メニュー
無料で
登録
 /  人間の白癬/海上発射弾道ミサイルブルー。 海上配備型ミサイル「シネバ」と「ブラバ」。 「照準」射撃場

海上発射弾道ミサイルは青色です。 海上配備型ミサイル「シネバ」と「ブラバ」。 「照準」射撃場

弾道ミサイル水中基地の Sineva は、アメリカの類似品である Trident-2 よりも多くの特性において優れています。
12月12日に原子力潜水艦戦略ミサイル巡洋艦(RPK SN)ヴェルホトゥリエからすでに27回目のシネバ弾道ミサイルの発射が成功し、ロシアが報復していることを確認した。 ミサイルは約6000キロメートルを飛行し、カムチャツカのクラ訓練場の条件付き標的に命中した。 ちなみに、ベルホトゥリエ潜水艦は、ドルフィン級(NATO分類によるとデルタIV)のプロジェクト667BDRM原子力潜水艦を大幅に近代化したもので、今日では海軍の戦略的核抑止力の基礎を形成している。

私たちの防衛能力の状態を熱心に監視している人々にとって、これはシネバ打ち上げの成功に関する最初の、そして非常によく知られたメッセージではありません。 現在のかなり憂慮すべき国際情勢において、多くの人は、最も近い外国の類似物であるアメリカの UGM-133A トライデント II D5 ミサイル (トライデント 2)、通称トライデント 2 と比較した我が国のミサイルの能力の問題に興味を持っています。 。

アイス「シネバ」

R-29RMU2「シネバ」ミサイルは、大陸間の射程で戦略的に重要な敵目標を破壊するように設計されています。 メイン武器です 戦略ミサイルプロジェクト 667BDRM の巡洋艦であり、R-29RM ICBM に基づいて作成されました。 NATO分類によると-SS-N-23スキフ、START条約によると-RSM-54。 これは、第3世代の液体推進3段式海上発射・潜水艦発射大陸間弾道ミサイル(ICBM)である。 2007年の就役後、約100発のシネバ・ミサイルを生産する予定だった。

Sineva の打ち上げ重量 (ペイロード) は 40.3 トンを超えません。 最大射程 11,500 km の ICBM (2.8 トン) の多弾頭は、出力に応じて 4 ~ 10 個の個別標的弾頭を発射できます。

最大 55 m の深さから発射する場合の目標からの最大偏差は 500 m を超えません。これは、天体補正と衛星ナビゲーションを使用した効果的な搭載制御システムによって保証されます。 克服するために ミサイル防衛敵に対しては、シネバは特別な手段を装備し、平らな飛行経路を使用できます。

これは、オープンソースで知られているシネバ大陸間弾道ミサイルの主要データです。 比較のため、主な特徴は次のとおりです アメリカのロケット「トライデント-2」は、ロシアの「水中」剣に最も近い類似品です。


大陸間三段弾道ミサイルR-29RMU2「シネバ」。 写真:ウェブサイト


アメリカの「トライデント」 - 「トライデント-2」

トライデント 2 海上発射固体燃料大陸間弾道ミサイルは 1990 年に実用化されました。 これは軽量化された改良版「トライデント-1」を備えており、敵領土の戦略的に重要な目標を攻撃するように設計されています。 解決するタスクという点では、ロシアの Sineva に似ています。 このミサイルはアメリカのSSBN-726オハイオ級潜水艦に搭載されている。 2007 年に連続生産が中止されました。

トライデント 2 ICBM は、打ち上げ重量が 59 トンで、2.8 トンのペイロードを発射場から 7,800 km の距離まで運ぶことができます。 弾頭の軽量化と数の削減により最大飛行距離1万1300キロメートルを達成できる。 ペイロードとして、ミサイルは中出力(W88、475 kt)と低出力(W76、100 kt)の個別に標的化された弾頭をそれぞれ8個と14個搭載することができる。 これらのブロックのターゲットからの推定円周偏差は 90 ~ 120 m です。

シネバミサイルとトライデント2ミサイルの特性の比較

一般に、シネバはその主要な特性において劣っておらず、多くの点でアメリカの大陸間弾道ミサイル トライデント-2 よりも優れています。 同時に、我が国のミサイルは海外のミサイルとは異なり、大きな近代化の可能性を秘めています。 2011 年に試験が開始され、2014 年に運用が開始されました。 新しいオプションミサイル - R-29RMU2.1「ライナー」。 さらに、必要に応じて、R-29RMU3 を改良することで、固体燃料大陸間弾道ミサイル (Bulava) を置き換えることができます。

私たちのシネバは、エネルギー質量の完璧さ(1飛行距離に換算した、ロケットの発射質量に対する戦闘負荷の質量の比)の点で世界最高です。 この 46 基という数字は、最大飛行距離に直接影響を与える、トライデント 1 (33 基) およびトライデント 2 (37.5 基) の ICBM の数字よりも著しく高いです。

「シネバ」は、2008年10月に原子力潜水艦「トゥーラ」により水中位置からバレンツ海から発射され、1万1547キロ飛行し、弾頭の試作機を赤道部に届けた。 太平洋。 これはトライデント 2 よりも 200 km 高いです。 これほどの射程距離を持つミサイルは世界中に存在しない。

実際、ロシアの戦略ミサイル潜水艦は、水上艦隊の保護を受けながら、米国中部州の海岸沖の位置から中央部の州を砲撃する能力がある。 桟橋から離れずに言うことができます。 しかし、北極地域の氷の厚さが最大2メートルだったときに、水中ミサイル母艦が北極圏の緯度から秘密裏に「氷の下」でシネバを発射した例もある。

ロシアの大陸間弾道ミサイルは、最大5ノットの速度で移動する空母によって、水深55メートルまで、航路に沿って任意の方向に最大7地点までの海域から発射できる。 トライデント 2 ICBM は、同じ飛行速度で、最大 30 m の深さ、最大 6 ポイントの波から発射できます。 また、スタート直後から「トライデント」にはない「シネバ」が所定の軌道に確実に到達することも重要です。 これは、トライデントが蓄圧装置によって発射されるためであり、潜水艦の指揮官は安全性を考慮して、常に水中発射か水上発射かの選択を行うためです。

