تأثیر" (بسته) روی یک X در یک ردیف اعمال می شودو به نظر می رسد "عملکرد از عملکرد" ​​- "بسته بندی در بسته بندی".

در دوره مدرسه انواع بسیار کمی از این "بسته ها" وجود دارد، فقط چهار نوع:

بیایید اکنون X را ابتدا در یک تابع نمایی با پایه 7 و سپس در یک تابع مثلثاتی قرار دهیم. ما گرفتیم:

\(x → 7^x → tg⁡(7^x)\)

حالا بیایید X را دو بار داخل "بسته بندی" کنیم توابع مثلثاتی، ابتدا در و سپس در:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

ساده است، درست است؟

حالا توابع را خودتان بنویسید، جایی که x:
- ابتدا در یک کسینوس و سپس در یک تابع نمایی با پایه \(3\) "بسته بندی" می شود.
- ابتدا به توان پنجم و سپس به مماس.
- ابتدا به لگاریتم به پایه \(4\) ، سپس به توان \(-2\).

پاسخ این کار را در انتهای مقاله بیابید.

آیا می توانیم X را نه دو، بلکه سه بار "بسته" کنیم؟ مشکلی نیست! و چهار و پنج و بیست و پنج بار. برای مثال، در اینجا تابعی است که در آن x \(4\) بار "بسته" شده است:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

اما چنین فرمول هایی در تمرین مدرسه یافت نمی شوند (دانش آموزان خوش شانس تر هستند - ممکن است فرمول آنها پیچیده تر باشد).

"باز کردن بسته بندی" یک عملکرد پیچیده

دوباره به عملکرد قبلی نگاه کنید. آیا می توانید دنباله "بسته بندی" را بفهمید؟ ابتدا X در چه چیزی قرار گرفت، سپس چه چیزی، و به همین ترتیب تا آخر کار. یعنی کدام تابع درون کدام تودرتو است؟ یک تکه کاغذ بردارید و آنچه را که فکر می کنید بنویسید. همانطور که در بالا نوشتیم می توانید این کار را با یک زنجیره با فلش انجام دهید یا به روش دیگری.

اکنون پاسخ صحیح این است: ابتدا x در توان \(4\)ام بسته شد، سپس نتیجه در یک سینوس بسته بندی شد و به نوبه خود در لگاریتم به پایه \(2\) قرار گرفت. ، و در پایان کل این سازه در یک پاور پنج قرار گرفت.

یعنی باید دنباله را به ترتیب معکوس باز کنید. و در اینجا یک نکته در مورد چگونگی انجام این کار ساده تر است: فوراً به X نگاه کنید - باید از روی آن برقصید. بیایید به چند نمونه نگاه کنیم.

به عنوان مثال، در اینجا تابع زیر است: \(y=tg⁡(\log_2⁡x)\). ما به X نگاه می کنیم - ابتدا چه اتفاقی برای آن می افتد؟ از او گرفته شده است. و سپس؟ مماس حاصل گرفته می شود. دنباله یکسان خواهد بود:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

مثال دیگر: \(y=\cos⁡((x^3))\). بیایید تجزیه و تحلیل کنیم - ابتدا X را مکعب کردیم و سپس کسینوس نتیجه را گرفتیم. این بدان معنی است که دنباله به این صورت خواهد بود: \(x → x^3 → \cos⁡((x^3))\). توجه کنید، به نظر می رسد عملکرد شبیه به اولین (جایی که تصاویر دارد) است. اما این یک تابع کاملاً متفاوت است: اینجا در مکعب x است (یعنی \(\cos⁡((x·x·x)))\) و در مکعب کسینوس \(x\) است ( یعنی \(\cos⁡ x·\cos⁡x·\cos⁡x\)). این تفاوت از توالی های مختلف "بسته بندی" ناشی می شود.

آخرین مثال (با اطلاعات مهمدر آن): \(y=\sin⁡((2x+5))\). معلوم است اول اینجا چه کردند عملیات حسابیبا x، سپس سینوس حاصل را گرفت: \(x → 2x+5 → \sin⁡((2x+5))\). و این نکته مهم: علیرغم اینکه عملیات حسابی به خودی خود توابع نیستند، در اینجا به عنوان یک روش "بسته بندی" نیز عمل می کنند. بیایید کمی عمیق تر به این ظرافت بپردازیم.