このような兵器の重要な指標は、報復攻撃の準備と実行時の発射速度と一斉射撃の可能性です。 これにより、敵のミサイル防衛システムを突破し、敵に確実な敗北を与える可能性が大幅に高まります。 シネバ大陸間弾道ミサイル間の最大発射間隔は最大 10 秒であるため、トライデント 2 のこの数値は 2 倍 (20 秒) です。 そして1991年8月には、ノヴォモスコフスク潜水艦によって16発のシネバ大陸間弾道ミサイルからの弾薬の一斉発射が行われたが、この潜水艦にはこれまでに類似した潜水艦は世界中に存在しない。

私たちの「シネバ」は、新しい中出力ユニットを装備した場合の目標への命中精度の点でアメリカのミサイルに劣りません。 重さ約2トンの高精度・高爆発性破砕弾頭を搭載し、非核紛争でも使用可能。 敵のミサイル防衛システムを突破するために、特別な装備に加えて、シネバは平らな軌道に沿って目標に向かって飛行することができます。 これにより、タイムリーに検出される可能性が大幅に減少し、敗北の可能性が大幅に減少します。

そして、私たちの時代にはもう一つ重要な要素があります。 あらゆる肯定的な指標にもかかわらず、繰り返しますが、トライデント型大陸間弾道ミサイルは近代化が困難です。 25 年以上のサービスの中で、電子ベースは大幅に変化しており、現地の近代化は不可能です。 最新のシステムソフトウェアおよびハードウェアレベルでのロケットの設計において。

最後に、当社の Sineva のもう 1 つの利点は、平和目的での使用の可能性です。 かつて、ヴォルナ打ち上げロケットとシュティル打ち上げロケットは、宇宙船を地球低軌道に打ち上げるために作成されました。 1991 年から 1993 年にかけて、そのような打ち上げが 3 回行われ、変換機「シネバ」は最速の「メール」としてギネスブックに登録されました。 1995 年 6 月、このロケットは科学機器一式と特別なカプセルに入った郵便物を 9,000 km の距離を越えてカムチャッカに届けました。

その結果、上記およびその他の指標は、ドイツの専門家がシネバを海軍ロケット科学の傑作であると考える基礎となりました。

ウドムルト共和国のヴォトキンスク機械製造工場の組立および機器基地で3M-30ブラバミサイルを搭載

ロケット 海洋ベースの「シネバ」と「ブーラバ」

本日8月24日、ロシアは海上配備型弾道ミサイル「シネバ」と「ブラバ」の発射に成功した。 ロシア国防省によると、発射は戦闘訓練計画に従って8月24日に実施された。

関係者によると、ミサイルは北極海の極地とバレンツ海から戦略ミサイル潜水艦「トゥーラ」と戦略ミサイル潜水艦「ユーリ・ドルゴルーキー」から発射された。

« 重量とサイズのモデルミサイル弾頭は飛行計画の全サイクルを完了し、チザ訓練場の訓練目標を無事に命中させた。 アルハンゲリスク地域そしてカムチャツカ半島の「クラ」」とロシア国防省は声明で述べた。 起動中に指定された 仕様潜水艦の弾道ミサイルと艦載ミサイルシステムのすべてのシステムの性能。 ロシアの海上配備型大陸間弾道ミサイルの一連の発射成功は、高い技術的可能性と防衛産業複合体の開発に対する国家の願望を示している。

大陸間射程ミサイル「ブラーバ」

大陸間射程潜水艦発射弾道ミサイル(SLBM)「ブーラバ」(様々な改良型「ブーラバ-M」、ミサイルR-30 / 3M-30 / RSM-56「ブーラバ」/「ブーラバ-30」) - SS-NX-32 / SS-N-32)は、モスクワ熱工学研究所(MIT)の主任設計者 - Yu.S. によって開発されました。 ソロモノフ。 ミサイルの予備設計は 1992 年に始まりました。ミサイルの作成時には、バーク SLBM だけでなく、クーリエ ICBM プロジェクトの開発結果も使用されました。

1998年、「樹皮」のテーマは終了し、「ロスコスモス」の後援のもとコンペが開催された(参加者:MITとマケエフ州立研究センター、チーフデザイナーYu.A.カベリンの「Bulava-45」プロジェクト) 、「ブラバ」SLBMはMITで設計され始めました。 同時に、ブラバ・ミサイル用のSSBNプロジェクト955の再設計が始まり、同時にSLBMの開発管理はロシア国防省第4中央研究所(所長V・ドヴォルキン)に委託された。以前はICBM製造の監視に携わっていた。 この時点で、制御システムの主な開発者は、アカデミー会員 N.A. の名を冠した連邦州統一企業 NPO オートメーションでした。 セミハトフ」にちなんで名付けられたSPC AP。 ピリュギン。 にちなんで名付けられた州立研究センターにて。 Makeev、通信システムと複合施設の機器の設計に関する作業が行われました。 ロケット弾の開発はNPOアルタイ(ビイスク)によって行われた。 ロケット エンジンの最初のテストは 1999 年に実施され、3M-30「ブラバ」SLBM の予備設計は 2000 年に MIT によって保護されました。

ロケットを作成するとき、水中スタンドからのテスト打ち上げを放棄することが決定されました。 すべてのコンポーネントのテストが完全に実行されました。 ミサイルモデルの弾道発射は、サンクトペテルブルク近郊のエリザヴェティンカにある特別工学設計局の工学試験場で行われた。 肯定的な結果テストにより、潜水艦から地上および水中でのテストに進むことが可能になりました。 合計 620 社が協力に参加しています。 SLBM の主な生産は、に配備されています。

水中位置からブラバミサイルを発射

当初、このミサイルは2008年から2009年に実用化される予定だったが、何度か発射が失敗したため、2011年から2012年に延期された。 その結果、R-30「ブラヴァ」SLBMは2013年にロシア海軍に採用され、同時に先頭のSSBN K-535「ユーリ・ドルゴルーキー」pr.955「ボレイ」に旗が掲げられた。 プロジェクトの先頭ボートへの標準弾薬の積み込みは、2014 年 1 月に予定されています。

ミサイル試作機の最初の発射は、2003 年末に TK-208 SSBN プロジェクト 941 UM から行われました。水中位置からの発射は、2004 年 9 月にバレンツ海で実験用 SSBN プロジェクト 941 UM「ドミトリー ドンスコイ」から行われました。 2007 年 6 月にロケットの主要部品の量産が開始されました。

ミサイルと複合体の性能特性:

SSBNシャフト長さ – 12.1m
ヘッドセクションを含むロケットの長さ - 12.1 m
ヘッドセクションを除いたロケットの長さ - 11.5 m
内部発射コンテナの直径は2.1メートルです
ロケット直径(1段目、2段目、3段目) – 2m
1段目の長さ – 3.8m