همانطور که در بالا گفتم، در توابع ساده x یک بار و در توابع پیچیده - دو یا بیشتر بسته می شود. علاوه بر این، هر ترکیبی از توابع ساده (یعنی مجموع، تفاوت، ضرب یا تقسیم آنها) نیز یک تابع ساده است. برای مثال، \(x^7\) یک تابع ساده است و همچنین \(ctg x\). این بدان معنی است که همه ترکیبات آنها توابع ساده هستند:

\(x^7+ ctg x\) - ساده،
\(x^7· تخت x\) - ساده،
\(\frac(x^7)(ctg x)\) - ساده و غیره.

با این حال، اگر یک تابع دیگر برای چنین ترکیبی اعمال شود، به یک تابع پیچیده تبدیل می شود، زیرا دو "بسته" وجود خواهد داشت. نمودار را ببینید:



باشه حالا برو جلو دنباله توابع "پیچیدن" را بنویسید:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
پاسخ ها دوباره در انتهای مقاله آمده است.

عملکردهای داخلی و خارجی

چرا باید تودرتوی تابع را درک کنیم؟ این چه چیزی به ما می دهد؟ واقعیت این است که بدون چنین تحلیلی نمی‌توانیم مشتقاتی از توابع مورد بحث در بالا را به طور قابل اعتماد پیدا کنیم.

و برای حرکت به دو مفهوم دیگر نیاز داریم: عملکردهای داخلی و خارجی. این یک چیز بسیار ساده است، علاوه بر این، در واقع، قبلاً آنها را در بالا تجزیه و تحلیل کرده ایم: اگر قیاس خود را در همان ابتدا به یاد بیاوریم، تابع داخلی یک "بسته" است و تابع خارجی یک "جعبه" است. آن ها چیزی که X ابتدا در آن "پیچیده شده" یک تابع داخلی است، و آنچه که تابع داخلی "پیچیده شده" در آن قبلاً خارجی است. خوب، واضح است که چرا - او بیرون است، این به معنای خارجی است.

در این مثال: \(y=tg⁡(log_2⁡x)\)، تابع \(\log_2⁡x\) داخلی است، و
- خارجی

و در این: \(y=\cos⁡((x^3+2x+1))\)، \(x^3+2x+1\) داخلی است، و
- خارجی

آخرین تمرین تجزیه و تحلیل توابع پیچیده را کامل کنید، و در نهایت به آنچه که همه ما برای آن شروع کرده بودیم برویم - مشتقاتی از توابع پیچیده را خواهیم یافت:

جاهای خالی جدول را پر کنید:


مشتق تابع مختلط

آفرین به ما، بالاخره به "رئیس" این موضوع رسیدیم - در واقع، مشتق یک تابع پیچیده، و به طور خاص، به آن فرمول بسیار وحشتناک از ابتدای مقاله.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

این فرمول به این صورت است:

مشتق یک تابع مختلط برابر است با حاصل ضرب مشتق تابع خارجی نسبت به تابع داخلی ثابت و مشتق تابع داخلی.

و بلافاصله با توجه به کلمات به نمودار تجزیه نگاه کنید تا بفهمید با چه چیزی چه کار کنید:

امیدوارم عبارات "مشتق" و "محصول" هیچ مشکلی ایجاد نکند. "عملکرد پیچیده" - ما قبلاً آن را مرتب کرده ایم. گیر در "مشتق یک تابع خارجی با توجه به یک تابع داخلی ثابت" است. آن چیست؟

پاسخ: این مشتق معمول تابع خارجی است که در آن فقط تابع خارجی تغییر می کند و تابع داخلی ثابت می ماند. هنوز مشخص نیست؟ خوب، بیایید از یک مثال استفاده کنیم.

اجازه دهید یک تابع \(y=\sin⁡(x^3)\) داشته باشیم. واضح است که تابع داخلی در اینجا \(x^3\) و خارجی است
. بیایید اکنون مشتق بیرون را با توجه به باطن ثابت پیدا کنیم.

تصميم گرفتن وظایف فیزیکییا مثال در ریاضیات بدون آگاهی از مشتق و روش های محاسبه آن کاملاً غیرممکن است. مشتق یکی از مهمترین مفاهیم تجزیه و تحلیل ریاضی. ما تصمیم گرفتیم مقاله امروز را به این موضوع اساسی اختصاص دهیم. مشتق چیست، فیزیکی آن چیست و معنی هندسیچگونه مشتق یک تابع را محاسبه کنیم؟ همه این سؤالات را می توان در یکی ترکیب کرد: چگونه مشتق را درک کنیم؟

معنای هندسی و فیزیکی مشتق

اجازه دهید یک تابع وجود داشته باشد f(x) ، در یک بازه زمانی مشخص مشخص شده است (الف، ب) . نقاط x و x0 متعلق به این بازه هستند. وقتی x تغییر می کند، خود تابع تغییر می کند. تغییر استدلال - تفاوت در مقادیر آن x-x0 . این تفاوت به صورت نوشته شده است دلتا x و افزایش آرگومان نامیده می شود. تغییر یا افزایش یک تابع، تفاوت بین مقادیر یک تابع در دو نقطه است. تعریف مشتق:

مشتق یک تابع در یک نقطه حد نسبت افزایش تابع در یک نقطه معین به افزایش آرگومان زمانی است که دومی به سمت صفر میل می کند.

در غیر این صورت می توان اینگونه نوشت:

یافتن چنین محدودیتی چه فایده ای دارد؟ و در اینجا چیست:

مشتق تابع در یک نقطه برابر است با مماس زاویه بین محور OX و مماس بر نمودار تابع در یک نقطه معین.


معنای فیزیکیمشتق: مشتق مسیر نسبت به زمان برابر است با سرعت حرکت مستقیم.

در واقع، از دوران مدرسه همه می دانند که سرعت یک مسیر خاص است x=f(t) و زمان تی . سرعت متوسطبرای مدت معین:

برای پی بردن به سرعت حرکت در یک لحظه از زمان t0 شما باید حد را محاسبه کنید:

قانون اول: یک ثابت تنظیم کنید

ثابت را می توان از علامت مشتق خارج کرد. علاوه بر این، این باید انجام شود. هنگام حل مثال هایی در ریاضیات، آن را به عنوان یک قاعده در نظر بگیرید - اگر می توانید یک عبارت را ساده کنید، حتما آن را ساده کنید .

مثال. بیایید مشتق را محاسبه کنیم:

قانون دوم: مشتق از مجموع توابع

مشتق مجموع دو تابع برابر است با مجموع مشتقات این توابع. همین امر در مورد مشتق تفاوت توابع نیز صادق است.

ما برای این قضیه اثبات نمی کنیم، بلکه یک مثال عملی را در نظر می گیریم.

مشتق تابع را پیدا کنید:

قانون سوم: مشتق حاصلضرب توابع

مشتق حاصل ضرب دو تابع متمایز با فرمول محاسبه می شود:

مثال: مشتق یک تابع را پیدا کنید:

راه حل:

در اینجا مهم است که در مورد محاسبه مشتقات توابع پیچیده صحبت کنیم. مشتق تابع مختلط با حاصلضرب مشتق این تابع نسبت به آرگومان میانی و مشتق آرگومان میانی نسبت به متغیر مستقل برابر است.

در مثال بالا به این عبارت برخورد می کنیم:

در این حالت، آرگومان میانی 8 برابر به توان پنجم است. برای محاسبه مشتق چنین عبارتی، ابتدا مشتق تابع خارجی را با توجه به آرگومان میانی محاسبه می کنیم و سپس با توجه به متغیر مستقل در مشتق خود آرگومان میانی ضرب می کنیم.

قانون چهارم: مشتق ضریب دو تابع

فرمول تعیین مشتق ضریب دو تابع:

ما سعی کردیم در مورد مشتقات برای آدمک ها از ابتدا صحبت کنیم. این موضوع آنقدرها هم که به نظر می رسد ساده نیست، پس اخطار داشته باشید: در مثال ها اغلب مشکلاتی وجود دارد، بنابراین هنگام محاسبه مشتقات مراقب باشید.

در صورت داشتن هرگونه سوال در این زمینه و موضوعات دیگر، می توانید با خدمات دانشجویی تماس بگیرید. در مدت زمان کوتاهی، ما به شما کمک می کنیم تا سخت ترین آزمون را حل کنید و وظایف را درک کنید، حتی اگر قبلاً محاسبات مشتق را انجام نداده باشید.

توابع از نوع پیچیده همیشه با تعریف یک تابع پیچیده مطابقت ندارند. اگر تابعی به شکل y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11 وجود داشته باشد، بر خلاف y = sin 2 x نمی توان آن را پیچیده در نظر گرفت.

این مقاله مفهوم یک تابع پیچیده و شناسایی آن را نشان می دهد. بیایید با فرمول هایی برای یافتن مشتق با مثال هایی از راه حل ها در نتیجه گیری کار کنیم. استفاده از جدول مشتق و قوانین تمایز به طور قابل توجهی زمان برای یافتن مشتق را کاهش می دهد.

Yandex.RTB R-A-339285-1

تعاریف اساسی

تعریف 1

تابع مختلط تابعی است که آرگومان آن تابع نیز باشد.