重量 – 36.8トン
1段目の重量 – 18.6 t
投擲重量 – 1150 kg
弾頭の重量 (6 つの MIRV に含まれる) – 95 kg (西側のデータによる)

範囲:
– 5500 km (テスト中、白海 – クラ、カムチャツカ)
– 8000 km (プロジェクト「Bulava-30」による)
– 8300 km (西側のデータによる)
– 9300 km (2011 年の最大航続距離での打ち上げ時の公式データによる)
飛行時間 - 14分 (5500 km、テスト中、白海 - クラ、カムチャツカ)、他のデータによると22分
テスト中の軌道の遠地点の高さは1000kmです

業界の連続生産能力 - 最大 25 個/年 (推定)

ミサイルにはミサイル防衛を突破する手段が装備されている。 このミサイルは、その名にちなんで名付けられた州研究センターによって開発された低出力弾頭を使用する。 マケエバ。 核装薬は、VNIIEF (サロフ) とウラル核センターによって開発されました。 弾頭増殖プラットフォームは6基のMIRVを発射できるように設計されており、敵がミサイル防衛の問題を解決するのを困難にする軌道操作を実行する能力を備えている。

大陸間射程ミサイル「シネバ」

NATO分類によれば、R-29RMU2「シネバ」 - SS-N-23スキフ - ロシアの3段式液体推進逐次第三世代潜水艦発射弾道ミサイル。 プロジェクト 667BDRM の戦略潜水艦巡洋艦「ドルフィン」に搭載されたミサイル システムに使用されています。 2007 年に就役。1986 年に採用された R-29RM コンプレックスの改良型です。 1996 年にこれらの複合体の製造は中止されましたが、1999 年から 2000 年にかけて中止されました。 製品のアップグレード後に再開されました。 1999年以来、R-29RMU2「シネバ」という名称でミサイルを改修する作業が行われてきた。 2004 年にロケットの飛行試験が完了しました。 近代化の過程で、弾頭の重量を減らすことによって追加の射程資源が得られ、電子戦装備が導入されました。 2007年、ロシアのV.V.プーチン大統領は、海軍へのミサイルの採用に関する法令に署名した。

2008年10月11日、バレンツ海での安定性2008演習の一環として、原子力潜水艦トゥーラの水中位置からシネバ・ミサイルが発射され、11,547kmの飛行距離記録を樹立した。 したがって、シネバの最大射程は、アメリカ海軍のトライデント II ミサイルの最大射程 (11,300 km) を超えました。

2019年8月24日、原子力潜水艦トゥーラからR-29RMU2シネバミサイルの発射に成功した。 国防省によると、トゥーラSSBNは北部の極地にある。 北極海、アルハンゲリスク地域のチザ試験場でシネバロケットを発射した。 ミサイル弾頭の重量とサイズのモックアップは飛行プログラムの全サイクルを完了し、訓練目標への着弾に成功した

シネバ海上配備弾道ミサイルの改良型は、ミアスのマケエフセンターによって開発された底面発射ミサイルであることを思い出してください。 ロケットのプラットフォームは根本的に新しくなりました。輸送および発射コンテナは、ロケットを戦闘状態で数十年間、何もせずに底部に置いておくことができます。 メンテナンス。 コンテナ入り ランチャー深さ 300 ~ 1800 m の底に保管される場合、コンテナシェルは設備を圧力から確実に保護します。

スキフ・ミサイルを戦闘任務に就かせる際の秘密の問題は簡単に解決される。 運搬船は水中の所定の地点に近づき、コンテナを投下します。 設置工事は不要で、容器を底に置くだけです。 それ以外の場合、スキフは実際には通常のシネバ弾道ミサイルです。

2019-08-24T19:06:07+05:00 lesovoz_69祖国の防衛ウドムルトロケット ウドムルトのヴォトキンスク機械製造工場の組立・設備基地での3M-30「ブラバ」ミサイルの積載 海上配備型ミサイル「シネバ」と「ブラバ」 本日8月24日、ロシアは海上配備型弾道ミサイルの発射に成功した。シネヴァ」と「ブーラヴァ」。 ロシア国防省によると、発射は戦闘訓練計画に従って8月24日に実施された。 情報筋によると、ミサイルは戦略ミサイル潜水艦から発射されたという。lesovoz_69 lesovoz_69 lesovoz [メールで保護されています]著者「ロシアの真ん中」

ロケットは地表に到達し、星に向かって上向きに飛行します。 何千ものちらつく点の中で、必要なものは 1 つです。 ポラリス。 おおぐま座アルファ星。 サルボポイントと弾頭の天体修正システムが取り付けられた人類の別れの星。

私たちのロケットはろうそくのようにスムーズに離陸し、潜水艦のミサイルサイロ内で第一段エンジンを点火しました。 側面の厚いアメリカのトライデントは、まるで酔ったかのようによろめきながら、曲がって水面に登っていきます。 軌道の水中部分での安定性は、蓄圧器の始動力以外には保証されません...

しかし、まず最初に!

R-29RMU2「シネバ」 - 更なる発展 R-29RMの栄光のファミリー。
開発は 1999 年に始まりました。 採用 - 2007 年。

発射重量40トンの3段式液体燃料潜水艦発射弾道ミサイル。 最大。 投擲重量 - 2.8トン、発射距離8300km。 戦闘負荷 - 8 基の小型個別標的型 MIRV (RMU2.1「ライナー」改良版の場合 - 開発された対ミサイル防御手段を備えた 4 基の中出力弾頭)。 円確率偏差は 500 メートルです。

実績と記録。 R-29RMU2は、現存する国内外のSLBMの中で最高のエネルギーと質量の完成度を誇る(飛行距離に換算した発射重量に対する戦闘負荷の比率は46基)。 比較のために:トライデント-1 のエネルギー質量完全性はわずか 33 ですが、トライデント-2 は 37.5 です。

R-29RMU2 エンジンの高推力により平坦な軌道に沿った飛行が可能となり、飛行時間が短縮され、多くの専門家によれば、(発射範囲が減少するという代償を払ってではあるが) ミサイル防衛を突破できる可能性が大幅に増加します。 。

2008年10月11日、バレンツ海での安定性2008演習中に、記録破りのシネバ・ミサイルが原子力潜水艦トゥーラから発射された。 弾頭の試作型は太平洋の赤道部に落下し、発射距離は11,547kmであった。

UGM-133A トライデント-II D5。 「Trident-2」は、より軽量化された「Trident-1」と並行して1977年から開発されてきました。 1990年に採用されました。

打ち上げ重量 - 59トン。 最大。 投擲重量 - 2.8トン、発射距離は7800 km。 最大。 弾頭の数を減らした場合の飛行距離は 11,300 km です。 戦闘負荷 - 8 台の中出力 MIRV (W88、475 kT) または 14 台の低出力 MIRV (W76、100 kT)。 円確率偏差は 90 ~ 120 メートルです。

経験の浅い読者はおそらく疑問に思っているだろう:なぜアメリカのミサイルはこれほど貧弱なのか? 彼らは水面から斜めに離れ、飛びは悪くなり、重量は重くなり、エネルギー質量の完璧さは地獄です...

問題は、ロッキード・マーティンの設計者たちが当初、その名を冠した設計局のロシア人の同僚たちと比べて、より困難な状況にあったということだ。 マケエバ。 アメリカ海軍の伝統に従って、彼らは SLBM を設計する必要がありました。 固形燃料について。

比推力の点では、固体推進剤ロケット エンジンは液体推進剤ロケット エンジンよりもアプリオリに劣ります。 最新の液体推進ロケット エンジンのノズルからのガス流の速度は 3500 m/s 以上に達することがありますが、固体推進ロケット エンジンの場合、このパラメータは 2500 m/s を超えません。

Trident-2 の成果と記録:
1. 第一段推力(91,170kgf)​​は全固体燃料SLBMの中で最大、固体燃料ロケットエンジンを搭載した弾道ミサイルの中ではミニットマン3に次いで2番目。
2. 無事故で打ち上げられた最長のシリーズ(2014 年 6 月現在 150 回)。
3. 最長の耐用年数: トライデント 2 は 2042 年まで運用されます (現役稼働期間は半世紀!)。 これは、ミサイル自体の耐用年数が驚くほど長いことだけでなく、冷戦の真っ最中に定められたコンセプトの選択が正しかったことも証明している。

同時に、「Trident」は近代化するのが困難です。 運用開始以来、過去四半世紀にわたり、エレクトロニクスおよびコンピューティング システムの分野は進歩し、最新のシステムを Trident-2 の設計にローカルに統合することは、ソフトウェア レベルでもハードウェア レベルでも不可能なほどに進んでいます。 !

Mk.6 慣性ナビゲーション システムのリソースがなくなると (最後のバッチは 2001 年に購入されました)、新世代 INS Next Generation の要件を満たすために、トライデントのすべての電子「詰め物」を完全に交換する必要があります。ガイダンス(NGG)。


W76/Mk-4弾頭


しかし、現在の状態でも、この老戦士は太刀打ちできない存在である。 40年前のヴィンテージ傑作を全セットで収録 技術秘密、その多くは今日でも再現できませんでした。

ロケットの 3 つのステージのそれぞれで 2 つの平面内でスイングする凹型固体推進剤ノズル。

SLBM (7 つの部分からなる伸縮可能なロッド) の船首にある「謎の針」。これを使用すると、空気抵抗を減らすことができます (射程距離の増加 - 550 km)。

第 3 段推進エンジン (Mk-4 および Mk-5 弾頭) の周囲に弾頭 (「ニンジン」) を配置する独自のスキーム。

今日まで最高の CEP を備えた 100 キロトンの W76 弾頭。 オリジナルバージョンでは、デュアル補正システム (INS + 天体補正) を使用すると、W-76 の円確率偏差は 120 メートルに達します。 三重補正 (INS + 天体補正 + GPS) を使用すると、弾頭の CEP は 90 m に減少します。

2007 年、トライデント 2 SLBM の生産終了に伴い、既存のミサイルの寿命を延ばすために多段階の近代化プログラム D5 LEP (寿命延長プログラム) が開始されました。 「トライデント」に新たな装備を追加するほか、 ナビゲーションシステム NGG、国防総省は、新たな、さらに多くのものを生み出すための研究サイクルを開始しました 効果的な処方ロケット燃料、耐放射線性電子機器の開発、さらには新しい弾頭の開発を目的とした多くの研究などです。

いくつかの無形資産:

液体 ロケットエンジン- これらは、ターボポンプ ユニット、複雑なミキシング ヘッド、遮断バルブです。 材質 - 高級ステンレス鋼。 ロケット エンジンを搭載した各ロケットは技術的な傑作であり、その洗練されたデザインは法外なコストに直接比例します。

一般的な見解固体燃料 SLBM は、圧縮された火薬が縁まで満たされたグラスファイバーの「バレル」(耐熱容器)です。 このようなロケットの設計には特別な燃焼室さえありません。「バレル」自体が燃焼室です。

大量生産により、大幅な節約が可能になります。 ただし、そのようなロケットの正しい作り方を知っている場合に限ります。 固体燃料ロケットモーターの製造には、最高の技術文化と品質管理が必要です。 湿度と温度のわずかな変動は、燃料ストーブの燃焼の安定性に重大な影響を与えます。

発展した 化学工業米国は明白な解決策を提案した。 その結果、ポラリスからトライデントに至るまで、海外のすべての SLBM は固体燃料で飛行しました。 これに関する私たちの状況はもう少し複雑でした。 最初の試みは大惨事でした。固体燃料SLBM R-31 (1980年) は、その名を冠した設計局の液体推進ミサイルの性能の半分も確認できませんでした。 マケエバ。 2 番目の R-39 ミサイルも同様でした。トライデント 2 SLBM と同等の弾頭質量を備えたソビエト ミサイルの発射質量は、信じられないほど 90 トンに達しました。 スーパーロケット (プロジェクト 941「シャーク」) 用の巨大なボートを作成する必要がありました。

同時に、RT-2PM トポリ陸上ミサイル システム (1988 年) も大きな成功を収めました。 明らかに、燃料燃焼の安定性に関する主な問題はその時までに克服されていました。

新しい「ハイブリッド」Bulava の設計では、固体燃料 (第 1 段と第 2 段) と液体燃料 (最終段、第 3 段) の両方を使用するエンジンが使用されます。 しかし、打ち上げの失敗の大部分は、燃料燃焼の不安定性によるものではなく、センサーやロケットの機械部分(ステージ分離機構、振動ノズルなど)に関連していました。