به این صورت نشان داده می شود: f (g (x)). داریم که تابع g (x) آرگومان f در نظر گرفته می شود (g (x)).

تعریف 2

اگر یک تابع f وجود داشته باشد و یک تابع کتانژانت باشد، آنگاه g(x) = ln x تابع لگاریتم طبیعی است. دریافتیم که تابع مختلط f (g (x)) به صورت arctg(lnx) نوشته خواهد شد. یا یک تابع f، که تابعی است که به توان 4 افزایش یافته است، که در آن g (x) = x 2 + 2 x - 3 یک تابع منطقی کامل در نظر گرفته می شود، به دست می آوریم که f (g (x)) = (x 2 + 2 x - 3) 4 .

بدیهی است که g(x) می تواند پیچیده باشد. از مثال y = sin 2 x + 1 x 3 - 5 واضح است که مقدار g برابر است ریشه مکعبیبا کسری این عبارت را می توان با y = f (f 1 (f 2 (x)) نشان داد. از آنجا که f یک تابع سینوسی است، و f 1 تابعی است که در زیر جذر قرار دارد، f 2 (x) = 2 x + 1 x 3 - 5 یک تابع گویا کسری است.

تعریف 3

درجه لانه سازی توسط هر کدام تعیین می شود عدد طبیعیو به صورت y = f (f 1 (f 2 (f 3 (... (f n (x)))))) نوشته می شود.

تعریف 4

مفهوم ترکیب تابع به تعداد توابع تو در تو با توجه به شرایط مسئله اشاره دارد. برای حل، از فرمول برای یافتن مشتق تابع مختلط از فرم استفاده کنید

(f (g (x))) " = f " (g (x)) g " (x)

مثال ها

مثال 1

مشتق تابع مختلط به شکل y = (2 x + 1) 2 را بیابید.

راه حل

شرط نشان می دهد که f یک تابع مربع است و g(x) = 2 x + 1 یک تابع خطی در نظر گرفته می شود.

بیایید فرمول مشتق را برای یک تابع مختلط اعمال کنیم و بنویسیم:

f " (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g" (x) = 2 (2 x + 1) 2 = 8 x + 4

لازم است مشتق را با شکل اصلی ساده شده تابع پیدا کنید. ما گرفتیم:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

از اینجا ما آن را داریم

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

نتایج یکسان بود.

هنگام حل مسائل از این نوع، مهم است که بدانیم تابع شکل f و g (x) در کجا قرار خواهد گرفت.

مثال 2

شما باید مشتقات توابع مختلط به شکل y = sin 2 x و y = sin x 2 را پیدا کنید.

راه حل

نماد تابع اول می گوید که f تابع مربع و g(x) تابع سینوس است. سپس ما آن را دریافت می کنیم

y " = ( گناه 2 x) " = 2 گناه 2 - 1 x (سین x) " = 2 گناه x cos x

ورودی دوم نشان می دهد که f یک تابع سینوسی است و g(x) = x 2 یک تابع توان را نشان می دهد. نتیجه می شود که حاصل ضرب یک تابع مختلط را به صورت می نویسیم

y " = (سین x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

فرمول مشتق y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) به صورت y " = f " نوشته می شود (f 1 (f 2 (f 3 (. .. (f n (x)))) · f 1 " (f 2 (f 3 (. . . (f n (x)))) · · f 2" (f 3 (. . . (f n (x) )))) · . . . fn "(x)

مثال 3

مشتق تابع y = sin را بیابید (ln 3 a r c t g (2 x)).

راه حل

این مثال دشواری نوشتن و تعیین محل توابع را نشان می دهد. سپس y = f (f 1 (f 2 (f 3 (f 4 (x))))) نشان می دهد که در آن f , f 1 , f 2 , f 3 , f 4 (x) تابع سینوس است، تابع افزایش تا 3 درجه، تابع با لگاریتم و پایه e، تابع قطبی و خطی.

از فرمول تعریف تابع مختلط داریم که

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2" (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x)

ما آنچه را که باید پیدا کنیم به دست می آوریم

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) به عنوان مشتق سینوس مطابق جدول مشتقات، سپس f " (f 1 (f 2 (f 3 (f 4 ( x))))) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 3 (f 4 (x)))) به عنوان مشتق تابع توان، سپس f 1" (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) به عنوان یک مشتق لگاریتمی، سپس f 2" (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) به عنوان مشتق تانژانت، سپس f 3" (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. هنگام یافتن مشتق f 4 (x) = 2 x، 2 را از علامت مشتق با استفاده از فرمول مشتق تابع توان با توانی برابر با 1 حذف کنید، سپس f 4 "(x) = (2 x) " = 2 x " = 2 · 1 · x 1 - 1 = 2 .