固体推進剤ロケットエンジンを搭載した SLBM の利点は、連続ミサイルの低コストに加えて、その運用の安全性です。 液体燃料ロケットエンジンを搭載した SLBM の保管と発射準備に関する懸念は無駄ではない。 潜水艦艦隊液体燃料の有毒成分の漏洩に関連した一連の事故が発生し、さらには船(K-219)の損失につながる爆発も発生しました。

さらに、次の事実は固体燃料ロケット エンジンを支持するものです。

長さが短い(独立した燃焼室がないため)。 その結果、アメリカの潜水艦にはミサイル室の上に特徴的な「こぶ」がありません。

打ち上げ前の準備時間が短縮されます。 液体推進エンジンを備えた SLBM とは対照的に、最初に燃料成分 (FC) をポンプで送り出し、パイプラインと燃焼室に燃料成分を充填するという長く危険な手順が必要です。 さらに、シャフトを海水で満たす必要がある「リキッドスタート」プロセス自体も、潜水艦のステルス性を侵害する望ましくない要素です。

蓄圧装置が発射されるまでは、(状況の変化および/または SLBM システムの誤動作の検出により)発射をキャンセルすることができます。 私たちの「Sineva」は、開始 - 撮影という異なる原理で動作します。 何もありません。 そうしないと、燃料タンクを空にするという危険なプロセスが必要となり、その後、戦闘不可能なミサイルを慎重に降ろし、改修のためにメーカーに送ることしかできません。

打ち上げ技術自体に関しては、アメリカ版には独自の欠点があります。

蓄圧器は提供できるでしょうか? 必要な条件 59トンのブランクを地表に「押し出した」ためでしょうか? それとも、発射の瞬間、操舵室が水面上に突き出た状態で、浅い深さを進まなければならないのでしょうか?

トライデント 2 号の打ち上げ時の計算された圧力値は 6 気圧です。 始動速度蒸気ガス雲内の動き - 50 m/s。 計算によると、開始推力は少なくとも30メートルの深さからロケットを「持ち上げる」のに十分です。 法線に対して斜めの地表への「美しくない」出口については、技術的には問題ではありません。第 3 段エンジンの点火により、最初の数秒でロケットの飛行が安定します。

同時に、推進エンジンが水上 30 メートルで始動する「トライデント」の「乾式」発射は、海域で SLBM の事故(爆発)が発生した場合に、潜水艦自体にある程度の安全性を提供します。飛行の最初の 1 秒。

国内の高エネルギーSLBMの開発者らが平坦な軌道に沿って飛行する可能性について真剣に議論しているのとは異なり、外国の専門家はこの方向に取り組もうとすらしていない。 動機: SLBM 軌道の活動部分は、敵のミサイル防衛システムがアクセスできない領域 (たとえば、太平洋の赤道部分や北極の氷殻) にあります。 最後のセクションについては、ミサイル防衛システムはありません 特別な意味、大気圏突入の角度は何でしたか - 50度または20度。 さらに、大規模なミサイル攻撃を撃退できるミサイル防衛システム自体は、依然として将軍たちの空想の中にのみ存在している。 大気の密な層を飛行すると、航続距離が短くなるだけでなく、明るい飛行機雲が発生し、それ自体が強力なマスク解除要素となります。

エピローグ

1 機のトライデント 2 に対して国内の潜水艦発射ミサイルが銀河単位で撃ち込まれている…「アメリカ人」はよく耐えていると言わざるを得ません。 老朽化した固体燃料エンジンにもかかわらず、その噴射重量は液体燃料の Sineva の噴射重量とまったく同じです。 発射範囲も同様に印象的です。この指標では、トライデント 2 は完成したロシアの液体燃料ミサイルに劣らず、フランスや中国の類似ミサイルより頭も肩も上です。 最後に、小規模な CEP により、トライデント 2 は海軍戦略核戦力のランキングで 1 位の真の候補になります。

20年というのはかなりの年齢だが、ヤンキースは2030年代初頭までトライデントに代わる可能性についてさえ議論していない。 明らかに、強力で信頼性の高いロケットが彼らの野心を完全に満たします。

ある種または別の種の優位性に関するすべての論争 核兵器あまり関係ありません。 原子力はゼロを掛けるようなものです。 他の要因に関係なく、結果はゼロになります。

ロッキード・マーティンのエンジニアは、時代を 20 年先取りしたクールな固体燃料 SLBM を開発しました。 液体推進ロケット製造分野における国内専門家の功績にも疑いの余地はない。過去半世紀にわたって、液体推進ロケットエンジンを搭載したロシアのSLBMは真の完成度に達してきた。

2014年4月2日、ロシア海軍は新型潜水艦発射弾道ミサイルR-29RMU2.1ライナーを採用したとインタファクス通信がロシア軍産複合体の情報筋の話として報じた。 ミサイルは2014年初めに運用を開始した。 プロジェクト 667BDRM ドルフィン戦略原子力潜水艦に装備されることが計画されています。

ライナー弾道ミサイルの飛行試験プログラムは2011年10月に終了した。 ロケットの打ち上げ試験は2011年5月20日と9月29日の計2回行われた。 彼らは成功したと考えられていました。 予想通り、ドルフィン計画の潜水艦の武装の一部として、新型ライナーは改良型のR-29RMU2シネバ弾道ミサイルとともに使用されることになる。

我が国の防衛産業の主要な設計局や企業間の健全な競争は維持されており、懐疑論者の予想に反して実際の成果を上げています。 これは、ロシアの戦略潜水艦部隊が根本的に改良されたライナーミサイル複合体を採用したという事実によって確認された。

この本質的にセンセーショナルな出来事は注目されず、マケエフにちなんで名付けられた州ミサイルセンターのウェブサイトにのみ、「複合施設は」という簡潔なメッセージが掲載された。 ミサイル兵器 R-29RMU2.1「ライナー」ミサイルを搭載したD-9RMU2.1が運用開始されました。」 報告書によれば、ロシア大統領はすでに対応する命令に署名しているという。

私たちは、ロケット自体と同様に「ライナー」という興味深い名前を付けられたこのテーマの発展を少なくとも 3 年間追跡してきました。 去年。 最初の言及は、2011 年 5 月に RG でロケットの発射試験が行われたときに行われました。 すると、この開発に直接関係していたウラル地方(ミアスのマケエフ国立研究センターとスネジンスクの核センター)での私の対話者たちは、詳細には立ち入らないよう求め、最も一般的な言葉だけで、質問をはぐらかして答えた。 一方では、彼らは自分の子供にジンクスを与えることを恐れていましたが、他方では、この作品が予測不可能な「Bulava」に反抗して開始されたのではないかという疑惑を煽りたくありませんでした...

この直後にミアスのミサイルセンターの総監督兼総合設計者であるウラジミール・グリゴリエヴィチ・デグティアルとの間で行われた「理解のための」会話も、長い間「カーペットの下」にあった。 そして、GRCの公式ウェブサイトに「ライナー」の開発が完了したと書かれている今、すべてのことをその正式な名前で呼ぶ時が来ました。

ウラジミール・デグティアル氏によると、「ライナー」テーマの開発作業は、2007年にGRCが海軍へのサービスを委託したシネバロケットをベースに実施されたという。 ウラル山脈で設計され、クラスノヤルスク機械製造工場で製造されたシネバ大陸間弾道ミサイルは、モスクワ熱工学研究所やヴォトキンスク機械工場(ウドムルト共和国)の固体燃料であるブラバとは異なり、液体燃料で動作する。

固体ロケット燃料は、海軍での使用に最も適していると先験的に考えられている。 そして 長い間この点ではアメリカ人が我々より優れていた。 しかし、前世紀の80年代初頭に、プロジェクト941「タイフーン」の世界最大の潜水艦用に90トンの固体燃料ミサイルを製造することに成功したウラルでは、設計と生産技術の改善を止めませんでした。液体成分燃料を使用する海上配備弾道ミサイル。

ブリャンスク、エカテリングブルク、カレリア型の戦略潜水艦 (プロジェクト 667 BDRM ドルフィン) を武装させることを目的としたクラスノヤルスクのパスポートを持つウラル シネヴァは、非常に有望な発案であることが判明しました。 その紛れもない利点は、ロケットがクラスノヤルスクの工場で既製のカプセル化された形で製造され、潜水艦のミサイルサイロに装填する前に燃料を操作する必要がないという事実であった。 船上で直接進水前の準備を行う時間も短縮されました。

同時に、私たちと外国の専門家が指摘しているように、40トンの「シネバ」液体燃料は、そのエネルギー質量特性(これは主に、発射質量と発射ペイロードの重量および射程距離の比)において、次を超えています。イギリス、中国、ロシア、アメリカ、フランスのすべての現代の固体燃料戦略ミサイル。

シネバはその弾頭に4基の中出力核ユニットを搭載していることがオープンソースから知られている。 ライナーの開発作業では、ロケットの第 1 段と第 2 段がシネバから連続したものとして採用されました。 しかし、戦闘装備(戦闘段階)は「ライナー」専用に作られた新型で、中・低出力クラスの弾頭を最大10発搭載できるほか、ミサイル防衛を突破する手段も備えている。 さらに、そのような手段は Sineva で利用できる手段とは大きく異なります。 制御システムも改良され、 異なる種類軌跡。

GRC ウェブサイトのメッセージに記載されているように、「ライナー」には多くの新しい品質があります。弾頭の円形および任意の離脱ゾーンの寸法の増加、天体慣性および天体電波慣性での射撃範囲全体での平坦な軌道の使用です。 GLONASS システム衛星によって修正された場合) システム動作モード管理...

つまり、正式に実用化された新型ミサイルは、国内外の海陸戦略ミサイルの中で最もエネルギーと質量の完成度が高いだけではない。 さまざまな出力クラスの弾頭の混合構成の可能性を備えており、戦闘装備の点で劣っていません(START-3条約の条件の下で) ミサイルシステムアメリカの潜水艦の「トライデント2」。 そして、私たちの「Bulava」と比較すると、6個ではなく、10個、さらには12個の弾頭を取り付けることができます。

ライナー・ミサイルの多種類の戦闘装備により、対ミサイル・システムの配備や弾頭数の契約上の制限に関連する外交政策の状況の変化に適切に対応できると開発者らは保証する。

「ライナー」と学者のウラジミール・デグチャル氏は、詳細は避けながら次のように要約した。「これらは、既存のミサイル防衛システムと将来登場する可能性のあるミサイル防衛システムに適応した完全に新しい能力です。

GRC Makeeva V.G.のゼネラルディレクター兼ゼネラルデザイナーへの詳細なインタビュー。 近い将来、Degtyarem を公開する予定です。

R-29RMU2 RSM-54“シネバ”

関係書類「RG」

OJSC「GRC Makeeva」は液体および固体燃料の大手開発者です 海軍ミサイル海軍の戦略複合施設。 このような研究が開始されて以来、8 基の基本ミサイルと 18 基のその改良型が作成され、ソ連とロシアの海軍戦略核戦力の基礎を形成し、形成し続けています。 合計で約 4,000 発の近代的な連続海軍ミサイルが製造され、1,200 発以上が発射されました。 現在運用されているのは、SLBM R-29RKU2 (ステーション-2)、R-29RMU2 (シネバ) を備えたミサイルシステムであり、北方および太平洋艦隊の戦略原子力潜水艦に装備されています。 2008年、シネバ大陸間弾道ミサイルは、11.5千キロメートルを超える海軍ミサイルの射程距離の世界記録を樹立した。

非公式情報によると、ライナー計画で既に運用されているシネバミサイルの近代化費用は4000万ルーブルから6000万ルーブルに及ぶ可能性がある。 制御システムを改善するにはどのような追加資金が必要ですか? ミサイルシステム潜水艦自体へのミサイル発射も報告されていない。

有望な代替品の表を更新しました

667BDRM「ドルフィン」 955「ボリー」
建設年数 1984-1990 2008-2017
勤続年数 1984-2030* 2012-2060*
建設された、または建設が計画されている 7 8**
長さ (メートル) 167,4 170
幅 (メートル) 11,7 13,5
水没排水量(トン) 18200 24000
浸漬深さ 400 450
クルー 140 107
自律性 (日数) 80 90
ミサイルサイロ 16 16***
ミサイルの種類 R-29RMU2「シネバ」またはR-29RMU2.1「ライナー」 R-30「ブーラバ-30」
ミサイルの射程距離 (キロメートル) 8300-11500 8000
* — 最後の潜水艦の退役予定日