ما نتایج میانی را ترکیب می کنیم و به آن می رسیم

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2" (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

تجزیه و تحلیل چنین عملکردهایی یادآور عروسک های تودرتو است. قوانین تمایز را نمی توان همیشه به طور صریح با استفاده از جدول مشتق اعمال کرد. اغلب شما نیاز به استفاده از فرمولی برای یافتن مشتقات توابع پیچیده دارید.

تفاوت هایی بین ظاهر پیچیده و عملکردهای پیچیده وجود دارد. با داشتن توانایی واضح در تشخیص این، یافتن مشتقات بسیار آسان خواهد بود.

مثال 4

ذکر چنین مثالی ضروری است. اگر تابعی به شکل y = t g 2 x + 3 t g x + 1 وجود داشته باشد، می توان آن را به عنوان یک تابع مختلط از شکل g (x) = t g x, f (g) = g 2 + 3 g + 1 در نظر گرفت. . بدیهی است که استفاده از فرمول برای مشتق پیچیده ضروری است:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) "+ 1" = = 2 · g 2 - 1 (x) + 3 g " (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 tg x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f" (g (x)) g" (x) = (2 tg x + 3) · 1 cos 2 x = 2 t g x + 3 cos 2 x

تابعی به شکل y = t g x 2 + 3 t g x + 1 پیچیده در نظر گرفته نمی شود، زیرا دارای مجموع tg x 2، 3 tg x و 1 است. با این حال، t g x 2 یک تابع مختلط در نظر گرفته می شود، سپس یک تابع توانی به شکل g (x) = x 2 و f به دست می آوریم که یک تابع مماس است. برای انجام این کار، بر اساس مقدار متمایز کنید. ما آن را دریافت می کنیم

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

بیایید به یافتن مشتق یک تابع مختلط (t g x 2) ادامه دهیم:

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2)" = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g" (x) = 2 x cos 2 (x 2)

دریافت می کنیم که y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

توابع از نوع پیچیده را می توان در توابع پیچیده گنجاند و خود توابع پیچیده نیز می توانند باشند توابع جزءنوع پیچیده

مثال 5

به عنوان مثال، یک تابع مختلط به شکل y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) را در نظر بگیرید.

این تابع را می توان به صورت y = f (g (x)) نشان داد، که در آن مقدار f تابعی از لگاریتم پایه 3 است و g (x) مجموع دو تابع شکل h (x) = در نظر گرفته می شود. x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 و k (x) = ln 2 x · (x 2 + 1) . بدیهی است که y = f (h (x) + k (x)).

تابع h(x) را در نظر بگیرید. این نسبت l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 به m (x) = e x 2 + 3 3 است

داریم که l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) مجموع دو تابع n (x) = x 2 + 7 و p ( x) = 3 cos 3 (2 x + 1) ، که در آن p (x) = 3 p 1 (p 2 (p 3 (x))) یک تابع مختلط با ضریب عددی 3 است و p 1 یک تابع مکعب است. p 2 توسط یک تابع کسینوس، p 3 (x) = 2 x + 1 توسط یک تابع خطی.

دریافتیم که m (x) = e x 2 + 3 3 = q (x) + r (x) مجموع دو تابع q (x) = e x 2 و r (x) = 3 3 است، که در آن q (x) = q 1 (q 2 (x)) یک تابع مختلط است، q 1 یک تابع با نمایی است، q 2 (x) = x 2 یک تابع توان است.

این نشان می دهد که h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

هنگامی که به یک عبارت به شکل k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x) حرکت می کنیم، واضح است که تابع به شکل یک s مختلط ارائه می شود ( x) = ln 2 x = s 1 ( s 2 (x)) با یک عدد صحیح گویا t (x) = x 2 + 1، که در آن s 1 یک تابع مربع است و s 2 (x) = ln x لگاریتمی با پایه e.

نتیجه این است که عبارت به شکل k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) خواهد بود.

سپس ما آن را دریافت می کنیم

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

بر اساس ساختار تابع، مشخص شد که چگونه و از چه فرمول هایی برای ساده کردن عبارت هنگام متمایز کردن آن باید استفاده شود. برای آشنایی با چنین مسائلی و مفهوم حل آنها باید به تمایز یک تابع یعنی یافتن مشتق آن رجوع کرد.

در صورت مشاهده خطایی در متن، لطفاً آن را برجسته کرده و Ctrl+Enter را فشار دهید