** — 最大 10 ユニットまで注文を増やすことが可能です

*** - 4 番目以降の潜水艦はプロジェクト 955A に従って建造され、それぞれ 20 個の機雷が搭載されます。

R-29RMU2.1「ライナー」の技術的特徴

  • 保証耐用年数 - 18 ~ 20 年
  • 段数、個 — 3
  • エンジン - すべての段階で液体燃料ロケット エンジン
  • 長さ、m. - 15
  • 直径、m. - 1.9
  • 発射重量、t. – 40.3
  • 投球重量、kg。 – 2000まで
  • 最大航続距離、km。 — 8300 — 11,500
  • 弾頭の種類 - 個別の標的ユニットを備えた複数の弾頭 (MIRV IN)、核
  • 弾頭の種類オプション 1 - 12 x 低出力 MIRV IN (ミサイル防衛を克服する一連の手段なし)
  • 弾頭の種類 オプション 2 - ミサイル防衛を克服するための一連の手段を備えた 10 x 低出力 MIRV
  • 弾頭の種類 オプション 3 - ミサイル防衛を克服するための強化された手段を備えた 8 x 低出力 MIRV IN
  • 弾頭の種類オプション 4 - ミサイル防衛を克服するための一連の手段を備えた 4 x MIRV 中出力
  • 元の記事はWebサイトにあります InfoGlaz.rfこのコピーの元となった記事へのリンク -

公共団体
「州ロケットセンターは学者副大統領にちなんで名付けられました。

マケエバ」

1979年、学者V.マケエフの設計局は、D-9RM複合施設の新しい大陸間弾道ミサイルR-29RM(RSM-54、3M37)の設計に取り組み始めました。 その設計の割り当てにより、小型の保護された地上目標を攻撃できる大陸間の飛行距離を備えたミサイルを作成するという課題が決定されました。 複合施設の開発は、潜水艦の設計に限られた変更を加えながら、可能な限り最高の戦術的および技術的特性を達成することに焦点を当てていました。 与えられた課題は、最終維持段階と戦闘段階の戦車を組み合わせた独自の三段ロケット設計の開発、極端な特性を備えたエンジンの使用、ロケット製造技術と使用される材料の特性の改善、ロケットの生産性の向上によって解決されました。ロケットの寸法と発射重量は、潜水艦ミサイルサイロ内で組み合わせたレイアウト時の発射装置ごとの体積に起因します。

かなりの数のシステム 新しいロケット R-29R の以前の改良版から取られました。 これにより、ロケットのコストを削減し、開発期間を短縮することができました。 開発と飛行試験は、確立されたスキームに従って 3 段階で実施されました。 浮遊スタンドから打ち上げられた最初の中古ロケットモデル。 その後、地上スタンドからのミサイルの共同飛行試験が始まった。 同時に16回の打ち上げが行われ、そのうち10回が成功した。 の上 最終段階プロジェクト 667BDRM の先頭潜水艦 K-51「CPSU の第 26 回会議の名前」が使用されました。

R-29RM ミサイルを搭載した D-9RM ミサイル システムは 1986 年に運用開始されました。 D-9RM複合施設のR-29RM弾道ミサイルは、デルタ-4タイプのSSBNプロジェクト667BDRMを装備している。 このタイプの最後のボートである K-407 は、1992 年 2 月 20 日に就航しました。 海軍は合計で 7 隻のプロジェクト 667BDRM ミサイル母艦を受領しました。 彼らは現在、 戦闘力ロシア北方艦隊。 それぞれのミサイルには 16 基の RSM-54 ランチャーが搭載されており、各ミサイルには 4 つの核ユニットが搭載されています。 これらの艦艇は、戦略核戦力の海軍部分の根幹を形成しています。 667 ファミリーの以前の改良型とは異なり、プロジェクト 667BDRM ボートは船の進行方向に対して任意の方向にミサイルを発射できます。 水中発射は水深55メートルまで6〜7ノットの速度で実行できます。 すべてのミサイルは 1 回の斉射で発射できます。

1996年以来、RSM-54ミサイルの生産は中止されていたが、1999年9月にロシア政府はクラスノヤルスク機械製造工場で近代化型RSM-54シネヴァの生産を再開することを決定した。 このマシンとその前任者との根本的な違いは、ステージサイズが変更され、個別に標的を定められた核ユニットが 10 基設置され、電磁パルスに対する複合施設の保護が強化され、敵のミサイル防衛を克服するシステムが設置されたことです。 このミサイルには、バーク大陸間弾道ミサイル用に設計された独自の衛星ナビゲーション システムとマラカイト 3 コンピューター複合体が組み込まれていました。

R-29RM ロケットに基づいて、投射可能質量 100 kg の Shtil-1 ロケットが作成されました。 その協力を得て、世界で初めて潜水艦から人工地球衛星が打ち上げられた。 打ち上げは水中の位置から行われた。

西では、複合施設はSS-N-23「スキフ」の指定を受けました。

R-29RM ミサイルは、「高密度」設計に従って作られた、段階が連続的に配置された 3 段式ミサイルです。 高い牽引特性を備えたタンクに「埋め込まれた」液体燃料ロケットエンジンが、すべての段階で推進エンジンとして使用されます。 ロケットの前部には、航法星の座標測定結果に基づく飛行経路の天体補正装置や航法衛星との情報交換結果に基づく電波修正装置などの制御システムを備えた計器室がある。地球と弾頭のこと。

ロケット本体は全溶接されたアルミニウムとマグネシウムの合金で作られています。 ロケットをランチャーとドッキングするために、ロケットの尾部にはパワーサポート包帯アダプターが装備されています。 ロケットが発射されるとき、アダプターは発射台に残ります。 第 1 段エンジンは、メイン (単室) とステアリング (4 室) の 2 つのブロックで構成されます。 ピッチ、ヨー、ロール チャネルに沿った制御力は、ステアリング ユニットの燃焼室を回転させることによって提供されます。 初段液体ロケットエンジンの推力は100トン。

第 2 段本体は、第 1 段本体に接続された酸化剤タンクと燃料タンクで構成され、その前面底部は弾頭と第 3 段エンジンを収容するために使用される円錐形の窪みの形で作られています。 第 2 ステージのエンジンは単一チャンバーで、その主要ユニットは第 1 ステージの酸化剤タンク内にあり、ピッチおよびヨー チャネルに沿った制御力は、ジンバルに取り付けられた燃焼室とロール チャネルに沿って回転することによって生成されます。 - ロールブロックによる。

第 3 段エンジンは単室エンジンです。 すべてのチャネルにわたる第 3 段の制御力は、第 3 段エンジンと同時に動作するデュアルモード弾頭拡張エンジンによって生成されます。 3 段目の推進システムとヘッドセクションは、共通のタンクシステムを備えた単一のアセンブリに統合されています。

第 1 段階と第 2 段階、第 2 段階と第 3 段階の分離は、細長い装薬を爆発させるシステムによって実行されます。

ヘッド部分は4ブロックと10ブロックで、個別のブロックガイドが付いています。 非核紛争において目標を超精密に破壊するために設計された爆発質量約2000kgの高性能破砕弾頭をミサイルに装備することが可能である。 「精密攻撃」を目的とした大口径核弾頭ミサイル(TNT相当、最大50トン)を搭載する可能性も検討されている。 弾頭の離脱ゾーンは任意であり、エネルギーは変化します。 START-1 条約によれば、R-29RM ミサイルには 4 ユニットの MIRV のみが搭載されています。

高精度管制システムは天体補正装置に加え、ウラガン星系の航法衛星に基づいて飛行経路を補正する装置を備えており、最大射程約500mでの射撃時にCEPを提供することが可能です。最小および中間距離でのさまざまなタイプの飛行経路。

R-29Rと比較すると、ミサイルの直径はわずかに増加していますが、SSBNシャフトの直径は増加していません。 P-29Rと比較して戦闘効率が著しく向上しました。 条件の拡大 戦闘用北極の高緯度からの使用の可能性によるミサイル。 R-29RM はプロジェクト 941 重 RPK SN ミサイルに劣らず、さらに発射重量は同じ射程距離を持つ R-39 の 2 倍以上軽いです。

RSM-54 は、エネルギーと質量の完成度の点で世界最高の弾道ミサイルです。 この用語により、設計者は、弾道ミサイルの戦闘負荷の質量と、1 つの飛行距離に換算した発射質量の比を理解します。 たとえば、車両が 8,000 キロメートルの距離で 1 つの重量の弾頭を投げた場合、10,000 キロメートルの距離で同じ問題を解決するには、戦闘負荷の重量を減らす必要があります。 この指標でミサイルを評価すると、RSM-54には46ユニットがあります。 これは、エネルギー質量指標がそれぞれ 33 単位と 37.5 単位である米国の海上配備弾道ミサイル、トライデント 1 およびトライデント 2 よりも優れています。

1991年8月6日21時07分、プロジェクト667BDRM潜水艦から満載のRSM-54ミサイルの一斉射撃が行われた。 オペレーションはコード「Behemoth」を受け取りました。 コスト削減のため、潜水艦乗組員の計画された戦闘訓練とミサイル2発のみの通常飛行に従って作戦が実施された。 最初と最後の斉射で発射されたミサイルは完全な飛行プログラムを完了して命中する必要があった 与えられたポイント狙っている。 一斉射撃に参加した残りのミサイルは、すべての発射パラメータにおいて戦闘ミサイルに完全に対応する必要があったが、飛行高度は任意であり得る。 一斉射撃を実行するために、潜水艦「ノヴォモスコフスク」(潜水艦司令官S.V.エゴロフ)とクラスノヤルスク機械製造工場で製造された16発のRSM-54ミサイルが弾薬を満載して割り当てられた。 発射は成功し、これまでのところ、弾薬を満載して発射を繰り返すことができた人は世界中で誰もいない。

2001年6月5日、北方艦隊のプロジェクト667BDRM SSBN(ミハイル・バニク1等艦長指揮)はバレンツ海から弾道ミサイルの発射に成功した。 ロケットは水中の位置から発射された。 ミサイルの頭部は所定の時刻にカムチャツカのクラ訓練場の標的に命中した。

性能特性
発射重量、t 40.3
最大投擲重量、kg 2800
最大射程距離、8300km
最大射程 (KVO) での射撃精度、m 500
ステージ数 3
ロケットの長さ、m 14.8
ロケットの第 1 段と第 2 段の直径、m 1.9
ロケットの第 3 段の直径、m 1.85

R-29RMU2「シネバ」(コードSTART RSM-54 NATO分類によると、SS-N-23スキフ)は、ロシアの第3世代潜水艦の3段液体推進弾道ミサイルです。 これは、プロジェクト 667BDRM「ドルフィン」の戦略潜水艦巡洋艦に配置された D-9RMU2 発射施設で使用されます。 R-29RMU2は、1980年代に開発されたR-29RMミサイルを改良したものである。 2007 年 7 月 9 日に就航しました。

ロケットは複合施設を改造したものです R-29RM(RSM-54) 1996年にこれらの複合体の連続生産は中止されましたが、1999年に再び再開されました。 これは、使用中の R-39 ミサイルの耐用年数 (10 年) の期限切れと、新しい Bark およびその後の Bulava 複合施設の開発における問題によるものでした。 2000 年代初頭、ミサイルの近代化に向けた作業が始まり、新たな改良が加えられました。 新しい指定 « R-29RMU2「シネバ」」と契約上の「RSM-54」を維持する。 2005年までに、最新の高速中級弾頭「ステーション」と「ステーション2」の開発が完了し、シネバ計画ミサイルへの配備が開始された。 契約上の義務に従い、予備装備(中型BB弾4発)がミサイルの主装備となった。 新しいユニットは、W-88 トライデント-2 弾頭 (475 kT) に劣りません。

2008 年 10 月 11 日、バレンツ海での安定性 2008 演習の一環として、原子力潜水艦トゥーラの水中位置からシネバ ミサイルが発射され、バレンツ海における飛行距離記録を樹立した。 11547 kmで太平洋赤道上に落下した。 空母アドミラル・クズネツォフからのミサイル発射はロシアのドミトリー・メドベージェフ大統領によって監視され、水上艦隊は大陸間弾道ミサイルを搭載した潜水艦の配備を援護した。 したがって、シネバの射程は、最も強力なアメリカのミサイルであるトライデント-2の射程(11,000 km)を超えた。ロシア艦隊は、水上艦隊の保護の下で潜水艦を海岸沖に展開できるようになり、戦闘が劇的に増加する。ボートの安定性。

R-29RMU2 “Sineva” の性能特性
採用年 2007
最大射程、km 11547
投擲重量、kg 2300 (旧タイプのBBでは最大2800)
運用から外された弾頭数 4 (500 ノット) または 10 (100 ノット)
KVO、m 150
対ミサイル防衛平坦軌道、MIRV、電子戦装備
発射重量、t 40.3
長さ、m 14.8
直径、m 1.9
スタートタイプ:水の充填